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Abstract

The content of this supplementary material is listed as follows:
Appendix 1. Important notations of the main text and the appendix.
Appendix 2. Detailed description of MBN and its geometric and theoret-
ical foundations.

Appendix 3. Description of the ensemble selection criteria of MBN-SO
and MBN-SD.
Appendix 4. Discussions of some important aspects, including:

4.1 Effect of number of selected base models on MBN-SO and MBN-
SD.

4.2 Effect of the referenced labels on MBN-SO.

4.3 On candidate meta-clustering functions of MBN-E.

4.4 On candidate ensemble selection methods of MBN-SO
Appendix 5. Application to image segmentation



1 Important notations

Table 1: Important notations of the main text and appendices.

Notation Description

{xi h-dimensional input dataset with n data points

c Number of classes of the input data

k Number of centroids per k-centroids clustering in MBN. This is a general description

km Parameter k at the mth layer of MBN, where m =1,2,...

k1 Parameter k at the bottom layer of MBN (i.e. k,, with m = 1)

ko Parameter k£ at the top layer of MBN

% Number of k-centroids clusterings of MBN per layer

1) Core parameter that controls the network structure of MBN. It is defined as k11 = dk.,. 6 € (0,1)
a Percentage of randomly selected features over all features of the input of a layer. a € (0, 1]

{yi}l, Sparse output representation produced by MBN

{w;}.y  Low dimensional representation of {y;}? , made by PCA

Z Number of MBN base models in MBN-E or fMBN-E

{y..:}", Sparse output representation produced by the zth MBN base model of MBN-E or fMBN-E
{u;;}?,; Low dimensional representation of {y,;}? ; made by PCA

{y:}i=,  Sparse output representation produced by MBN-E or fMBN-E. y; = [y{,,...,y%]"

{u;}}.;  Low dimensional representation of {y;}?_; made by PCA

B Number of selected MBN base models by MBN-SO or MBN-SD
{yi}l, Sparse output representation produced by MBN-SO or MBN-SD

{w;}.;  Low dimensional representation of {y;}? , made by PCA




2 MBN and its theoretical foundations

This section first reviews MBN in Appendix 2.1, then reviews its geometric and
theoretical principles in Appendices 2.2 and 2.3 respectively, and finally reviews
its computational complexity in Appendix 2.4.

2.1 MBN
2.1.1 Network structure of MBN

MBN is a multilayer nonlinear network [1]. Its network structure is shown in
Fig. 1. Specifically, each layer of MBN is a clustering ensemble, which consists
of V mutually-independent k-centroids clusterings. Each k-centroids clustering
takes the output of its lower layer as its input, and partitions the input data
into k clusters, which yields a one-hot sparse representation for each input data
point. The outputs of all clusterings in the same layer are concatenated as the
input of their upper layer.

The network structure of MBN is determined by the parameter k. Suppose
the parameter k at the m-th layer is k,,. Then, we must have

ki >ko>...>k,>...>k, (1)

where k, is the parameter k£ at the top layer. The above inequality is usually
controlled simply by:
km+1 - (Skm (2)

where 6 € (0,1) is a tunable hyperparameter. Note that the total number of
layers of MBN is usually determined automatically by ki, k,, and 6.

Figure 1: Network structure of MBN. The dimension of the input data for
this demo network is 4. Each colored square represents a k-centroids clustering.
Each layer contains 3 clusterings. Parameters k at layers 1, 2, and 3 are set to 6,
3, and 2 respectively. The outputs of all clusterings in a layer are concatenated
as the input of their upper layer [1].



2.1.2 Training process of MBIN

Given an unlabeled dataset X = {x;}; that consists of ¢ classes of data, the
detailed training process of MBN is summarized in Algorithm 1.
The following two issues of Algorithm 1 need to be further clarified.

e The similarity measurement between the centroid w; and an input data
point x; is customized at the bottom layer, and predefined as ijxi at the
other layers,

e The parameter k, should be set to guarantee that at least one data point
per class is randomly selected in probability when building the k-centroids
clusterings at the top layer, therefore it is set to k, = |1.5¢| for class-
balanced data, and set larger for class-imbalanced data, e.g. k, = 5c or
ko, = 10c. For clarity, the notations of the important variables of the paper
are summarized in Table 1.

2.2 Review of the geometric principle of MBN
The principle for the success of MBN is as follows [1]:

Theorem 1. MBN builds as many as O(k,2"") agglomerative hierarchical trees
on the original data space. The leaf nodes of the trees represent the local areas
of the original data space, which are as many as O(k12").

MBN learns a sparse representation for each input data point. The sparse
representation encodes the root node where the data point locates at.

To understand Theorem 1, we draw an example in Fig. 2. Specifically, we
first imagine that a single k-centroids clustering partitions the input space to k
disconnected fractions. Thereafter, V' clusterings partition the input space to
O(k2") fractions at the maximum. Given parameters k; > kg >,...,> k,, it is
easy to see that O(k12V) > O(k22") >,...,> O(k,2"). As a result, between
any two adjacent layers, there must be O(k;,,—12") — O(k,;,2"") nodes at the
(m — 1)-th layer absorbed into other nodes, which builds tree structures.

Note that, although we draw multiple data points in a single local area in
Fig. 2, this situation is unlikely to happen, since that the number of root nodes
which is as high as O(k,2") is usually exponentially larger than the number
of data points. That is to say, it is unlikely that MBN makes two data points
share the same sparse representation.

From this geometric view, we see that a single root node may represent a
large and nonlinear area in the original data space. That is to say, MBN may
be able to transform a nonlinear and non-uniform distribution into a linearly-
separable and uniform distribution.

2.3 Review of the theoretical foundation of MBN

MBN is theoretically rooted at the famous bias-variance decomposition of ex-
pectation risk which is the foundation of ensemble learning [2]:



Algorithm 1 MBN.

Input: A h-dimensional unlabeled dataset X = {x;}!_;, parameter k,, and
network structure controller §

Initialization: m = 1, k1 = |n/2], number of base clusterings per layer
V' = 400, percentage of the randomly selected features over all features
a=0.5

Output: {y;},

1: while k,, > k, do
22 forv=1,...,V do

3: Randomly select |ah| dimensions of X to form a new dataset & =
{eitizy
4: Randomly select k,, data points from £ as the centroids of the v-th
clustering at the m-th layer, denoted as {w; }?21
5: fori=1,...,ndo
6: Find the closest centroid to the data point e;, supposed to be w;
7: Derive a one-hot code 8; , = [Sip1;- - Sivk, ). Where
1,ift=j
Tt {0, otherwise’ VESLiees o )
8: end for
9:  end for
10 fori=1,...,ndo
11: Xi ¢ [871,- -, sZTk]T
12:  end for
13:  h<+ k,V
14: kg1 < Ok,
15: m<+m+1
16: end while
17 y; x5, Vi=1,...,n

Theorem 2. (Bias-variance decomposition of expectation risk) Suppose the
ground-truth prediction is x, and the estimated prediction is T, then the bias-
variance decomposition of the expectation risk E(x — &) is:

E((z — )*)=(z — E(2))* + E ((z - E(2))?)
=Bias?(#) + Var() (4)
From Theorem 2, we can derive the following theorem for MBN:

Theorem 3. The estimation error of a single layer of MBN Eepsemble and the
estimation error of a single k-centroids clustering Egingle in the layer have the
following relationship:

1 1
IEensemble = (V + (1 - V) P) IEsingle (5)
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Figure 2: Geometric principle of MBN. Both of the two rectangles that contain
dots, lines, and digit codes represent the same original data space. The dots
in the same color represent the centroids of a k-centroids clustering, which are
randomly sampled data points. The solid lines in the same color are the borders
made by a k-centroids clustering, which partition the data space into local areas.
The digit codes encode the local areas of the input data. The data point that
falls into a local area takes the digit code of the area as its representation learned
by MBN. In this example, 2 clusterings at the mth and (m+1)th layers partition
the input data space into 8 and 4 fractions respectively, where the number of
fractions O(k2") in the theoretical analysis should be 12 and 8 respectively at
the maximum.

where p is the pairwise positive correlation coefficient between the k-centroids
clusterings, 0 < p <1 [1].

To understand Theorem 3, we focus on the representation learning problem
of a single input data point x at a layer of MBN. Each of the V' k-centroids
clustering at the layer estimates x as the nearest centroid to x among the k
centroids, supposed to be w,, Vv = 1,...,V. We assume that the elements
in the vector w, are mutually-independent, and each element, denoted as w,,
follows a Gaussian distribution assumption. With the assumptions, we can have

E(wu) = K E(wg) = 027 ]E(wm'wm) = PUZ + /142 (6)

where ;4 and o are the mean and variance of the Gaussian distribution respec-
tively, and v; and wvo are the indices of two k-centroids clusterings.
For a single k-centroids clustering, we have & = w,. Given (6), we can further

derive Biassingle(:fc) = 0 and Varginge(Z) = 0?. For an ensemble of k-centroids



clusterings, with a locally linear assumption, we have

1 14
izvng (7)

. . A A~ 2
and can further derive Bias? . p10(2) = 0 and Varensemplo () = Z+(1—1)po>.
Finally, substituting the above derivation into (4), we can derive Theorem 3.

From Theorem 3, we can further derive the following two corollaries:

Corollary 1. When p approaches to 0, then Eensemble approaches to a lower-
bound Egingle/V .

Corollary 2. When p approaches to 1, then Eepsemble approaches to an upper-
bound Egingle-

2.4 Review of the computational complexity of MBN

Theorem 4. The computational complexity of MBN approzimates to O(akVn)+
O(kVn) empirically, where O(akVn) and O(kVn) are the complexity of MBN
at the bottom layer and the other layers respectively, and o is a constant that s
related to the sparse property of the input data [1].

Theoretically, according to Algorithm 1, each layer of MBN calculates the
pairwise similarity of data by V times. Because the complexity of computing
the pairwise similarity of data is O(n?), it seems that the computational com-
plexity of MBN should be O(Vn?). However, in practice, because the learned
sparse representation for any input data contains only k£ nonzero elements, the
calculation of the pairwise similarity is only O(kVn) empirically. A special case
is that the sparsity of the input of MBN at the bottom layer is related to the
sparse property of the original data, which accounts for the empirical complexity
of MBN at the bottom layer.



3 Ensemble selection criteria of MBN-SO and MBN-
SD

In this section, we present the four model selection criteria of MBN-SO in Ap-
pendices 3.1 to 3.4, and the MMD selection criterion of MBN-SD in Appendix
3.5.

3.1 Silhouette width criterion

SWC calculates the ratio of the geometric compactness and separation of clus-
ters. Suppose the i-th data point u; belongs to a cluster p € {1,...,c}. Let the
average distance of u; to all other data points in cluster p be denoted by a;.
Let the average distance of u; to all data points in another cluster ¢ (¢ # p) be
denoted as gq,;. Let b; be the minimum g4, over all ¢ =1,...,¢, ¢ # p. Then,
the silhouette of y; is defined as:

bi—ai

dy= 2t 8)

max{a;,b;}

In case that cluster p consists of only u;, then d; = 0.
The SWC score is the average of d; over all data points:

1 n
SWC
w n; (9)

The higher the SWC score is, the better the discriminant ability of a represen-
tation is.

3.2 Point-biserial

PB calculates correlation between a distance matrix and a binary matrix that
encodes the pairwise memberships of data points to clusters. It first calculates
the average within-class distance d,, and the average between-class distance dp,
which can be formulated as:

1 n
dy=="a; 10
- ;a (10)

1 n
D DN DR -

i=1 {qlq=1,...,¢c,q#p}

where n,, is the number of data points of cluster p where y; belongs to, and n,
is the number of data points in cluster ¢ where ¢ = 1,...,c and ¢ # p. Then, it
is defined as:

wPB (db - dw)\/ wdbd/t2 (12)

= o




where o4 is the standard deviation of the pairwise distances of all data points,
wg = Y, Np(ny—1)/2 is the number of within-class distances, by = Y-~ 1, (n—
np)/2 is the number of between-class distances, and ¢ = n(n — 1)/2 is the to-
tal number of pairwise distances. The higher the PB score is, the better the
discriminant ability of a representation is.

3.3 PBM
PBM is defined over between-class distances and within-class distances:
1E 2
PBM 1
=(-—D, 1
@ (c E. ) (13)

where E; denotes the average distance between the data points and the grand
mean of the data, E. denotes the average within-class distances, and D, denotes
the maximum distance between cluster centroids:

1 — ~
Ei==" [l — &l (14)
1=1

D I SR e (15)

p=1 {u;|l;=p}
De= max |, — o] (16)

where o = 13" u; is the grand mean of the data, K, = L Z{u'|l~*p} u;
» illi=

is the center of the p-th cluster centroid. A large PBM score implies a good

separation ability of the representation.

3.4 Variance ratio criterion

VRC calculates the ratio of the between-class variance over within-class vari-

ance:
vrc _ 1n—ctr(D)

T he—1tr(W)
where tr(-) denotes the trace operator, h is the dimension of the feature, and

D and W are the between-class variance and within-class variance respectively,
defined as:

(17)

W:i W, (18)
WP: Z (ul - l‘l’p)(uz - /‘l’p)T (19)
{uilli=p}
p=1



The normalization terms 1/h and (n — ¢)/(c — 1) make the VRC score irrele-
vant to h and c¢. A large VRC score implies a good separation ability of the
representation.

3.5 Maximum mean discrepancy

MMD is originally defined in kernel-induced feature spaces, where multiple ker-
nels are usually adopted to reach an accurate estimation. Here we simply use
the linear kernel based MMD to evaluate the distribution divergence between
{yi}iz, and {y.;}i-,. Since y; = [y{,,...,¥%,]", here we define MMD as
follows:

1 1
MmD _ L To
v _Zn(n—l)zylyj

i#]
) 01 Z (21)
t Z Yz,z'yzu' -3 Z Zyg,iYZ,j
n(n—1) oy Zn* -

Because the first term of MMD is the same for all MBN base models, we only
calculate the last two terms in practice. The smaller the MMD score is, the
more similar the distributions {y;}?, and {y..}" ; are. To make MMD satisfy
Algorithm 3 in the main text, we transform v™MP by:

MMD

WJMMD _ g Y T Umin (22)

Umax — Umin

where vpax and vy, are the largest and smallest values of all MMD scores
respectively.
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4 Discussions

This appendix is the full version of the Section 8.7 in the main text.

4.1 Effect of number of selected base models on MBN-SO
and MBN-SD

This subsection studies how many MBN base models, i.e. the hyperparameter
B, should be selected. Specifically, we search B through {1,2,3,5,10} respec-
tively. From the result in Fig. 3, we see that the MBN-SO variants are not
sensitive to the number of the base models on most datasets except Dermatol-
ogy and New-Thyroid. Therefore, we can set the hyperparameter B of MBN-SO
to a small number for saving the computing resource. On the other side, the
performance of MBN-SD is generally improved when B is increased, which sug-
gests that we should set B to a large number in order to achieve the optimal
performance of MBN-SD.

i Dermatology i New-Thyroid i UMIST i Yale B 1 COIL20 1 COIL100 1 20-Newsgroups i MNIST
— ===
—_ o
: 09 09 09 /_/ 0.9 09 T 0.9 0.9 :
————
08 08 08 08 08 08 08
8 8 | S——|y 8 8 —" |8 8
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/—-—/
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Figure 3: Effect of the number of the selected base models of MBN-SO and
MBN-SD on performance.

4.2 Effect of the referenced labels of MBN-SO on perfor-
mance

The optimization-like criteria of MBN-SO need referenced labels to calculate
the weights of the MBN base models, where we adopt the predicted labels
from MBN-E as the reference. Here we study whether MBN-SO is sensitive
to the referenced labels by generating the labels in different ways, which are
(i) randomly generated labels, (ii) predicted labels from “MBN (default)”, (iii)
predicted labels from MBN-E, and (iv) ground-truth labels.

Fig. 4 shows the comparison results of different referenced-label generation
methods. From the figure, we observe the following interesting phenomena.
First, using the predicted labels from either “MBN (default)” and MBN-E is
equivalently good in terms of the ranking list. Moreover, the methods of using
the predicted labels from both MBN-E and “MBN (default)” perform generally
very close to the method with the ground-truth labels in terms of ACC, even
though the predicted labels themselves do not have a high accuracy, e.g. on

11
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Figure 4: Effect of the referenced labels on the performance of the MBN-SO
variants. The four sub-figures show the results with the selection criteria of (a)
SWC, (b) PB, (¢) PBM, and (d) VRC, respectively. The numbers in the caption
of each sub-figure are the ranks of the comparison methods.

UMIST and 20-Newsgroups. In other words, MBN-SO is insensitive to the
accuracy of the referenced labels.

Do the above phenomena mean that the referenced labels are unimportant?
Of course no! A higher accuracy of the predicted labels do lead to better perfor-
mance. If we take a look at the absolute ACC on each dataset in detail, we find
that using the predicted labels from MBN-E seems a better choice than using
the predicted labels from “MBN (default)”. Moreover, the method of using the
ground-truth labels ranks No. 1 in all four ensemble selection criteria, while the
method of using the randomly generated labels always performs the poorest.

Fig. 5 further draws the effect of the referenced labels on the weight cal-
culation of the MBN base models on UMIST and 20-Newsgroups, where the
predicted labels from MBN-E and “MBN (default)” are far less accurate than
the ground-truth labels. It further manifests the correctness of the aforemen-
tioned conclusion. Specifically, from the figure, we see that, although the pre-
dicted labels are inaccurate, the weight curves of MBN-E are quite close to those
produced by the ground-truth labels, which supports the empirical correctness
of using MBN-E to generate the referenced labels for MBN-SO. Although the
weight curves of “MBN (default)” are slightly different from those produced by
the ground-truth labels, it is still able to select the top MBN base models. At
last, we see that the weight curves produced by the randomly generated labels
are irregular. Comparing Fig. 5 with Fig. 4, we can further explain the phe-
nomena why the performance with the randomly generated labels seems not so
bad is caused by that a number of randomly selected MBN base models are able
to produce a reasonable result.

12
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Figure 5: Effect of different referenced-label generation methods on the weights
of the base models of “MBN-SO (VRC)”.

4.3 On candidate meta-clustering functions of MBN-E

MBN-E concatenates the learned representations from the MBN base models
as a new meta-representation for clustering, while a conventional clustering
ensemble method usually uses a meta-clustering function to fuse the predictions
produced from a number of base clusterings. From the perspective of ensemble
learning, we may also adopt other candidate meta-clustering functions to fuse
the clustering results of the MBN base models. In this section, we study the
effect of the meta-clustering approaches on performance.

We adopted 12 meta-clustering functions, which are CSPA [3], HGPA [3],
MCLA [3], DREC [4], LinkClueE [5,6], ARA1 [7], ARA2 [7], Borda [8], Cvote [9],
Vote [10], ECPCS_MC [11], and ECPCS_HC [11], respectively. The predic-
tions of data for the meta-clustering functions here is obtained by applying
agglomerative hierarchical clustering to the learned representations of the MBN
base models.

Table 2 lists the comparison results of the standard MBN-E and 12 meta-
clusterings that use the same MBN base models. From the table, we find that the
proposed MBN-E ranks the second place, which is slightly worse than Vote [10].
If we look at the details, we find that MBN-E performs only 0.1% worse than
Vote on Dermatology, COIL20, and MNIST, which accounts for the inferiority
of MBN-E over Vote. We further observe that MBN-E wins the best perfor-
mance on three datasets, which has the same highest number of championships
as ECPCS_MC [11]. To summarize, considering the “Occam’s Razor” as the
principle for designing algorithms, the simple MBN-E is recommended as the
best choice of fusing multiple MBN base models.

If we further compare the results in Table 2 with MBNT, we find that none
of the 13 comparison methods achieve comparable performance with MBNT—
one of the base models that has been applied to all of the comparison methods.
This phenomenon suggests that, if we could find MBN' from the candidate
base models, then the performance could at least outperform the comparison
methods, which motivates the invention of MBN-SO and MBN-SD.
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Table 2: ACC comparison between MBN-E and the meta-clustering func-
tions that use the same MBN base models as MBN-E. The abbreviations
“Derm.”, “NT”, “Yale B”, and “20-NG” are short for Dermatology, New-Thyroid,
Extended-Yale B, and 20-Newsgroups, respectively. The term “N/A” means
that a single run cannot be finished in 24 hours.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST Rank
CSPA [3] 0.721 0.491 0.592 0.966 0.816 0.677 0.581 0.106 8.125
HGPA [3] 0.306 0.698 0.083 0.027 0.050 0.010 0.053 0.113 12.000
MCLA (3] 0.791 0.949 0.602 0.961 0.830 0.726 0.586 0.965 5.125
DREC [4] 0.669 0.777 0.500 0.684 0.619 0.545 0.401 N/A 10.875
LinkClueE [5] 0.891 0.948 0.651 0.917 0.894 0.796 N/A N/A 5.875
ARAL1 [7] 0.866 0.897 0.587 0.921 0.837 0.586 0.578 N/A 7.750
ARA2 [7] 0.848 0.937 0.431 0.834 0.757 0.399 0.494 N/A 9.875
Borda [8] 0.922 0.940 0.539 0.888 0.656 0.536 0.516 0.965 7.375
Cvote [9] 0.685 0.683 0.631 0.965 0.981 0.831 0.204 0.965 5.750
Vote [10] 0.867 0.880 0.649 0.968 0.930 0.825 0.618 0.965 3.250
ECPCS_MC [11] 0.935 0.940 0.598 0.947 0.884 0.784 0.633 0.965 4.125
ECPCS_HC [11] 0.852 0.943 0.597 0.816 0.857 0.765 0.431 0.694 7.000
MBN-E 0.866 0.860 0.670 0.973 0.929 0.832 0.584 0.964 3.875
MBNf 0.971 0.964 0.770 0.969 0.994 0.901 0.623 0.965

4.4 On candidate ensemble selection methods of MBN-SO

MBN-SO simply selects the MBN base models with the highest weights. In
literature, there are many studies on how to select the base models given the
weights, which may lead to higher performance and lower computational power
than the proposed method.

This section applies five representative clustering ensemble selection func-
tions to MBN-SO, given the same MBN base models. They can be categorized
into two classes. The first class conducts the ensemble selection according to
the clustering results of the base models only. It consists of the sum of the nor-
malized mutual information (SNMI) [12], joint criterion (JC) [12], and cluster
and select (CAS) [12]. The selection criteria of the methods consider both the
accuracy and diversity of the clustering results.

The second class [13] picks the base models according to an optimization-like
criterion, which is closely related to the proposed MBN-SO. Here we compare
with the following representative ones:

e Single index selection (SIS) [13]: Contrary to MBN-SO which uses the
predicted label from MBN-E as a reference to evaluate the discriminability
of the output representation of each base model, SIS uses the predicted la-
bel from each base clustering as a reference to evaluate the discriminability
of the original data representation, and uses a meta-clustering function to
fuse the predicted labels from the top B base clusterings into the final pre-
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Table 3: ACC comparison between MBN-SO and the clustering ensemble selec-
tion functions that use the same candidate MBN base models as MBN-SO.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST Rank

SNMI [12] 0.708 0.485 0.555 0.823 0.726 0.608 0.534 0.106 15.375
JC [12] 0.746 0.537 0.546 0.947 0.873 0.800 0.556 0.106 11.250
CAS [12] 0.734 0.479 0.560 0.940 0.698 0.617 0.462 0.106 14.250
SIS (SWC) [13] 0.686 0.528 0.559 0.929 0.880 0.776 0.544 0.106 13.000
SIS (PB) [13] 0.682 0.494 0.572 0.930 0.898 0.771 0.544 0.106 12.875
SIS (PBM) [13] 0.658 0.486 0.587 0.910 0.892 0.808 0.483 0.106 13.250
SIS (VRC) [13] 0.643 0.522 0.634 0.909 0.963 0.809 0.545 0.106 11.125
SR [13] 0.645 0.509 0.567 0.924 0.889 0.790 0.532 0.106 13.625
MBN-SO (SWC)  0.854 0.859 0.717 0.968 0.957 0.857 0.602 0.964 4.500
MBN-SO (PB) 0.851 0.880 0.699 0.960 0.956 0.884 0.591 0.964 5.250
MBN-SO (PBM)  0.852 0.630 0.718 0.961 0.990 0.866 0.602 0.962 4.750
MBN-SO (VRC)  0.714 0.771 0.767 0.941 0.995 0.908 0.623 0.964 4.750
MBN-SD 0.849 0.940 0.519 0.891 0.958 0.760 0.607 0.841 9.750
rSNMI 0.730 0.565 0.552 0.949 0.873 0.796 0.556 0.106 11.500
rMBN-SO (SWC) 0.867 0.885 0.625 0.966 0.920 0.823 0.611 0.965 5.125
rMBN-SO (PB) 0.806 0.938 0.656 0.934 0.965 0.852 0.617 0.965 4.625
rMBN-SO (PBM) 0.905 0.937 0.626 0.954 0.953 0.821 0.605 0.964 5.625
rMBN-SO (VRC) 0.855 0.937 0.654 0.945 0.952 0.830 0.611 0.962 5.875

diction result. Because the original data representation is very noisy, we
replaced it with the output representation of MBN-E, which improves SIS
to a fair experimental setting with MBN-SO. Here we apply the criteria
of SWC, PB, PBW, and VRC to SIS for a point-to-point comparison with
MBN-SO. Following [13], we used CSPA as the meta-clustering function
of SIS.

e Sum of ranks (SR) [13] It runs SIS with different optimization-like
criteria, each of which produces a ranking of the base models. Then, it
averages the rankings for the final ranking of the base models. At last, it
uses a meta-clustering function to fuse the predicted labels from the top
B base clusterings into the final prediction result. Following [13], we used
CSPA as the meta-clustering function of SR.

The top 2 parts of Table 3 lists the comparison result between MBN-SO
and the referenced methods [12,13]. From the ranking list of the table, we see
that the variants of MBN-SO behave similarly with each other, and outperform
the referenced methods apparently. The variants of SIS perform similarly as
well, which outperform SNMI and CAS, and are inferior to JC. If we look at
the details, we find that “MBN-SO (VRC)” achieves the top performance in
five out of the eight datasets. As for the referenced methods, most of them do
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Figure 6: Weights of the MBN base models of the SNMI and SIS functions.

not behave fundamentally different. Particularly, they have failed to achieve
reasonable results on MNIST, comparing to random guess.

Fig. 6 shows the weights of the MBN base models of the SNMI and SIS
functions in a single run. After comparing the curves of the weights with the
clustering accuracy of the MBN base models, we see that although the weights
of MBN-SO are more accurate than the weights of the SIS variants, the perfor-
mance gap between SIS and MBN-SO in Table 3 seem unnecessarily to be so
large.

To investigate why the proposed MBN-SO has such a large advantage over
the referenced methods, we first removed the ensemble selection criterion based
on diversity in SNMI by simply picking the B base models that have the largest
weights. The new method is named revised SNMI (rSNMI). From the result
in Table 3, we see that rSNMI significantly outperforms SNMI and CAS, and
performs as good as JC. That is to say, a simple ensemble selection strategy
like MBN-SO is enough, while further exploring the diversity between the base
models via complicated algorithms is unnecessary.

Then, we replaced the meta-clustering function of SIS by simply concate-
nating the output representations of the selected base models. Because the
only difference between the revised algorithm and MBN-SO is that the revised
algorithm uses the data representation produced by MBN-E as a reference to
evaluate the clustering quality of each MBN base model, while MBN-SO uses
the clustering result of MBN-E as a reference to evaluate the data representa-
tion learned by each MBN base model, we name the revised algorithm as revised
MBN-SO (rMBN-SO). The bottom 2 parts of Table 3 lists the comparison re-
sult between MBN-SO and rMBN-SO. From the apple-to-apple comparison, we
see that the ensemble selection strategy of MBN-SO is better than rMBN-SO.
By comparing rtMBN-SO and SIS, we see that the meta-clustering function is
responsible for the large performance gap between MBN-SO and SIS.
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Figure 7: Results of the image segmentation methods on 2 randomly selected
examples from the 2017 Val images of the COCO datasets.

5 Applications to image segmentation

Six examples of the comparison results on image segmentation are shown in
Fig. 7. From the figure, we see that the proposed methods not only maintain
sufficient details of the images than mean-shift, but also yield smoother and
more accurate results than k-means. As for the proposed methods, MBN-SO
behaves similarly to {fMBN-E.
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