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fMBN-E: Efficient Unsupervised Network Structure
Ensemble and Selection for Clustering

Xiao-Lei Zhang

Abstract—It is known that unsupervised nonlinear dimension-
ality reduction and clustering is sensitive to the selection of
hyperparameters, particularly for deep learning based methods,
which hinders its practical use. How to select a proper network
structure that may be dramatically different in different applica-
tions is a hard issue for deep models, given little prior knowledge
of data. In this paper, we aim to automatically determine the
optimal network structure of a deep model, named multilayer
bootstrap networks (MBN), via simple ensemble learning and
selection techniques. Specifically, we first propose an MBN
ensemble (MBN-E) algorithm which concatenates the sparse
outputs of a set of MBN base models with different network
structures into a new representation. Then, we take the new
representation produced by MBN-E as a reference for selecting
the optimal MBN base models. Moreover, we propose a fast
version of MBN-E (fMBN-E), which is not only theoretically even
faster than a single standard MBN but also does not increase
the estimation error of MBN-E. Importantly, MBN-E and its
ensemble selection techniques maintain the simple formulation of
MBN that is based on one-nearest-neighbor learning. Empirically,
comparing to a number of advanced deep clustering methods and
as many as 20 representative unsupervised ensemble learning
and selection methods, the proposed methods reach the state-
of-the-art performance without manual hyperparameter tuning.
fMBN-E is empirically even hundreds of times faster than MBN-
E without suffering performance degradation. The applications to
image segmentation and graph data mining further demonstrate
the advantage of the proposed methods.

Index Terms—Ensemble selection, cluster ensemble, multilayer
bootstrap networks, unsupervised learning

I. INTRODUCTION

UNSUPERVISED learning and clustering is a fundamental
task of machine learning. It finds wide applications in

data mining, text analysis, etc. Early works, like principal
component analysis (PCA) and k-means clustering, conduct
clustering in the original data space. Because the data in the
original space is usually linearly-inseparable and noisy, later
on, research turned to projecting data in the original space
into a probability space where the data is supposed to be
uniformly distributed and linearly separable, such as kernel
methods, probabilistic models, and manifold and subspace
learning [1]. However, a proper probability space is usually
found by tuning parameters manually, e.g. kernel widths [2]
or regularization parameters, which is a long term headache
problem. Although some work has tried to find the optimal
parameters automatically, e.g. [3], the learned representation,
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which is produced from a single layer nonlinear transform, is
not abstract enough to describe the semantic classes of data.

To learn highly abstract representations, deep neural net-
work based data clustering has received much attention re-
cently. The first work [4] extracts abstract representations
from the bottleneck layer of a deep belief network. To make
the deep representations suitable for clustering, some work
adds additional terms, such as constraints [5], clustering-like
loss functions and models [6], or novel network structures
[7], to the network training; while some work learns deep
representations and refines cluster assignments iteratively [8].
Recently, a new kind of deep learning based clustering,
named self-supervised clustering optimizes cleverly designed
objective functions of some pretext tasks, such as image
completion, image colorization, or clustering, in which su-
pervised pseudo labels are automatically obtained from the
input data without manual annotations. It can be generally
categorized into predictive self-supervised clustering [9]–[11],
generative self-supervised clustering [12], [13], and contrastive
self-supervised clustering [14], [15], respectively. See [16] for
an recent overview. Although the methods achieve superior
performance over conventional clustering methods, many of
them apply handcrafted priors to the benchmark data case by
case, such as strong prior knowledge of data, data augmen-
tation with clear intrinsic data structures, or hyperparameter
tuning with the ground-truth labels. If prior knowledge is
insufficient, then some methods have to make a compromise
with default hyperparameter settings, e.g. [17], which may
degrade performance apparently.

As we know, a long term goal of unsupervised learning and
clustering is to design algorithms that are tuning-free and with
little human labor, like k-means clustering. However, from the
above literature review, it seems that this topic is far from
explored yet. Because the topic is a rather broad research area,
this paper focuses on the network structure selection problem
of a special deep model, named multilayer bootstrap network
(MBN) [17], given little prior knowledge of data. It seems a
difficult problem, since that the network structure of MBN,
which is controlled by hyperparameters, is strongly related to
the unknown intrinsic property of the input data. See Section
III for the details of the problem.

We address the network structure selection problem of MBN
by unsupervised ensemble learning and ensemble selection.
See Section II for an overview of the state-of-the-art works on
unsupervised ensemble learning and selection. Although many
ensemble selection methods may be applied successfully, we
aim to exploit a simple and efficient way under the rule of
Occam’s Razor. We find empirically that, when applied to
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Fig. 1. On the network structure selection problem of MBN. Each square of MBN in figure (a) represents a base clustering, while the black circles connected
to the square represent the input/output of the base clustering. The hyperparameter “δ” controls the network structure of MBN. The words in red color are
two ensemble selection criteria for MBN-SO and MBN-SD respectively. The word “ACC” is short for clustering accuracy. The demo data is the COIL20
dataset [18].

MBN, even a very simple ensemble selection method is able
to achieve comparable top performance with the advanced
ones, where 20 unsupervised ensemble learning and selection
methods are used for comparison in Appendix D of the
Supplement Material. Eventually, this finding derives a simple
and efficient tuning-free unsupervised deep learning algorithm
for practical use.

To summarize, as shown in Fig. 1, the contribution of this
paper is listed as follows:
• We theoretically prove that increasing the depth of MBN

does not always improve the performance, which induces
the network structure selection problem of MBN.

• To address the aforementioned problem, we propose a
simple MBN ensemble (MBN-E) algorithm. It groups the
sparse outputs of a number of MBN base models with
different network structures into a new representation.

• To reduce the high computational complexity problem
of MBN-E, we propose the fast MBN-E (fMBN-E) by a
simple modification of MBN-E. It accelerates MBN-E by
over hundreds of times both theoretically and empirically.
We have proved that the acceleration does not degrade the
performance.

• To further improve the performance of MBN-E, we pro-
pose (i) the MBN ensemble selection with optimization-
like criteria (MBN-SO) for the case when the number of
classes is known, and (ii) the MBN ensemble selection
with distribution divergence criteria (MBN-SD) when
the number of classes is unknown. Both of them select
a number of highly-effective MBN base models from
MBN-E to group into a new MBN-E. The difference
between them lies in the selection criteria of the base
models.

• We have run experiments on a number of benchmark
datasets where the optimal network structure of MBN

appears in fundamentally different ranges. Experimental
results show that MBN-E significantly outperforms the
MBN with the default setting and approaches to the MBN
with the optimal setting. fMBN-E achieves similar per-
formance with MBN-E, and is over dozens of times faster
than MBN-E. MBN-SO and MBN-SD further improves
the performance of MBN-E.

• Because the proposed algorithms intend to solve the
difficulty of real-world applications of MBN, we further
applied the proposed methods to image segmentation
and graph data mining. Experimental results verified the
effectiveness of the proposed methods.

The rest of the paper is organized as follows. In Section
II, we present related work. In Section III, we review MBN.
In Section IV, we analyze the structure selection problem
of MBN both theoretically and empirically. In Sections V
and VI, we present MBN-E, fMBN-E, MBN-SO, and MBN-
SD, respectively. In Section VII, we present an extensive
experiment. In Section VIII, we apply the proposed methods to
image segmentation and graph data mining. Finally, in Section
IX, we conclude the paper.

II. RELATED WORK

The proposed MBN-E essentially is rooted in clustering en-
semble. The proposed MBN-SO and MBN-SD are essentially
rooted in ensemble selection and reweighting. The selection
criteria of the base models of MBN-SD, which measures the
divergence between data distributions, are rooted in unsu-
pervised domain adaptation. We present the three aspects as
follows.

A. Clustering ensemble
Ensemble learning, such as bagging, boosting, and their

variations, has demonstrated its effectiveness on many learning
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problems [19]. Unsupervised ensemble learning inherits the
fundamental theories and methods of classifier ensemble. The
mostly studied unsupervised ensemble learning is clustering
ensemble. It aims to combine multiple base clusterings with
a so-called meta-clustering function, a.k.a consensus function,
for enhancing the stability and accuracy of the base cluster-
ings [20], [21]. Meta-clustering functions can be categorized
generally to two classes [21]. The first class analyzes the co-
occurrence of objects: how many times an object belongs to
one cluster or how many times two objects belong to the same
cluster. The second class, called the median partition, pursues
the maximal similarity with all partitions in the ensemble [22]–
[24]. Recently, some unsupervised deep ensemble learning
methods have been proposed [25]–[27]. For example, [25]
takes deep neural networks act like a meta-clustering function.
[26] decomposes each layer of a deep neural network into an
ensemble of encoders or decoders and mask operations.

To our knowledge, unsupervised deep ensemble learning
is not prevalent, due to maybe that neural networks need
supervised signals to maximize their discriminant ability. See
[21], [28] for the reviews of clustering ensemble.

B. Clustering ensemble reweighting and selection

Because not all base clusterings contribute equivalently to a
cluster ensemble, it is needed to conduct ensemble reweighting
and selection, which mainly focuses on three respects: (i)
different types of weights, (ii) algorithms for calculating the
weights, and (iii) cluster validation criteria for measuring the
diversity and quality of the base models.

The most common type of weights is to assign a weight to
each base clustering according to its quality or/and diversity
in the ensemble, e.g. [29]. A special case of this type is to
constrain the weights of some weak base clusterings to zero,
named clustering selection [30], [31]. However, weak base
clusterings may also contain some high quality clusters, and
vise versa. With this perspective, many reweighting strategies
at levels of clusters [32], [33], data structures [34], and data
points [35] were proposed.

The algorithms for calculating the weights can be catego-
rized into two types [36]. The first type calculates weights by
measuring the similarity between the predicted labels of the
clustering ensemble and its base clusterings [29], [30]. The
second type treats the weights as variables of consensus func-
tions which are obtained by advanced optimization algorithms,
e.g. [37].

The criteria for measuring the diversity and quality of the
base models can be categorized into two classes. The first class
of measurements calculates the normalized mutual information
[29], [30], adjusted rand index [38], clustering accuracies [39],
and their variants [40] or aggregations [41] between the sets of
the predicted labels. The second class of validation criteria is
based on data distributions [42], [43]. They usually calculate
some kinds of statistics of data [34], [44]. Some systematical
studies on cluster validation indices [42], [43] have been
carried out as well.

To summarize, when the number of classes is given, we
evaluate the quality of the base models by optimization-like

criteria [42], for MBN-SO. When the number of classes is not
given, we propose to evaluate the quality of the base models by
so-called distribution divergence criteria for MBN-SD, which
measure the learned representations of data directly without
predicted labels.

C. Unsupervised domain adaptation

Domain adaptation is the ability of applying an algorithm
trained in one or more “source domains” to a different but
related “target domain”. Unsupervised domain adaptation is a
subtask of domain adaptation where the target domain does
not have labels. The algorithms can be categorized into three
branches [45], which are sample-based, feature-based, and
inference-based approaches. No matter how the approaches
vary, the distribution divergence measurement between the
source domains and the target domain always lies in the
core of unsupervised domain adaptation. The most popular
measurement is maximum mean discrepancy (MMD) [46].
Other measurements include Kullback-Leibler divergence, to-
tal variation distance, second-order (covariance) statistics,
and Hellinger distance. Although the distribution divergence
measurement has been extensively studied in unsupervised
domain adaptation, it seems far from explored in unsupervised
ensemble selection.

In this paper, we name this kind of measurements as distri-
bution divergence criteria, and apply them to MBN-SD. Be-
cause MMD performs generally well among the measurements
and is applicable to all data types, from high-dimensional
vectors to strings and graphs, we focus on using MMD.

III. PRELIMINARIES

This section presents MBN and its theoretical foundation
briefly. See Appendices A and B of the Supplementary Ma-
terial for the summary of important notations and detailed
description of MBN as well as its geometric and theoretical
foundations.

A. Multilayer bootstrap networks

This paper takes MBN [17] as a research object. It is a
simple deep model. As shown in Fig. 1a, suppose we are to
build an M -layer MBN from bottom-up, it can be described
as follows:

• Step 1, for each layer, MBN trains V mutually-
independent k-centroids base clusterings, where the pa-
rameter k of all clusterings at the same layer is the same.
For each base clustering, it takes the following three
operators successively to generate a new representation
of data:

– Random selection of features: It first randomly
selects some features of the input data, which yields
a new representation of the data.

– Random sampling of data: It randomly samples k
data points from the data with the new representation
as the k centroids.
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– One nearest neighbor optimization: It assigns each
input data to one of the k clusters, and outputs a k-
dimensional one-hot code, indicating which cluster
the input data belongs to.

The one-hot representations from all base clusterings are
concatenated as the input of the upper layer.

• Step 2, MBN stacks the cluster ensemble described in
Step 1 for M times. The parameter k at two adjacent
layers have the following connection:

km = δkm−1 (1)

where km and km−1 are the parameter k at the m-th and
(m − 1)-th adjacent layers respectively, and δ ∈ (0, 1)
is a hyperparameter controlling the network structure of
MBN. Because δ ∈ (0, 1), we must have

k1 > k2 > . . . > km > . . . > ko (2)

where ko is the parameter k at the top layer. Note that,
the total number of layers of MBN is usually determined
automatically by k1, ko, and δ.

B. Estimation error of a single layer of MBN

[17] analyzed the estimation error of a single layer of MBN,
which explains the empirical success of MBN. We summarize
the analysis here.

Given an input x of MBN at a layer, it is easy to image that
each k-centroids clustering contributes a nearest neighbor wv

to x, ∀v = 1, . . . , V , then, the new location of x in the input
data space, denoted as x̂, is given by the V nearest neighbors
as:

x̂ =
1

V

V∑
v=1

wv (3)

If x̂ is an effective estimation of x, then the locally linear
assumption between {wv}Vv=1 and x must hold; otherwise, x̂
is not an accurate estimation.

Under the locally linear assumption, the estimation error
E(x − x̂) can be decomposed into the following form using
the famous bias-variance decomposition of expectation risk
[47]:

E((x− x̂)2) = (x− E(x̂))2 + E
(
(x− E(x̂))2

)
= Bias2(x̂) + Var(x̂) (4)

Given (4), we can derive the following theorem for the
estimation error of a single layer of MBN:

Theorem 1. The estimation error of a single layer of MBN
Eensemble and the estimation error of a single k-centroids
clustering Esingle in the layer have the following relationship:

Eensemble =

(
1

V
+

(
1− 1

V

)
ρ

)
Esingle (5)

where ρ is the pairwise positive correlation coefficient between
the k-centroids clusterings, 0 ≤ ρ ≤ 1 [17].
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Fig. 2. Visualization of features produced by MBN with different δ on the
Dermatology and MNIST(5000) datasets, where Dermatology is a dataset
from UCI, and MNIST(5000) is a subset of MNIST dataset that consists of
5000 randomly selected data points.

IV. ANALYSIS OF THE NETWORK STRUCTURE PROBLEM OF
MBN

It is expected that adding more layers to a deep network
could improve the representation learning ability of the net-
work. However, this is not always the case empirically, so as
to MBN.

In this section, we first give an empirical demo on how
different network structures affect the performance in Section
IV-A, and then derive the estimation error of the entire MBN
in Section IV-B by extending Theorem 1 to the multilayer sce-
nario, which explains the empirical phenomenon theoretically
and motivates the novel algorithms of this paper.

A. Empirical justification

A core problem of MBN is that its effectiveness is strongly
related to the network structure which is controlled by pa-
rameter δ. Given parameters k1 and ko in (2) fixed, how
fast k drops from k1 to ko layer by layer according to (2),
which is determined by δ, should match the nonlinearity and
noise level of data. When δ approaches to 0, MBN builds
a shallow network with a single nonlinear layer, which is
suitable for linearly separable data. When δ is enlarged towards
1, MBN becomes deeper and deeper, which is suitable for
highly nonlinear and non-Gaussian data. If the above regularity
is violated, the performance of MBN may drop sharply.

In Fig. 1a, we can see that, increasing δ from 0.1 to 0.9
yields gradually improved performance on COIL20. The gap
between the best performance and poorest performance is as
high as 58%. However, in Fig. 2, we see that (i) the best
performance of MBN on the Dermatology dataset appears at
δ = 0.1, and the performance degrades gradually along with
the increase of δ, which is contrary to the trend on COIL20;
(ii) the best performance on MNIST(5000) appears at δ = 0.5,
which significantly outperforms the performance when δ = 0.1
and δ = 0.9. Moreover, as will be shown in Table I and Fig.
7 in the experiment, the best δ for different datasets appears
at dramatically different ranges.

Because it is difficult to evaluate the properties of data in
unsupervised learning, MBN has to make a compromise by
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Fig. 3. Diagram of the density estimation process of MBN with different
δ. The notation δ0 denotes the optimal δ. The black cross x̂ denotes the
coordinate of the learned representation of an input data x. The four red
points, which are w1, w2, w3 and w4 respectively, are the nearest centroids
of four k-centroids clusterings to an input data point x. The blue dotted oval
is the area of the locally linear assumption.

setting δ = 0.5. This may lead to far inferior performance
from the optimal one, though δ = 0.5 happens to be the best
choice on some data like MNIST. In this paper, we aim to
address this issue by detecting the optimal δ automatically.

B. Theoretical explanation

A fundamental element of MBN is the locally linear as-
sumption defined in (3). The correctness of the assumption
is strongly related to the choice of δ. Suppose the optimal
performance of MBN appears at δ = δ0. Then, a diagram in
Fig. 3 explains the empirical phenomenon in Section IV-A.

When we set δ � δ0, the locally linear assumption (3)
may be violated, which makes MBN fail to learn correct
representations. For example, in Fig. 3a, given an input data
point x that is sampled from the nonlinear data distribution,
its representation x̂ learned by the nearest centroids w1, w2,
w3, and w4 is even out of the data distribution, which is
clearly wrong. This explains the empirical phenomenon that
MBN does not reach the top performance on COIL 20 when
δ � 0.9, and on MNIST(5000) when δ � 0.5.

To explain the failure of MBN at δ � δ0, we first give the
following theorem:

Theorem 2. When δ > δ0, the estimation error of MBN is:

EMBN ≥
M∑

m=1

(
1

V
+

(
1− 1

V

)(
ak1
n

)2

δ2(m−1)

)
E(single,1)

(6)
where a ∈ (0, 1] is the ratio of the number of randomly
selected features over the number of all features in Step
1 of MBN, Esingle,1 is the estimation error of a single k-
centroids clustering at the bottom layer, and M is the number
of nonlinear layers of MBN.

Proof. First of all, we should emphasize that, when δ < δ0, the
locally linear assumption for (3) does not hold, which makes
Theorem 1 do not hold as well. Because the following proof is
built on Theorem 1, Theorem 2 is effective only when δ > δ0.

Because the probability that any two k-centroids clusterings
select the same element of the same input data point as one
of their centroids is (ak/n)2, then we can imagine easily that
the correlation is

ρ = (ak/n)2 (7)

Fig. 4. Connection between the estimation error of MBN and δ when δ > δ0,
where C = (ak1/n)

2 E(single,1) is a constant.

We denote the correlation at the mth layer as ρm. Substituting
(1) into (7) derives

ρm = (akm−1/n)2δ2 = . . . = (ak1/n)2δ2(m−1) (8)

We denote the estimation error of a single k-centroids clus-
tering and an ensemble of clusterings at the mth layer as
E(single,m) and E(ensemble,m) respectively. Because reducing
k makes Esingle enlarged, we may assume that E(single,m) is
lower-bounded by E(single,1). Substituting (8) into (5) derives:

E(ensemble,m) ≥

(
1

V
+

(
1− 1

V

)(
ak1
n

)2

δ2(m−1)

)
E(single,1)

(9)
Because EMBN accumulates E(ensemble,m) of all layers from
bottom-up, we can derive the overall estimation error of MBN
as (6).

We further derive the following corollary from Theorem 2:

Corollary 1. When δ > δ0 and V →∞, the estimation error
of MBN is:

EMBN ≥ C
M∑

m=1

δ2(m−1) (10)

where C = (ak1/n)
2 E(single,1) is a constant.

Corollary 1 can be visualized in Fig. 4. From the figure,
we see that, when δ approaches to 1, EMBN is increased
exponentially.

Fig. 3c gives an example on how the large estimation error
occurs when δ � δ0. In this figure, we see that, because the
four k-centroids clusterings have strong correlation, three out
of four nearest centroids to x, i.e. w1, w2, and w3, share the
same location, which makes MBN difficult to learn a good rep-
resentation. The above analysis explains the phenomenon why
the performance of MBN on Dermatology and MNIST(5000)
drops sharply when δ = 0.9.

As shown in Fig. 3b, only when δ ≈ δ0, not only the locally
linear assumption holds, but also the k-centroids clusterings
have weak correlation, which makes MBN learn the best
representation for x. However, avoiding the sensitivity of
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Algorithm 1 MBN-E.
Input: A h-dimensional unlabeled dataset {xi}ni=1, parameter

ko, and number of MBN base models Z
Output: {ȳi}ni=1

1: for z = 1, . . . , Z do
2: Randomly generate δ from the range [0.05, 0.95];
3: {yz,i}ni=1 ← MBN({xi}ni=1, ko, δ)
4: end for
5: for i = 1, . . . , n do
6: ȳi ← [yT

1,i,y
T
2,i, . . . ,y

T
Z,i]

T

7: end for

MBN to δ is not straightforward, which motivates the proposed
methods in the following of this paper.

V. MULTILAYER BOOTSTRAP NETWORK ENSEMBLE

In this section, we first introduce MBN-E in Section V-A,
then present an efficient algorithm for MBN-E, named fMBN-
E, in Section V-B, and finally discuss why fMBN-E can
accelerate MBN-E without degrading the estimation accuracy
in Section V-C.

A. MBN-E

Because MBN is sensitive to δ, a straightforward thought
is to integrate a number of MBN base models with different
δ into MBN-E. We present MBN-E in Algorithm 1.

In Algorithm 1, we usually conduct PCA preprocessing to
{xi}ni=1 before MBN-E, which not only reduces the compu-
tational complexity of the bottom layers of the MBN base
models but also de-correlates the input features. After getting
the output {ȳi}ni=1, we sometimes need to reduce {ȳi}ni=1

to a low-dimensional representation {ūi}ni=1 in an Euclidian
space by, e.g. PCA, for applications, since that {ȳi}ni=1 is very
high dimensional. Likewise, we denote the low-dimensional
representation of the base models {yz,i}ni=1 as {uz,i}ni=1.

The computational complexity of MBN-E, which is Z times
higher than MBN, is too high to be intolerable in practice when
Z � 1:

Theorem 3. The computational complexity of MBN-E ap-
proximates to Z(O(αkV n) + O(kV n)) empirically, where
O(αkV n) and O(kV n) are the complexity of a single MBN
at the bottom layer and the other layers respectively, and α
is a constant related to the sparse property of the input data.

B. fMBN-E

To reduce the computational complexity of MBN-E, we de-
sign a new algorithm fMBN-E in Algorithm 2. Its architecture
is shown in Fig. 5. Specifically, fMBN-E and MBN-E differs
in the following two aspects.
• The first novel aspect: fMBN-E trains a single bottom

layer, instead of training Z independent bottom layers as
that in MBN-E.

• The second novel aspect: For training each MBN base
model, fMBN-E removes the random feature selection

PCA preprocessed feature

Shared bottom hidden layer

MBN1 
(δ=0.33)

MBN2 
(δ=0.54)

MBN3 
(δ=0.78)

Concatenation of the output of all MBNs

Fig. 5. Architecture of fMBN-E. Different color represents different MBN
base models with random δ values.

step from MBN. This modification makes us able to
train the MBN base learners by random resampling of
similarity scores, instead of random resampling of data.

From the above algorithm, we can easily obtain that:

Theorem 4. The computational complexity of fMBN-E is
O(αkV n) +O(Zn2).

Comparing Theorems 3 and 4, we see that the computational
complexities of the bottom layer and the other layers are
reduced by Z and kV/n times respectively. For example,
in a typical setting where k = n/2, Z = 40, and V =
400, the computational complexity of MBN-E is as high as
(O(8000αn2)+O(8000n2)), while the complexity of fMBN-
E is O(200αn2) +O(40n2) which may be hundreds of times
faster than MBN-E. Particularly, because the complexity of
the original MBN model is (O(αkV n) +O(kV n)) [17], we
can see that fMBN-E may be even faster than a single MBN
described in [17] since that V is larger than Z in practice.

C. Analysis

Here we explain theoretically how the two novel aspects
of fMBN-E reduce the computational complexity of MBN-E
without suffering significant performance degradation.

1) On the first novel aspect of fMBN-E: Based on Theorem
1, we can draw the connections between Eensemble/Esingle, ρ,
and V in Fig. 6, and further derive the following corollary
from (5).

Corollary 2. The estimation errors of the bottom layers of
fMBN-E EfMBN−E and MBN EMBN−E have the following
connection:

EfMBN−E

EMBN−E
=

(
1
V +

(
1− 1

V

)
ρ
)
Esingle(

1
ZV +

(
1− 1

ZV

)
ρ
)
Esingle

=
Z + (ZV − Z)ρ

1 + (ZV − 1)ρ
(11)

From Corollary 2, we can further derive the following
corollary:

Corollary 3. When V is large enough, the estimation error of
the bottom layer of fMBN-E is similar to that of Z independent
bottom layers of MBN-E:

EfMBN−E ≈ EMBN−E (12)

Proof. According to Corollary 2, we see that, when V and Z
are both large enough, EfMBN−E/EMBN−E is determined by
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Algorithm 2 fMBN-E.
Input: A h-dimensional unlabeled dataset {xi}ni=1, parameter

ko, and number of MBN base models Z
Initialization: k1 = bn/2c, number of base clusterings per

layer V = 400
Output: {ȳi}ni=1

1: /* train a shared bottom layer */
2: {yi}ni=1 ← MBN({xi}ni=1, k1 − 1, δ = 0)
3: /* train an ensemble of fast MBN */
4: for z = 1, . . . , Z do
5: xz,i ← yi, ∀i = 1, . . . , n
6: m← 2
7: Randomly generate δ from the range [0.05, 0.95]
8: while km ≥ ko do
9: for v = 1, . . . , V do

10: Calculate pairwise similarity matrix B = XT
z Xz

where Xz = [xz,1, . . . ,xz,n]
11: Randomly select km columns of B to form a

new matrix B′, which is the similarity scores
between the input data and the centroids of the
v-th clustering at the m-th layer

12: for i = 1, . . . , n do
13: Find the largest element of the ith row of B,

supposed to be the jth element
14: Derive a one-hot code si,v =

[si,v,1, . . . , si,v,km
]T where

si,v,t =

{
1, if t = j

0, otherwise
, ∀t = 1, . . . , km

15: end for
16: end for
17: xz,i ← [sTi,1, . . . , s

T
i,km

]T , ∀i = 1, . . . , n
18: km+1 ← δkm
19: m← m+ 1
20: end while
21: ȳz,i ← x̄z,i, ∀i = 1, . . . , n, ∀z = 1, . . . , Z
22: end for
23: ȳi ← [yT

1,i,y
T
2,i, . . . ,y

T
Z,i]

T , ∀i = 1, . . . , n

ρ. For the first case when ρ → 0, EfMBN−E ≈ ZEMBN−E;
for the second case when ρ � 0, EfMBN−E ≈ EMBN−E. In
the following, we show that the second case is true.

It is easy to know that enlarging k reduces Esingle. From
(7), we also observe that, when k is enlarged, ρ is enlarged as
well. According to Theorem 1, for the bottom layer of MBN,
empirically, setting k to a proper number balances Esingle and
ρ, which produces the minimum Eensemble. Here we take the
common setting k = n/2 and a = 0.5 as an example. In
this setting, we may have ρ ≈ 0.0625, which supports that
EfMBN−E ≈ EMBN−E. Corollary 3 is proved.

Corollary 3 motivates us to train a single bottom layer as
fMBN-E, instead of training Z independent bottom layers as
MBN-E.

2) On the second novel aspect of fMBN-E: This subsection
explains why fMBN-E is able to discard the random feature
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Fig. 6. Relationship between the estimation error Eensemble/Esingle, corre-
lation coefficient ρ, and number of k-centroids clusterings per layer V .

selection step of MBN when training the upper layers.

Corollary 4. The random feature selection step has limited
effect on the upper layers of the MBN base models of fMBN-
E.

Proof. For the upper layers of fMBN-E, the parameter k is
usually far smaller than n, e.g. k = n/23 at the third layer
from bottom-up. According to (7) if we remove the random
feature selection step by setting a = 1, we may have ρ ≈
1/26 . From Fig. 6, we see that Eensemble is far smaller than
Esingle when ρ ≈ 1/26. Therefore, we do not need the random
feature selection step to further pursue a marginal reduction
of Eensemble.

Corollary 4 motivates us to remove the random feature
selection step at the upper layers of fMBN-E, which provides
the opportunity to reduce the computational complexity sig-
nificantly.

Following a similar explanation with the proof of Corollary
4, we can obtain:

Corollary 5. The random feature selection step reduces the
estimation error of the bottom layer of fMBN-E significantly.

Corollary 5 motivates us to retain the random feature
selection step at the bottom layer of fMBN-E.

VI. UNSUPERVISED NETWORK STRUCTURE SELECTION

In this section, we first present an unsupervised ensemble
selection framework for MBN-E in Section VI-A, and then
present MBN-SO and MBN-SD in Sections VI-B and VI-C
respectively.

A. Framework

Algorithm 3 presents the unsupervised ensemble selection
framework for MBN-E. If the number of classes c is given,
it adopts MBN-SO to select B effective MBN base models.
Specifically, it first conducts clustering on {ȳi}ni=1, which
generates a set of predicted labels {li}ni=1. Then, it calcu-
lates a weight ωz for the z-th MBN base model by an
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Algorithm 3 Unsupervised ensemble selection for MBN-E.
Input: Sparse output of MBN-E {ȳi}ni=1 and its low-

dimensional representation {ūi}ni=1;
Sparse outputs of the MBN base models
{{yz,i}ni=1}Zz=1 and their low-dimensional representations
{{uz,i}ni=1}Zz=1;
Number of selected base models B
Number of classes c (optional).

Output: {¯̄yi}ni=1, {¯̄ui}ni=1.
1: if c is given then
2: {li}ni=1 ← clustering({ūi}ni=1, c)
3: for z = 1 to Z do
4: ωz ← fMBN-SO({li}ni=1, {uz,i}ni=1)

(or ωz ← fMBN-SO({li}ni=1, {yz,i}ni=1))
5: end for
6: else
7: for z = 1 to Z do
8: ωz ← fMBN-SD({ȳi}ni=1, {yz,i}ni=1)

(or ωz ← fMBN-SD({ūi}ni=1, {uz,i}ni=1))
9: end for

10: end if
11: Pick B sparse representations that correspond to

the B largest weights of {ωz}Zz=1, supposed to be
{{xb,i}ni=1}Bb=1 without loss of generality

12: ¯̄xi ← [xT
1,i, . . . ,x

T
B,i]

T , ∀i = 1, . . . , n
13: {¯̄yi}ni=1 ← PCA({¯̄xi}ni=1)

optimization-like criterion fMBN-SO({li}ni=1, {yz,i}ni=1). The
larger the weight ωz is, the more important the corresponding
MBN base model is.

If c is not given, it adopts MBN-SD to select the base mod-
els. Specifically, it first calculates the weight ωz by evaluating
the difference between the distributions {x̄i}ni=1 and {xz,i}ni=1

directly via a distribution divergence criterion fMBN-SD(·).
After obtaining {ωz}Zz=1, it concatenates the sparse output of
the B (B � Z) MBN base models whose weights are the B
largest ones among {ωz}Zz=1 into a new sparse representation
of data {¯̄xi}ni=1.

Note that there are a vast number of ensemble selection
algorithms manipulating on {ωz}Zz=1. Because this is not the
focus of this paper, here we prefer the simple yet effective
one.

B. MBN-SO: Ensemble selection with optimization-like crite-
ria

MBN-SO follows the comparison conclusion on the
optimization-like criteria [42], and picks four best criteria,
which are the silhouette width criterion (SWC), point-biserial
(PB), PBM, and variance ratio criterion (VRC), respectively.
Because they are defined in Euclidian spaces, MBN-SO takes
the low-dimensional representations {yz,i}Zz=1 of the MBN
base models for evaluation. Due to the length limitation of
the paper, we present the four criteria in Appendix C of the
Supplementary Material.

TABLE I
DESCRIPTION OF DATA SETS. THE TERM “OPTIMAL δ” DENOTES WHERE
THE OPTIMAL PERFORMANCE OF MBN APPEARS BY SEARCHING δ FROM

A RANGE OF (0, 1).

Name # samples # dimensions # classes Attribute Optimal δ

Dermatology 366 34 6 Biomedical (0, 0.2)

New-Thyroid 255 5 3 Biomedical (0, 0.35)

UMIST 575 1024 20 Faces (0.75, 0.85)

Extended-Yale B 2414 32256 38 Faces (0.6, 0.75)

COIL20 1440 4096 20 Images (0.8, 0.9)

COIL100 7200 1024 100 Images (0.8, 0.9)

20-Newsgroups 18846 26214 20 Text (0.4, 0.5)

MNIST 70000 768 10 Images (0.35, 0.75)

C. MBN-SD: Ensemble selection with distribution divergence
criteria

MBN-SD adopts MMD, which is a common distribution
divergence criterion in unsupervised domain adaptation, to
evaluate the distribution divergence between the outputs of
MBN-E and its MBN base models. See Appendix C of the
Supplementary Material for the detailed derivation of MMD.

Note that, we have studied many probability distribu-
tion divergence criteria in literature, including the Kullback-
Leibler divergence, total variance distance, L2-norm distance,
Hellinger distance, Wasserstein distance, Bhattacharyya dis-
tance, etc. Unfortunately, they do not work for MBN-SD.
However, it does not mean that MMD is the only choice, which
needs further investigation in the future.

VII. EXPERIMENTS

In this section, we first compare the proposed methods with
a number of representative methods on several benchmark
datasets in Section VII-D. Then, we demonstrate how fMBN-
E accelerates MBN-E without sacrificing accuracy in Section
VII-E, and compare the ensemble selection criteria in Section
VII-F. Finally, we present the experimental conclusions of
some important aspects in Section VII-G.

A. Datasets

We selected 8 benchmark datasets as summarized in Ta-
ble I. For Extended-Yale B, because the luminance of the
images dominates the similarity measurement instead of the
faces themselves, we preprocessed Extended-Yale B by the
dense scale invariant feature transform as in [48]. For 20-
Newsgroups, we extracted the term frequency-inverse doc-
ument frequency (TF-IDF) text feature. PCA preprocessing
was applied to the image datasets, which reduced the original
features to 100 dimensions. Cosine similarity measurement
was used to measure the similarity between the documents
of 20-Newsgroups. All other datasets used Euclidean distance
as the similarity measurement. Clustering accuracy (ACC) was
used as the evaluation metric.

From the table, we see that the operating range of the
optimal δ of MBN appears at dramatically different positions,
which are sufficient to demonstrate how the proposed methods
address the network structure selection problem, as well as
how the proposed methods behave when comparing with the
state-of-the-art referenced methods.
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TABLE II
ACC COMPARISON BETWEEN THE PROPOSED METHODS AND THE STATE-OF-THE-ART REFERENCED METHODS. THE RESULTS OF THE REFERENCED
METHODS ON THE DATASETS MARKED WITH “∗” ARE COPIED FROM THEIR ORIGINAL PUBLICATIONS OR THE “PAPERS WITH CODE” WEBSITE. THE

NUMBER IN BOLD DENOTES THE BEST PERFORMANCE.

Dermatology New-Thyroid UMIST* Extended-Yale B*

kmeans 0.261 0.860 0.408 0.311
Rank1 0.313 (DREC [49]) 0.863 (Borda [50]) 0.769 (DASC [51]) 0.992 (DMSC [52])
Rank2 0.307 (LinkClueE [53]) 0.859 (LinkClueE [53]) 0.750 (DSC-Net-L2 [7]) 0.973 (DSC-Net-L2 [7])
Rank3 0.306 (HGPA [20]) 0.853 (ECPCS_MC [54]) 0.732 (J-DSSC [55])) 0.924 (J-DSSC [55]))
Rank4 0.299 (CSPA [20]) 0.851 (MCLA [20]) 0.728 (DSC-Net-L1 [7]) 0.917 (A-DSSC [55])
Rank5 0.297 (ECPCS_HC [54]) 0.845 (Vote [56]) 0.725 (A-DSSC [55])) 0.776 (SSC-OMP [57])
MBN (default) 0.855 0.881 0.544 0.934
MBN-E 0.866 0.860 0.670 0.973
MBN-SO (VRC) 0.714 0.771 0.767 0.941
MBN-SD 0.947 0.941 0.547 0.909

MBN† 0.971 0.964 0.770 0.969

COIL20* COIL100* 20-Newsgroups MNIST*

kmeans 0.679 0.511 0.416 0.527
Rank1 1.000 (JULE [58]) 0.911 (JULE [58]) 0.600 (LTM [59]) 0.979 (N2D [60])
Rank2 0.858 (AGDL [61]) 0.824 (A-DSSC [55]) 0.523 (DFPA [62]) 0.969 (DDC-DA [63])
Rank3 0.858 (GDL [61]) 0.796 (J-DSSC [55])) 0.490 (LDA [64]) 0.965 (PSSC [65])
Rank4 0.793 (DBC [66]) 0.775 (DBC [66]) 0.447 (AnchorFree [67]) 0.964 (GDL [61])
Rank5 N/A 0.731 (GDL [61]) 0.435 (LapPLSI [68]) 0.939 (SR-K-means [69])
MBN (default) 0.795 0.683 0.623 0.964
MBN-E 0.929 0.832 0.584 0.964
MBN-SO (VRC) 0.995 0.908 0.623 0.964
MBN-SD 0.973 0.803 0.611 0.963

MBN† 0.994 0.901 0.623 0.965

B. Parameter settings

The parameter settings of MBN and the proposed methods
are summarized as follows:
• MBN (default) [17]: We used its default setting as in

[17].
• MBN-E: It used 40 MBN base models. The base models

of MBN-E used the same parameter setting as MBN
except that δ was randomly selected from [0.05, 0.95].

• fMBN-E: It is the fast version of MBN-E without
performance degradation. It discards the random feature
selection step in the upper layers of the MBN base
models.

• fMBN-Ev2: It is a variant of fMBN-E that discards the
random feature selection step at the bottom layer, and
uses the random resampling of similarity scores instead of
the random data resampling to train the bottom layer as its
upper layers. It accelerates the training time of the bottom
layer of fMBN-E, with a risk of performance degradation.

• MBN-SO: The number of selected base models B was
set to 3. The MBN-SO with the four optimization-
like criteria are denoted as “MBN-SO (SWC)”, “MBN-
SO (PB)”, “MBN-SO (PBM)”, and “MBN-SO (VRC)”,
respectively.

• MBN-SD: The parameter B was set to 10.
Agglomerative hierarchical clustering (AHC) was used for
partitioning data into clusters. Although the MMD criterion
in MBN-SD is designed to handle the case where the number

of classes is unknown, we still give AHC the number of
classes during the clustering stage, for a comparable study
on how the distribution divergence criterion differs from the
optimization-like criteria in MBN-SO. All reported results are
average ones over 5 independent runs. The time efficiency
was evaluated on an Intel(R) Xeon(R) Platinum 8160 CPU
server with 512 GB memory, where the CPU has 48 physical
cores. All experiments were run with 48 parallel workers
of MATLAB. The source code is available at http://www.
xiaolei-zhang.net/mbn-e.htm.

C. Comparison methods

The comparison strategy is described as follows. For the
image datasets, we copied the ranking lists of the image
clustering methods from https://paperswithcode.com/, which
reflects the state-of-the-art performance on the datasets. Note
that because self-supervised deep learning based methods
explore strong handcrafted features from augmented data [70],
we omit them from the experiments to maintain the fairness
of the comparison. For the small-scale Dermatology and New-
Thyroid datasets that deep learning methods usually do not
handle with, we compared with 12 representative clustering
ensemble methods, see Supplementary Material for the ref-
erenced methods. All these clustering ensemble methods are
meta-clustering functions, which can be used jointly with any
base clusterings, such as k-means or spectral clustering. Here
we took 40 k-means clusterings as the base clusterings for

http://www.xiaolei-zhang.net/mbn-e.htm
http://www.xiaolei-zhang.net/mbn-e.htm
https://paperswithcode.com/
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TABLE III
ACC COMPARISON BETWEEN MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 0.866 0.860 0.670 0.973 0.929 0.832 0.584 0.964
fMBN-E 0.868 0.907 0.659 0.964 0.938 0.837 0.582 0.964
fMBN-Ev2 0.528 0.576 0.653 0.896 0.902 0.828 0.595 0.963

TABLE IV
RUNNING TIME (IN SECONDS) OF THE BOTTOM LAYERS OF MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 225.08 14.96 118.00 2190.72 834.64 22148.48 59997.16 979832.20
fMBN-E 0.63 0.36 3.44 70.96 24.99 679.75 1356.35 5525.12
fMBN-Ev2 0.84 0.74 0.82 2.74 1.17 20.58 278.06 1216.84

TABLE V
RUNNING TIME (IN SECONDS) OF THE UPPER LAYERS OF MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 293.85 165.15 508.75 1829.94 1413.17 5617.11 26002.17 63939.58
fMBN-E 3.02 1.63 3.38 31.85 20.05 206.46 2085.35 9108.11
fMBN-Ev2 1.95 1.34 2.37 21.52 10.17 103.35 1141.76 8638.58

each meta-clustering function. Like many clustering ensemble
methods, e.g. [71], we selected the number of clusters of each
k-means base clustering randomly from a range of [2c, 10c].
For the 20-Newsgroups text corpus, we compared with 9
text clustering methods, see [72] for the referenced methods.
Besides, k-means clustering are also provided as a baseline.
Because k-means clustering suffers from bad local minima,
we ran k-means clustering on each dataset for 100 times, and
pick one that has the minimum objective value. All reported
results are average ones over 5 independent runs.

D. General results

Table II lists the results of the aforementioned comparison
methods and the proposed methods. Because it is too lengthy
to list all results, here we only list the results of the top
5 referenced methods; for the proposed MBN-SO variants,
we only provide “MBN-SO (VRC)” as a representative. See
Supplementary Material for the results of the other three
variants of MBN-SO. We also list the performance of the
MBN with the optimal δ, denoted as MBN†. Note that because
it is unlikely to select the optimal δ manually in real-world
applications, MBN† only provides an upperbound of the
proposed methods.

From the table, we see that the proposed methods outper-
form “MBN (default)” in general, as what we have targeted
to in this paper. Specifically, MBN-E outperforms “MBN (de-
fault)” on UMIST, Extended Yale B, COIL20, and COIL100
significantly where the optimal operating range of δ of MBN is
far from the default value 0.5. It is also comparable to “MBN
(default)” on Dermatology and New-Thyroid. As for MNIST
and 20-Newsgroups, even if the default δ happens to be in the
optimal operating range, MBN-E can still be competitive to
“MBN (default)” if the optimal range is wide enough, such as

that on MNIST. MBN-SO further improves the performance
of MBN-E, and outperforms “MBN (default)” significantly on
most datasets, except the small-scale Dermatology and New-
Thyroid. Finally, MBN-SD outperforms “MBN (default)” on
Dermatology and New-Thyroid, COIL20, and COIL100 sig-
nificantly, and is comparable to the latter in the remaining four
datasets.

The proposed MBN-SO also approaches to the top perfor-
mance of the referenced methods on most datasets. Although
it behaves worse than DMSC on Extended Yale B, it still
ranks among the top 5 comparison methods. Here we need
to emphasize one merit of MBN-SO: it is implemented in a
simple mathematical form and behaves robustly across datasets
without carefully selected architectures or hyperparameters,
which fascinates its practical use. Note that it is interesting
to observe that the clustering ensemble methods do not show
significant performance improvement over k-means on the
small scale Dermatology and New-Thyroid data. Note also
that the performance of text clustering is strongly related to
text features. If bag-of-words is used instead of TF-IDF, then
the performance of all referenced methods on 20-Newsgroups
degrades significantly. To improve the performance on text
clustering, new text features that incorporate context informa-
tion of words may be helpful.

Focusing on our three algorithms, we see that MBN-SO
is at least comparable to MBN-E and MBN-SD on most of
the challenging data, except the two small-scale data where
a shallow network of MBN is able to produce a highly
accurate result. Comparing MBN-E and MBN-SD, we see
that MBN-SD outperforms MBN-E on the two small-scale
data, COIL20 and 20-Newsgroups, and is inferior to the latter
on UMIST, Extended Yale B, and COIL100. Although the
result of MBN-SD is not very impressive, it introduces a new
class of ensemble selection criteria—distribution divergence
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Fig. 7. Weights of the MBN base models produced by different ensemble selection criteria, where SWC, PB, PBM and VRC are optimization-like criteria for
MBN-SO, and MMD is a distribution divergence criterion for MBN-SD. The dotted lines in grey color are the accuracies of MBN with respect to δ, which
are references for evaluating the effectiveness of the weights.

criteria— into clustering ensemble, which may motivate new
criteria beyond MMD for further improving the performance
of MBN-SD.

E. Comparison between MBN-E and fMBN-E

Table III lists the clustering accuracies of MBN-E, fMBN-
E, and fMBN-Ev2. From the table, we see that MBN-E
and fMBN-E achieve similar performance. This phenomenon
supports the correctness of Corollaries 3 and 4. Moreover,
fMBN-E behaves better than fMBN-Ev2, particularly on Der-
matology, New-Thyroid, and Extended Yale-B, which supports
the correctness of Corollary 5.

Tables IV and V summarize the running time of the com-
parison methods. From the tables, we see that fMBN-E is
dozens of times faster than MBN-E on training the bottom
layers. Moreover, fMBN-E and fMBN-Ev2 are even hundreds
of times faster than MBN-E on training the upper layers. The
phenomenon supports the theoretical analysis of Theorem 4.

F. Comparison between different ensemble selection criteria
for MBN-SO and MBN-SD

To study how different ensemble selection criteria affect the
weights of the MBN base models, we compared the weights
with the clustering accuracy of the MBN base models in a
single run in Fig. 7. From the figure, we see that the weights
produced by all ensemble selection criteria can cleverly reflect
the quality of the base models on most datasets except
Dermatology. Particularly, the weights produced by “VRC”
seem to be the most accurate among the ensemble selection
criteria. Although the weights produced by “MMD”, which is
a distribution divergence criterion, seem not as accurate as the
optimization-like criteria, if we pick a number of MBN base
models, then the optimal MBN base models may be selected
as well.

G. Discussions

This subsection reports the main conclusions of some
important aspects, leaving the detailed description of the
experiments in Appendix D of the Supplementary Material.

1) Effect of number of selected base models on MBN-SO
and MBN-SD: To study how the number of MBN base models
affect the performance of MBN-SO and MBN-SD, we tuned
the hyperparameter B from 1 to 10. We find that, for MBN-
SO, we can set the hyperparameter B to a small number for
saving the computing resource; however, for MBN-SD, we
should set B to a large number in order to achieve the optimal
performance.

2) Effect of the referenced labels on MBN-SO: MBN-SO
need referenced labels to calculate the weights of the MBN
base models, where we adopt the predicted labels from MBN-
E as the reference. After studying different generation methods
of referenced labels, including (i) randomly generated labels,
(ii) predicted labels from “MBN (default)”, (iii) predicted
labels from MBN-E, and (iv) ground-truth labels, we find that
the accuracy of the referenced labels has significant impact on
the performance, and that the predicted labels generated from
MBN-E yield good performance.

3) On candidate meta-clustering functions of MBN-E: It
is known that combining the base clusterings via a meta-
clustering function is important for clustering ensemble tech-
nologies. In this paper, we combine the MBN base models
by simply concatenating their sparse output without referring
to an advanced meta-clustering function. In the Supplementary
Material, we have tried 12 representative meta-clustering func-
tions to fuse the output of the MBN base models. Empirical
results show that simply concatenating the outputs of the MBN
base models yields similar performance to the best meta-
clustering functions.

4) On candidate ensemble selection methods of MBN-SO:
MBN-SO simply selects the MBN base models with the
highest weights. In literature, there are many studies on how
to select the base models given the weights, which may
lead to higher performance and lower computational power
than the proposed method. In the Supplementary Material,
we have compared with 8 representative ensemble selection
methods as well as their 5 variants. Empirical results show that
simply picking the top MBN base models is enough to reach
the highest performance, while further exploring the diversity
between the base models via complicated ensemble selection
algorithms is unnecessary.
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Fig. 8. Results of the image segmentation methods on 2 randomly selected examples from the 2017 Val images of the COCO datasets.

TABLE VI
DESCRIPTION OF THE GEMSEC-FACEBOOK DATASETS.

Number of nodes Density Transitivity

Politicians 5,908 0.0024 0.3011
Companies 14,113 0.0005 0.1532
Athletes 13,866 0.0009 0.1292
News sites 27,917 0.0005 0.1140
Public figures 11,565 0.0010 0.1666
Artists 50,515 0.0006 0.1140
Government 7,057 0.0036 0.2238
TV shows 3,892 0.0023 0.5906

VIII. APPLICATIONS

In this section, we apply the proposed algorithms to image
segmentation and graph data mining.

A. Application to image segmentation

Image segmentation partitions an image into multiple image
segments, so as to simplify the analysis of the image. It is a
process of assigning a label to every pixel of an image such
that the pixels with the same label share certain characteristics.
It is a core task of image signal processing. It can be either
unsupervised or supervised. Unsupervised image segmenta-
tion, which is usually used as a preprocessing of supervised
segmentation, is formulated as a clustering problem on pixels
such that the pixels with similar colors and nearby locations
are grouped into the same cluster.

We randomly selected several images from the 2017 Val
images of the COCO datasets1 for evaluation. We reduced the
length and width of each image to about 1/7 of their original
sizes, and further transformed the color space from RGB to
CIELAB. Finally, for each pixel, we concatenated its three-
dimensional colors and its two-dimensional coordinates as the
feature. We compared with the classic mean-shift clustering
and k-means clustering. The bandwidth of mean-shift was
set to 0.2. The clustering number of both k-means clustering
and the proposed methods was set to 8. We applied k-means
clustering to the output of the proposed methods.

Two examples of the comparison results are shown in Fig.
8, while more examples are listed in Appendix E of the
Supplementary Materials. From the figure, we see that the
proposed methods not only maintain sufficient details of the

1https://cocodataset.org

images than mean-shift, but also yield smoother and more
accurate results than k-means. As for the proposed methods,
MBN-SO behaves similarly to fMBN-E.

B. Application to graph data mining

All of the aforementioned experiments were conducted on
the data whose features are given explicitly. However, the data
points in many real-world applications do not have explicit
features, e.g. graph data where only the connections between
the data points are given. Here we give an example on how
to apply the proposed methods to graph data.

Community detection is a method for finding groups within
complex systems that are represented on a graph. It is a core
task of network science, and finds its applications in network
security, recommendation systems, etc. As collected in https:
//snap.stanford.edu/data/, the data in community detection are
various sparse graphs. Here we used the undirected GEMSEC-
facebook data in the collection for evaluation.

The statistics of the GEMSEC-facebook data is summarized
in Table VI. For each link between a node i and a node
j, we set the elements bi,j and bj,i of the graph B to the
weight of the link. Because the pairwise similarity between
the nodes has already been given as B, the output of each k-
centroids clustering at the bottom layer of fMBN-E is simply a
random sample of the columns of B. Because the ground-truth
number of communities is unknown, we used modularity as
the evaluation metric as that in [73]. Because the modularity
can be calculated in an unsupervised manner by comparing B
with the prediction result, we are able to search for the optimal
modularity results as [73]. Specifically, we set parameter ko
of fMBN-E to 1.5c where c was set to 10, 20, 30, and
40 respectively. For each ko, we grouped the nodes to 2 to
50 communities, and picked the optimal result in terms of
the modularity. We applied k-means clustering to the output
of the proposed methods. Following [73], we reported the
average results over 5 independent runs. Table VII lists the
comparison results with four well-known community detection
algorithms [74]–[77]. From the average ranking over the 8
community detection tasks, we see that the proposed fMBN-E
ranks the second, which is slightly worse than the walktrap
algorithm [75]. Note that because MBN-SD yields almost
identical performance with fMBN-E, we omit its result here.

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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TABLE VII
MODULARITY OF THE COMMUNITY DETECTION ALGORITHMS ON THE GEMSEC-FACEBOOK DATASETS. THE RESULTS OF THE REFERENCED METHODS

ARE COPIED FROM [73].

Politicians Companies Athletes News sites Public figures Artists Government TV shows Ranking

Overlap factorization [74]
0.810 0.553 0.601 0.471 0.551 0.474 0.608 0.786

4.57
(±0.008) (±0.010) (±0.020) (±0.016) (±0.01) (±0.018) (±0.024) (±0.008)

Walktrap [75]
0.841 0.639 0.670 0.514 0.628 0.554 0.675 0.790

2.00
(±0.023) (±0.016) (±0.021) (±0.023) (±0.023) (±0.026) (±0.043) (±0.036)

Fast greedy [76]
0.819 0.665 0.605 0.531 0.630 0.464 0.615 0.835

2.86
(±0.008) (±0.014) (±0.026) (±0.020) (±0.011) (±0.023) (±0.046) (±0.006)

Label propagation [77]
0.826 0.647 0.647 0.243 0.612 0.393 0.659 0.839

3.29
(±0.009) (±0.075) (±0.094) (±0.159) (±0.027) (±0.018) (±0.041) (±0.004)

fMBN-E
0.830 0.549 0.657 0.518 0.580 0.502 0.681 0.809

2.29
(±0.004) (±0.011) (±0.002) (±0.014) (±0.015) (±0.003) (±0.009) (±0.005)

IX. CONCLUSIONS

In this paper, we aim to derive a simple and tuning-
free deep clustering tool that is able to yield comparable
performance to the state-of-the-art deep clustering methods,
for the sake of towards solving the heavy parameter-tuning
problem in clustering. To achieve this goal, we propose to
automatically determine the network structure of the deep
clustering algorithm—MBN—by ensemble learning and se-
lection. The proposed MBN-E simply concatenates the sparse
output of a number of MBN base models with different δ to
a meta-representation. The proposed MBN-SO and MBN-SD
use the output of MBN-E to select the base models whose
output distributions have the highest discriminability, without
further exploring the diversity between the base models as
conventional ensemble selection methods did. Because training
an ensemble of MBN is expensive, we proposed fMBN-
E, which first discards the random feature selection step of
MBN and then replaces the step of random data resampling
by the random resampling of similarity scores. We proved
theoretically that this simplification does not degrade the
estimation accuracy of MBN-E. Finally, the above methods
contribute an efficient off-the-shelf deep clustering tool.

Experimental comparison results on a wide variety of bench-
mark datasets show that the proposed methods significantly
outperform the MBN with the default network structure;
fMBN-E is empirically hundreds of times faster than MBN-E
without suffering performance degradation; MBN-SO is able
to detect the optimal MBN base model, and reaches compa-
rable performance to the state-of-the-art clustering methods;
although MBN-SD is less effective than MBN-SO, it is the
first work of unsupervised ensemble selection based on the
distribution divergence criteria. Further studies also show that
the proposed methods reach top performance via only a
simple formulation, comparing to as many as 20 candidate
meta-clustering functions and clustering ensemble selection
functions. At last, we show the advantage of the proposed
methods in image segmentation and graph data mining.
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