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ABSTRACT
Voice activity detection (VAD) based on deep neural networks
(DNN) has demonstrated good performance in adverse acous-
tic environments. Current DNN based VAD optimizes a sur-
rogate function, e.g. minimum cross-entropy or minimum
squared error, at a given decision threshold. However, VAD
usually works on-the-fly with a dynamic decision threshold;
and ROC curve is a global evaluation metric of VAD that re-
flects the performance of VAD at all possible decision thresh-
olds. In this paper, we propose to optimize the area under
ROC curve (AUC) by DNN, which can maximize the per-
formance of VAD in terms of the ROC curve. Experimental
results show that optimizing AUC by DNN results in higher
performance than the common method of optimizing the min-
imum squared error by DNN.

Index Terms— AUC, deep neural networks, voice activ-
ity detection.

1. INTRODUCTION

Voice activity detection (VAD) aims to separate target voices
from background noises. How to make it effective in low
signal-to-noise ratio (SNR) environments is a challenge.
Early research on VAD focused on the statistics of acoustic
features, including energy in the time domain, zero-crossing
rate, pitch detection [1], cepstral coefficients [2], higher-
order statistics [3], etc. However, a single acoustic feature
reflects only part characteristics of human voice, which may
be ineffective in some difficult scenarios when used alone.

Statistical signal processing based VAD, which fits signals
to predefined models and updates the parameters of a prior
probability distribution in an online learning mode, is another
major research branch. An accurate model assumption to the
real-world distribution of speech data is a crucial problem.
Existing model assumptions include Gaussian [4, 5], Lapla-
cian [6], Gamma distributions [7] and their combinations [8].
However, they use limited local data to train/update model
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parameters, leaving large amount of prior knowledge unex-
plored. Moreover, real-world data distributions may be too
complicated to be modeled accurately by a predefined model
assumption.

Recently, supervised learning based VAD, which regards
VAD as a classification problem, has received much attention.
It is flexible in incorporating prior knowledge, such as man-
ually labeled data. It is also good at fusing multiple acoustic
features. Existing supervised models include linear discrimi-
nant analysis [9], support vector machines (SVM) [10], multi-
modal methods [11] , sparse coding [12, 13], and deep neu-
ral networks (DNN) [14–25]. Particularly, DNN has demon-
strated strong scalability in building multiple layers of non-
linear transforms on a large-scale training corpus, e.g. [18],
which is important to make off-line supervised training meth-
ods practical towards real-world applications. Hence, there
is a bloom on the development of DNN-based VAD methods,
which has focused mainly on two respects—acoustic features,
e.g. [14, 18, 23, 24], and deep models, e.g. [16, 17, 19, 21, 25].

An important missing aspect of the DNN-based VAD re-
search is on the training target. It is known that the decision
threshold of VAD is usually determined on-the-fly, and differ-
ent applications may have different minimum requirements to
the missing detection rate. Hence, it is needed to optimize
the performance of VAD at a wide range of decision thresh-
olds. Moreover, receiver operating characteristic (ROC) curve
and the area under ROC curve (AUC) are two standard eval-
uation metrics to measure the global performance of VAD.
However, the training costs of existing DNN based VADs are
either classification-loss-based minimum cross-entropy [14]
or regression-loss-based minimum square error (MSE) [18],
which are both surrogate loss functions that do not optimize
ROC curve or AUC directly.

Motivated by [10], this paper proposes a DNN-based
VAD to optimize AUC directly. The method, named MaxAUC-
DNN-based VAD first relaxes the AUC calculation, which is
an NP-hard problem, to a polynomial-time solvable problem,
then calculates the gradient of the AUC loss with respect to
the parameters of the output layer of DNN, and finally back-
propagates the gradient to the entire DNN. We have evaluated
the proposed method in babble and factory noise scenarios at
a wide range of SNR levels. Experimental results show that
the MaxAUC-DNN-based VAD outperforms the MSE-DNN-
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Fig. 1. Illustration of ROC curve and AUC

based VAD, given either the short-time Fourier transform
(STFT) or multi-resolution cochleagram (MRCG) [18, 26] as
the acoustic feature.

2. MAXAUC-DNN BASED VAD

2.1. Motivation and problem formulation

Supervised learning based VAD can be viewed as a binary
classification problem—speech or nonspeech.1 Suppose we
have a training corpus X = {(xi, yi)}ni=1 where xi is a high-
dimensional acoustic feature of the i-th frame signal, e.g.
STFT or MRCG, and yi is the ground-truth label of xi. If
xi is a speech frame, then yi = 1; otherwise, yi = 0. DNN
based VAD aims to learn a multilayer nonlinear mapping
function fα(·) from X , such that when using fα(·) in test by
the following criterion, its performance can be optimized:

y =

{
1, if fα(x) ≥ η
0, otherwise

(1)

where α is the model parameter of DNN fα(·), and η
is a decision threshold. The training objective of fα(·)
falls into the following two classes: (i) MSE minimizes∑n
i=1 ||yi − fα(xi)||2 with respect to α, and (ii) minimum

cross-entropy minimizes −
∑n
i=1(yi log(fα(xi)) + (1 −

yi) log(1− fα(xi))). These surrogate functions cannot guar-
antee that the VAD performs the best at any valid decision
threshold. However, the decision threshold of VAD is usu-
ally decided on-the-fly. It may vary significantly in different
applications. Based on the above analysis, it is needed to
optimize the performance of VAD at any decision threshold,
which is the motivation of this paper as shown in Fig. 1.

2.2. Optimization objective

Let X be the acoustic feature space, and D+ and D− are the
probability distributions of speech and silence on X , respec-

1Nonspeech contains many noise scenarios. Hence, VAD is a problem of
discriminating one class to the rest classes rigorously.

tively. We aim to learn a DNN function fα : X → R which
maximizes the AUC.

Definition 1. The detection probability PD and the false
alarm probability PFA is defined respectively as

PD(γ) = Px+∼D+
[fα(x+) > γ] (2)

PFA(γ) = Px−∼D− [fα(x−) > γ] (3)

where x+ and x− are two random samplings formX accord-
ing to D+ and D− respectively, and γ ∈ R is the threshold.

Given Definition 1, the ROC curve produced by fα is then
defined as the plot of PFA(γ) against PD(γ) at all possible γ
as show in Fig. 1. Then the AUC is calculated by

AUCfα =

∫ 1

0

PD(P−1FA (u))du (4)

where P−1FA (u) = inf{γ ∈ R|PFA(γ) ≤ u}. In practice,
because the training samples from X are limited to X , we
only estimate an approximate AUC of (4) from X .

We define the positive and negative samples in X as
X+ = {(x+

j , yj = 1)|j = 1, 2, 3, · · · J} and X− =

{(x−k , yk = 1)|k = 1, 2, 3, · · · K}, respectively, with
n = J + K. We further define the optimization objective
of the MaxAUC-DNN as follows:

Theorem 1. Given the limited training samples of X+ and
X−, a loss function for optimizing the AUC (4) can be defined
as:

` =
1

JK

J∑
j=1

K∑
k=1

max
[
0, δ − fα

(
x+
j

)
+ fα

(
x−k
)]

(5)

where δ is a tunable hyperparameter.

Proof. The AUC (4) can be calculated by [27]:

AUCfα = P(x+,x−)∼D+×D− [fα(x+) > fα(x−)] (6)

Given the limited training samplesX+ andX−, the empirical
AUC is calculated by

ÂUCfα =
1

JK

J∑
j=1

K∑
k=1

I
[
fα
(
x+
j

)
> fα

(
x−k
)]

(7)

where I(·) is an indicator function that returns 1 if the state-
ment is true, and 0 otherwise. However, maximizing (7) di-
rectly is NP-hard. To deal with this problem, we relax (7) by
replacing the indicator function by a hinge loss function:

`hinge(z < 0) = max(0, δ − z) (8)

where z = fα
(
x+
j

)
− fα

(
x−k
)
, and δ > 0 is a tunable hyper-

parameter controlling the distance margin between fα(x+
j )

and fα(x−k ). Substituting (8) into (7) transforms the maxi-
mization problem of (7) into a minimization problem of (5).
Theorem 1 is proved.
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2.3. Optimization algorithm

In this paper, we employ the mini-batch stochastic gradient
descent algorithm to solve (5). Because the gradient∇fα(xi)
with respect to xi can be easily backpropagated throughout
the network in a standard procedure, we only need to derive
the gradient at the output layer.

Theorem 2. The gradient of (5) at the output layer of DNN
is:

∇` = −
n∑
i=1

y′i × ωi ×∇fα(xi) (9)

where y′i = 2yi − 1 is the ground-truth label of xi, {ωi|i =
1 · · ·n} = {ωj |j = 1 · · · J} ∪ {ωk|k = 1 · · ·K} is the
weight of xi with ωj = 1

JK

∑K
k=1 Π(j, k) and ωk =

1
JK

∑J
j=1 Π(j, k), where Π ∈ {0, 1}J×K is an index ma-

trix defined as

Π(j, k) =

{
1, if fα(x+

j ) < δ + fα(x−k )

0, otherwise
. (10)

Proof. The gradient of (5) is

∇` =
1

JK

J∑
j=1

K∑
k=1

∇`hinge (11)

where the gradients ∇`hinge with respect to x+
j and x−k are

given respectively by

∇`hinge(x+
j ) =

{
−∇fα(x+

j ), if fα(x+
j ) < δ + fα(x−k )

0, otherwise
(12)

∇`hinge(x−k ) =

{
∇fα(x−k ), if fα(x+

j ) < δ + fα(x−k )

0, otherwise
.

(13)
Taking (12) and (13) into (11) obtains:

∇` = − 1

JK

J∑
j=1

K∑
k=1

Π(j, k)
[
∇fα(x+

j )−∇fα(x−k )
]

(14)

For simplicity, (14) can be rewritten as:

∇` = −
( J∑
j=1

ωj∇fα(x+
j )−

K∑
k=1

ωk∇fα(x−k )
)

= −
n∑
i=1

y′i × ωi ×∇fα(xi). (15)

Theorem 2 is proved.

In this paper, the activation function of the output layer of
DNN is sigmoid function. Because y′i ∈ {1,−1}, we map the
output of the sigmoid function from [0, 1] to [−1, 1].

3. EXPERIMENTS

3.1. Datasets

We conducted an experimental comparison on the CHiME-4
challenge. The audio data are 16 bit stereo WAV files sam-
pled at 16 kHz. We used the “tr05 org” corpus of CHiME-4
as clean speech. We selected 6,340 sentences for training, and
798 sentences for testing. We constructed a number of noisy
development sets by adding PED noise in CHiME-4 to the
clean speech at SNR levels [−10,−5, 0, 5] dB respectively
for the hyperparameter δ selection problem. Then, we con-
structed noisy training and test sets by adding babble and fac-
tory noise respectively from the NOISEX-92 database to the
clean speech at the same SNR levels as the development sets
for a formal comparison. The SNR levels and noise types of
training and test were matching in all experiments. For each
pair of training and test corpora, we split the noise source into
two segments, one added to the training data and the other to
the test data.

Because CHiME-4 does not have sample-level ground-
truth labels, we used the prediction result of the Sohn VAD [4]
on the clean speech as the ground-truth labels. This labeling
method has been shown to be reliable in [18].

3.2. Experimental settings

We set the frame length to 30 milliseconds and frame shift to
10 milliseconds. To verify the effectiveness of the proposed
algorithm with different acoustic features, we took STFT and
MRCG features respectively as the input of a DNN model.
STFT is a basic acoustic feature, while MRCG is an advanced
one. Based on the experimental conclusion in Section 3.4, we
set the hyperparameter δ of the MaxAUC-based VAD to 0.8
when MRCG was used, and 0.1 when STFT was used.

We compared the MaxAUC-DNN-based VAD with the
MSE-based VAD. Both of their DNN models adopted the
same hyperparameter setting as follows. Each DNN model
contains two hidden layers. The numbers of hidden units were
set to 512 for the two hidden layers. The activation functions
of the hidden units and output units were set to rectified lin-
ear unit and sigmoid function, respectively. The number of
epoches was set to 30. The batch size was set to 512. The
scaling factor for the adaptive stochastic gradient descent was
set to 0.0015, and the learning rate decreased linearly from
0.08 to 0.001. The momentum of the first 5 epochs was set to
0.5, and the momentum of other epochs was set to 0.9. The
dropout rate of the hidden units was set to 0.2. A contextual
window was used to expand each input frame to its context
along the time axis. The window size was set to 5.

We adopted the ROC curve and AUC as the evaluation
metrics.

6762

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 03:45:01 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. Effect of hyperparameter δ on performance in terms of AUC in PED noise.
Feature SNR MaxAUC MSE

δ =0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5 δ = 0.6 δ = 0.7 δ =0.8 δ = 0.9 δ = 1.0

MRCG

5 dB 0.8977 0.9024 0.9051 0.9063 0.9097 0.9092 0.9087 0.9104 0.9057 0.8995 0.9033

0 dB 0.8612 0.8651 0.8679 0.8719 0.8756 0.8751 0.8760 0.8766 0.8769 0.8728 0.8663

−5 dB 0.7842 0.7921 0.7908 0.7997 0.7990 0.7971 0.8047 0.8119 0.8142 0.8135 0.7983

−10 dB 0.6980 0.6983 0.7036 0.7098 0.7128 0.7141 0.7217 0.7239 0.7308 0.7382 0.7074

STFT

5 dB 0.8405 0.8232 0.8046 0.7813 0.6858 0.7341 0.7534 0.6803 0.6224 0.6024 0.7555

0 dB 0.7867 0.7658 0.7404 0.6617 0.6128 0.6322 0.6418 0.6139 0.5938 0.5914 0.6528

−5 dB 0.7304 0.6766 0.6204 0.5960 0.5922 0.5928 0.5930 0.5907 0.5893 0.5889 0.5954

−10 dB 0.6356 0.5845 0.5839 0.5882 0.5889 0.5886 0.5876 0.5889 0.5889 0.5889 0.5882

Table 1. AUC comparison in babble and factory noises.
Noise Feature SNR MaxAUC MSE

Babble

MRCG

5 dB 0.9208 0.9183

0 dB 0.8922 0.8888

−5 dB 0.8455 0.8410

−10 dB 0.7742 0.7601

STFT

5 dB 0.8699 0.8507

0 dB 0.8259 0.7346

−5 dB 0.7640 0.6424

−10 dB 0.6954 0.5902

Factory

MRCG

5 dB 0.9065 0.9059

0 dB 0.8815 0.8809

−5 dB 0.8409 0.8353

−10 dB 0.7743 0.7675

STFT

5 dB 0.8144 0.8131

0 dB 0.7509 0.7207

−5 dB 0.6671 0.6039

−10 dB 0.5996 0.5893

3.3. Main results

Table 1 and Fig. 2 list the comparison results. From the
table and figure, we see that the MaxAUC-DNN-based VAD
clearly outperforms the MSE-DNN-based VAD at all SNR
levels. The relative improvement with STFT is much larger
than that with MRCG. For example, the MaxAUC-DNN
based VAD achieves more than 8% improvement over the
MSE-DNN-based VAD in the babble noise. Moreover, the
MaxAUC-DNN-based VAD behaves more robust across dif-
ferent acoustic features than the MSE-DNN-based VAD.

3.4. Effect of hyperparameter δ

We tuned hyperparameter δ in grid from 0.1 to 1 with a step
size 0.1 in the PED noise environment. Table 2 lists the
experimental results. From the table, we observe that δ is
insensitive to SNR, and behaves robustly in a wide range.
However, it is sensitive to different acoustic features. Specifi-
cally, for the MRCG feature, the MaxAUC-DNN-based VAD
with δ selected from [0.4, 1] outperforms the MSE-DNN-
based VAD; the best δ appears around 0.8 at all SNR levels.
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Fig. 2. ROC curve comparison at an SNR of −5 dB.

For the STFT feature, when δ is selected from [0.1, 0.4],
the MaxAUC-DNN-based VAD outperforms the MSE-DNN-
based VAD; and the best δ appears around 0.1. Therefore,
we chose δ = 0.8 for MRCG, and δ = 0.1 for STFT in
Section 3.3 where the experimental results further recognize
our conclusion here.

4. CONCLUSIONS

In this paper, we have proposed a DNN based VAD for max-
imizing AUC directly, so as to improve the performance of
DNN based VAD at any decision threshold. Specifically, we
first relax the AUC calculation to a polynomial-time solvable
problem, then compute the gradient of the AUC loss with re-
spect to the parameters of the output layer of DNN, and finally
back-propagate the gradient to its hidden layers. We have
evaluated the proposed method in babble and factory noise
scenarios at a wide range of SNR levels. Experimental results
show that the proposed method outperforms the MSE-DNN-
based VAD at all SNR levels, given either STFT or MRCG as
the acoustic feature; moreover, it is insensitive to δ.
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