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Phase-Aware Speech Enhancement Based on Deep
Neural Networks

Naijun Zheng and Xiao-Lei Zhang

Abstract—Short-time frequency transform (STFT) is fundamen-
tal in speech processing. Because of the difficulty of processing
highly unstructured STFT phase, most speech-processing algo-
rithms only operate with STFT magnitude, leaving the STFT phase
far from explored. However, with the recent development of deep
neural network (DNN) based speech processing, e.g., speech en-
hancement and recognition, phase processing is becoming more
important than ever before as a new growing point of DNN-based
methods. In this paper, we propose a phase-aware speech enhance-
ment algorithm based on DNN. Specifically, in the training stage,
when incorporating phase as a target, our core idea is to transform
an unstructured phase spectrogram to its derivative along the time
axis, i.e., instantaneous frequency deviation (IFD), which has a sim-
ilar structure with its corresponding magnitude spectrogram. We
further propose to optimize both IFD and magnitude jointly in a
multiobjective learning framework. In the test stage, we propose a
postprocessing method to recover the phase spectrogram from the
estimated IFD. Experimental results demonstrate the effectiveness
of the proposed method.

Index Terms—Deep neural network (DNN), phase estimation,
speech enhancement, instantaneous frequency, harmonic model.

I. INTRODUCTION

S PEECH enhancement has been studied extensively as a fun-
damental problem of signal processing. Speech enhance-

ment techniques have been widely used in speech communica-
tion, speech analysis, speech recognition, etc. Short-time Fourier
transform (STFT) is one of the bases of speech enhancement. It
converts a speech signal in time domain to a spectro-temporal
spectrogram, where the harmonic structure of the speech can be
observed clearly. A STFT spectrogram can be decomposed to a
magnitude spectrogram and a phase spectrogram. Most speech
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enhancement algorithms focused only on processing magni-
tude spectrograms during the last decades, due to the following
reasons. First, some work indicated that the enhancement of
magnitude is more important than that of phase, since a phase
spectrogram can be enhanced iteratively by its associated mag-
nitude spectrogram [1]. Moreover, a phase spectrogram seems
randomly distributed and unstructured [2], which is difficult to
be processed directly.

Phase processing is important to speech enhancement. Re-
cently, phase has shown its strong relationship with speech
quality [3], [4]. Phase processing has also received much atten-
tion than ever before. Examples include the consistent Wiener
filtering [5] and phase reconstruction [6]. In these works, the
derivatives of a phase spectrogram along the time and frequency
axes, named instantaneous frequency (IF) [7] and group delay
(GD) [8] respectively, show clear structures that are quite dif-
ferent from the randomly distributed and unstructured phase
spectrogram.

To perform speech enhancement with a target of no matter
whether magnitude-based or phase-based, one needs to con-
struct a mapping function, either model-based or data-driven,
from a noisy feature space to a clean target space. Recently, deep
neural network (DNN) based speech enhancement, which is a
data driven method that has shown its strong power in adverse
environments since its first report [9], has received much atten-
tion [10]. DNN is a multilayer perceptron with more than one
hidden layers. Each layer of DNN consists of a group of nonlin-
ear hidden neurons in parallel. Due to the hierarchical structure
and distributed representation at each layer, the data represen-
tation ability of DNN is exponentially more powerful than that
of a shallow model when given the same number of nonlinear
computational units. With the recent explosion of data and fast
development of computing power, it is able to train very pow-
erful DNN easily, which triggered the breakthrough of speech
processing. The research on DNN-based speech enhancement
methods focused on training targets [11]–[16], DNN models
[9], [17]–[19], different types of noises [20]–[22], and different
kinds of sensors [23]–[25], see [10] for an overview.

Most DNN-based speech enhancement methods use
magnitude-aware training targets [11], either mapping-based
or masking-based, leaving the noisy phase unprocessed. These
methods do not fully utilize phase information for further im-
proving the performance. Recently, manipulating on the full
STFT expression of data is a new growing point of DNN-based
speech enhancement. Examples include the phase-sensitive fil-
ter (PSF) [12] and complex-IRM (cIRM) [16]. However, the
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above training targets [12], [16] are formulated in the complex
rectangular coordinate system, where the phase and magnitude
information exists in both the real and imaginary parts. These
methods do not directly deal with the difficulty of processing
a phase spectrogram which seems randomly distributed and
highly unstructured. To our knowledge, no methods deal with
phase spectrograms directly.

In this paper, we propose a phase-aware DNN-based speech
enhancement method to deal with phase spectrograms directly.
Specifically, to overcome the difficulty of processing a highly
unstructured phase spectrogram, we employ the derivative of
the phase spectrogram along the time axis, named instanta-
neous frequency deviation (IFD) [26], as the training target.
Geometrically, IFD has a clear structure similar to its corre-
sponding magnitude spectrogram. Theoretically, IFD is able to
alleviate the wrapping problem of phase thanks to its derivative
calculation along the time axis. We further propose to opti-
mize IFD and magnitude jointly in a multi-objective learning
framework. However, the estimated IFD in the test stage is only
an estimate of the derivative of the phase spectrogram which
cannot be used alone for recovering the phase spectrogram. To
overcome this difficulty, we further propose a post-processing
method which reconstructs the phase spectrogram by jointly
processing the estimated IFD, estimated magnitude mask, and
noisy phase. Our experimental results demonstrate that the pro-
posed method outperforms the DNN method that estimates the
magnitude spectrogram only in both matching and mismatching
test environments.

The rest of the paper is organized as follows. In Section II,
we present the motivation for conducting phase estimation. In
Section III, we first propose a phase-aware training target of
DNN, then present a multi-objective learning framework for
jointly estimating magnitude and phase with DNN, and at last
propose a post-processing method for phase recovery in the
test stage. In Section IV, we report the empirical evaluation
results of the proposed method. In Section V, we conclude our
contributions.

II. MOTIVATION

The STFT spectrogram of a signal x (n) can be written as
[27]:

X (k, l) = STFT {x (n)}

=
N −1∑

n=0

x (lL + n) w (n) e−j 2 π
N kn (1)

where k and l indicate the frequency band and frame index of
the STFT spectrogram respectively, n indicates the time index,
L is the time shift between two adjacent frames, w(l) is an anal-
ysis window with a length of Lw for dividing the signal into
frame segments, the overlapping ratio between two adjacent
frames is 1 − L/Lw , and N is the length the discrete Fourier
transform (DFT). For speech enhancement, we denote the clean
speech, additive noise, and corrupted noisy speech in time do-
main by x(n), z(n), and y(n) respectively, with the T-F units of
their corresponding spectrograms denoted by X(k, l), Z(k, l),

Fig. 1. Four parameters of a spectrogram.

and Y (k, l) respectively. The value of a T-F unit is a complex
number, which has two expressions: One is in the rectangular
coordinate system, which decomposes the complex number into
a real part and an imaginary part:

X(k, l) = �{X(k, l)} + �{X(k, l)} (2)

The other is in the polar coordinate system, which decomposes
the complex number into a magnitude part and a phase part:

X(k, l) = |X(k, l)|ejφx (k,l) (3)

For simplicity, we denote the phase (or magnitude) of the clean
speech, noisy speech, and noise speech as clean phase (or
magnitude), noisy phase (or magnitude), and noise phase (or
magnitude) respectively. An example of the four parameters is
illustrated in Fig. 1.

In this paper, we focus on developing speech enhancement
methods working with the polar coordinate expression where
the magnitude spectrogram has a clear structure, while the phase
spectrogram does not have such a clear structure. Because it is
efficient to suppress the background noise when the spectrogram
of a noisy speech signal has a clear structure, magnitude-aware
speech enhancement is much more popular than phase-aware
speech enhancement.

Phase-aware speech enhancement is important. Here we give
two examples that emphasize its importance. In [28], the authors
synthesized an utterance by combining the spectral amplitude
of a real-world utterance with an artificially generated spectral
phase that is dramatically different from the spectral phase of the
real-world utterance. The synthesized utterance, which sounds
like a rock music, is quite different from the original speech.
Similarly, in Fig. 2, we draw several speech signals that are syn-
thesized from the same magnitude of an original noisy speech
signal with the clean, noisy, and noise phase of the original
speech respectively. Comparing the deviation between the syn-
thesized speech signals and their clean counterpart, we observe
that the noisy speech signal synthesized with the clean phase
is very close to the clean speech signal, while the deviation of



ZHENG AND ZHANG: PHASE-AWARE SPEECH ENHANCEMENT BASED ON DNNs 65

Fig. 2. On the importance of phase estimation. (a) Comparison of the noisy
speech signals in time domain that are synthesized with different phase, where
the noisy scenario is the factory noise at an SNR of −3 dB. (b) Comparison of
the deviations of the noisy speech signals to their corresponding clean speech
signal.

the noisy speech signal synthesized with the noise phase is even
worse than that of the noisy speech signal. The average devia-
tion of the synthesized signals with the clean, noisy, and noise
phase from the corresponding clean speech is 0.0047, 0.0064,
and 0.0089 respectively.

However, phase-aware speech enhancement is difficult, par-
ticularly for a DNN-based approach. The main difficulty is that
the values of the T-F units in a phase spectrogram, as shown in
Fig. 1 b, fluctuate rapidly along the time and frequency axes,
and are uniformly distributed in the range of [−π, π) [29] due
to phase wrapping. As we know, it is difficult to train a statisti-
cal model, like DNN, with highly unstructured input or output
training patterns. Another difficulty is that phase is a function of
time. We take a sinusoidal signal in time domain as an example.
Its spectral phase at the dominant frequency is a linear function
of the frame indices (see Appendix A for the proof). Due to
the dependency of phase to its frame indices, the deep models
that do not take the time dependency into consideration is diffi-
cult to be applied, such as the standard feedforward DNN with
stochastic gradient descent training. To overcome the above dif-
ficulties, a highly-structured new target derived from the phase
expression as well as a post-processing method that recovers
the original phase expression from the new target are strongly
needed for DNN-based speech enhancement.

III. METHOD

In this section, we first present a phase-aware training target
for DNN, then present the multi-objective training of DNN with
the new target, and at last describe a post-processing method of
the new target to reconstruct the enhanced phase.

A. A Phase-Aware Training Target for DNN

To derive a highly-structured phase-aware target, we need to
overcome the difficulties of the phase wrapping and time-related
effect as we have analyzed in Section II. Here we employ a
variant of the STFT phase that is able to extract structured pat-
terns from phase spectrograms: instantaneous frequency (IF)

[7] which calculates the negative derivative of the phase spec-
trograms along the time axis. For discrete-time signals, IF is
calculated by:

IFx (k, l) = principle(φx (k, l) − φx (k, l + 1))

= arg (X (k, l) X∗ (k, l + 1))

(4)

where the function principle(·) denotes the selection of the prin-
cipal values which projects the phase difference onto [−π,+π),
arg(·) calculates the phase angle of a complex number, X∗ de-
notes the complex conjugate of the complex number X , and the
subscript x means that IFx is calculated from the clean phase.
The IF of the speech signal in Fig. 1 is demonstrated in Fig. 3 b.

However, as shown in Fig. 3 b, IF contains some parallel stri-
ation along the time axis. To eliminate the striation, we employ a
deviation of IF, named instantaneous frequency deviation (IFD)
[26]:

IFDx (k, l) = IFx (k, l) − 2π

N
kL (5)

which measures how far an IF value strays from its center fre-
quency 2π

N kL. As shown in Fig. 3 c, IFD can give clear pitch
and a harmonic structure similar to that in the magnitude spec-
trogram; compared with IF, IFD eliminates the striation caused
by different center frequencies, which makes the structure of
the speech more apparent.

IFD is able to alleviate the phase wrapping problem. Specif-
ically, phase wrapping is a difficult problem that −π and π are
physically a same value, but we usually regard them as different
states in the model training. IFD is an effective target that can
concentrate the output value close to 0 and therefore reduce the
probability of generating large phase values close to π or −π.
We show the probability density functions of IFD with different
frame overlaps in Fig. 4. From the figure, we can see that the
probability density function of IFD at the position of −π and π
is small when the frame overlap is large, which greatly alleviates
the phase wrapping problem. In this paper, the frame overlap is
set to 75% of the frame length.

IFD can also be a common target of DNN. To support our
claim, we focus on presenting the similarity between the mag-
nitude and IFD, since many DNN-based speech enhancement
techniques use clean magnitude spectrograms or their variants as
targets. In [30], the author found that, when a Gaussian window
is selected as the analysis window of STFT, a transform between
the derivative of the STFT magnitude and the derivative of the
STFT phase exists, which indicates that the temporal-spectral
patterns of the derivatives contain similar information. Here, we
compared IF, IFD, and the derivatives of the logarithm of the
magnitude spectrogram along frequency axis in Fig. 3, where
Hamming windows were used as the analysis windows of STFT.
We find that IFD and the derivative of the magnitude spectro-
gram have a similar pattern, which reaches a similar conclusion
with that in [30]. Our finding indicates that IFD can be used as
a common target of DNN-based speech enhancement wherever
magnitude spectrograms or their variants are used as targets.
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Fig. 3. Visualizations of IRM, IF, IFD, and the derivative of the logarithm of the magnitude spectrogram along the frequency axis (denoted by Δf log(mag))
in clean and noisy (destroyer engine noise or factory1 noise at −3 dB) environments.

Fig. 4. Probabilistic density functions of IFD of clean speech with different
frame overlapping factors, where the frame overlapping factor is defined as the
percentage of the frame overlap over the frame length.

B. Phase-Aware Multi-Objective DNN

1) A Phase-Aware Multi-Objective Learning Framework:
We propose to estimate the magnitude and phase of STFT si-
multaneously by multi-objective learning. The proposed archi-
tecture is shown in Fig. 5, where a magnitude mask is defined
as some energy or amplitude ratio between the clean speech and
the background noise.The optimization target of the magnitude-
aware objective is flexible. This paper investigates three kinds of
magnitude masks listed in Table I, where X2(k, l) and Z2(k, l)
denote the energy of the clean speech and noise at the (k, l)-th
T-F unit respectively.

In Table I, parameter β of the ideal ratio mask (IRM) [31] is a
scale parameter. We set β to 0.5 in this paper. PSF [12] calculates

Fig. 5. Architecture of the phase-aware multi-objective DNN.

TABLE I
MAGNITUDE MASKS

the real part of a complex-valued ratio. Note that the range of
IRM is [0, 1], while the ranges of IAM and PSF are not [0, 1]. To
fit the IAM and PSF suitable to our DNN model whose output
units are sigmoid functions, we truncate the ranges of IAM and
PSF into [0, 1] in dimension.
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The main difference of the multi-objective architecture from
a standard DNN is that the output layer of the multi-objective
architecture has two outputs: one for the magnitude mask es-
timation, and the other for the IFD estimation. The motivation
for jointly learning the magnitude mask and IFD with the same
input feature is that, as illustrated in Section III-A, the magni-
tude masks (e.g. IRM) and IFD have a similar structure, hence
it is able to adopt the acoustic features that have been applied
successfully to IRM-based methods for IFD as well.

The input acoustic feature of the multi-objective DNN is
a concatenation of a set of complementary features and their
deltas [32], where the complementary features include the am-
plitude modulation spectrogram, relative spectral transformed
perceptual linear prediction coefficients, mel-frequency cepstral
coefficients, and 64-channel Gammatone filterbank power spec-
tra. All these features are noise robust ones.1 They have been
adopted by many magnitude-aware speech enhancement meth-
ods, e.g. [11]. We have also observed in the task of voice activity
detection that the performance of DNN is improved gradually
by combining more hand-engineering complementary features
[33]. To explore the contextual information, we also expand the
input feature from a single frame to a new vector that is centered
at the frame and also incorporates the neighboring 2W frames,
in other words, the window length of the input is set to 2W + 1,
where W is the half-window length.

We have been aware that DNN has the potential of extracting
highly abstract features from original signals directly without
hand-engineering features, given large enough training data.
Here we still use the complementary features, leaving the com-
pletely end-to-end training of DNN as our future work.

2) DNN Training: The training procedure of the proposed
multi-objective DNN is summarized in Fig. 6. To balance IFD
and the magnitude mask on the training errors, we normalize
IFD into the range of [0, 1) and denote the normalized IFD
as Ωx :

Ωx(k, l) =
1
2π

IFDx(k, l) +
1
2

(6)

Similarly, we use the symbol Mx to denote the ideal magni-
tude mask. We adopt the following two loss functions for the
multi-objective DNN training: one is named mask approxima-
tion (MA):

MSEMA(l) =
1

2N

N −1∑

k=0

[(
Mx (k, l) − M̂x (k, l)

)2

+
(
Ωx (k, l) − Ω̂x (k, l)

)2
]

(7)

and the other one is named masked signal approximation (mSA):

MSEmSA(l) =
1

2N

N −1∑

k=0

[
|Y (k, l)|2

(
Mx (k, l) − M̂x (k, l)

)2

+
(
Ωx (k, l) − Ω̂x (k, l)

)2
]

(8)

1Our method is not limited to the features mentioned here.

Fig. 6. Diagram of the training procedure of the phase-aware multi-objective
DNN.

where the magnitude estimation part of mSA is motivated from
[34] [35], M̂x and Ω̂x denote the estimations of magnitude mask
and normalized IFD respectively, MSE is short for mean squared
error.

We train each DNN model sufficiently by stochastic back-
propagation. The number of training epochs should not only
guarantee the convergence of the objective value but also pre-
vent overfitting of the DNN to its training data. Empirically,
when the MA loss function is adopted, the maximum epoch
number is set as 80, and the model is selected according to the
performance on the validation set. When the mSA loss function
is adopted, we train the DNN model with the MA loss func-
tion for the first 40 epochs, and then continue to train the DNN
model with the mSA loss function for at most 40 epochs [17].
The latter training scheme is denoted as MA+mSA.

To better capture the nonlinear variations of data, we set DNN
to a depth of three hidden layers, each layer with 1024 hidden
neurons. This network structure is commonly used, e.g. [11],
[16]. The sigmoid activation function is used as the neurons in
the output layer. The rectified linear unit (ReLU) [36] is used as
the hidden neurons. The dropout regularization [37] is adopted
with the dropout rate set to 0.2. The adaptive gradient descent
[38] is used to train the multi-objective DNN with the moment
set to 0.5 at the first 5 epochs and 0.9 for the rest.
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Fig. 7. Diagram of the test procedure of the phase-aware multi-objective
DNN.

C. Post-Processing for Phase Reconstruction in the Test Stage

In the test stage, we propose a post-processing method to
recover the phase spectrogram from an estimated IFD. In this
subsection, all kinds of estimates are for the clean speech x(n).
Hence, for simplicity, we omit the subscript x from all kinds of
estimates of the clean speech x(n), for example, we denote the
estimate φ̂x by φ̂, the estimate ÎFx by ÎF, and so forth.

The main difficulty of the phase recovery from the estimated
IFD is that IFD is only the derivative of the phase spectrogram
along the time axis. To recover the phase spectrogram, we also
need a proper initial estimate of the phase in some T-F units.
Then, based on the initial estimate, we can reconstruct the phase
spectrogram along the time and frequency axes with the esti-
mated IF by Eq. (4). Fig. 7 shows the entire test procedure, where
the proposed post-processing method is highlighted in the boxes
with blue bold borders. We present the post-processing method
in detail as follows.

First of all, we recover the estimated IF from the estimated
IFD by:

ÎF(k, l) = 2π

(
Ω̂(k, l) − 1

2

)
+

2π

N
Lk (9)

Then, we conduct the following steps:
1) Initial Phase Estimation: Because the STFT spectrogram

of the noisy speech Y (k, l) is the summation of the spectrograms
of the clean speech X(k, l) and noise Z(k, l), the noisy phase
can be formulated as

φy = arg
(|X|ejφx + |Z|ejφz

)

= φx + arg
(

1 +
|Z|
|X|e

j (φz −φx )
)

. (10)

When the amplitude of the clean speech |X| is much larger
than the amplitude of the noise |Z|, the second term in Eq.
(10) is close to 0. Then, the noisy phase can be approximated
by the clean phase, i.e., φy ≈ φx , which means the phase in
the high local-SNR regions is nearly unchanged after the noise
degradation. Fig. 8 a shows the distance between the noisy phase
and the clean phase. From the figure, we observe clearly that
the phase in the harmonic regions is nearly uncorrupted.

Based on the above finding, the first way of conducting the
phase recovery is to select the T-F units of the noisy phase
spectrogram that have high local SNRs as the initial estimate
of the corresponding T-F units of the clean phase spectrogram,
and then use the selected T-F units to recover the remaining T-F
units, where the local SNRs are approximated by M̂ . Another
way is to use the entire noisy phase spectrogram as the initial
estimate of the clean phase spectrogram, and then use the local
SNR of a T-F unit as the reliability index of its estimate. In this
paper, we take the second approach:

φ̂init(k, l) = φy (k, l), ∀k, ∀l. (11)

2) Phase Reconstruction Along the Time Axis: We first gen-
erate (2Ns + 1) frame-conditioned estimates for the (k, l)-th
T-F unit by:

φ̂i (k, l) =

{
φ̂init (k, l + i) +

∑i−1
n=0 ÎF (k, l + n), if i �= 0

φ̂init (k, l + i) , if i = 0
,

∀ − Ns ≤ i ≤ Ns (12)

where i is the frame distance between an initialized T-F unit and
the target T-F unit.

The integration of the frame-conditioned estimates can be
viewed as an interpolation problem. Several interpolation meth-
ods [39] can be applied, such as the nearest point interpolation
or linear interpolation. Here we adopt the weighted sum linear
interpolation: the final estimate φ̂ (k, l) is a weighted sum of the
frame-conditioned estimates:

φ̂ (k, l) =

∑Ns

i=−Ns

(
s(i)M̂ (k, l + i)

)
φ̄i (k, l)

∑Ns

i=−Ns
s(i)M̂ (k, l + i)

(13)

where s(i) denotes the proximity weight for φ̄i (k, l) and

φ̄i (k, l) = unwrap(φ̂i (k, l) |φ̂i (k, l − 1)) (14)

with unwrap(·) as an unwrapping function to make the phase
spectrogram smooth along the time axis.2 The larger the distance

2The unwrapping function is the “unwrap” function in MATLAB.
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Fig. 8. Distance between the reconstructed phase and the clean phase, i.e., |principle(φ̂ (k, l) − φx (k, l))|, in different phase reconstruction stages, where the
dark regions indicate small deviations. The reconstruction process was conducted in the factory noise at an SNR of −3 dB. (a) Initial phase estimation. (b) Phase
reconstruction along the time axis. (c) Phase reconstruction along the frequency axis.

|i| is, the smaller the proximity weight s(i) is. The influence of
φ̄i (k, l) on φ̂ (k, l) is calculated by the product of s(i) and
M̂(k, l + i), where M̂(k, l + i) is the reliability index we have
mentioned in Section III-C1. In this paper, s(i) is set to the
Hamming window:

s(i) = 0.54 + 0.46 cos
(

πi

Ns

)
, ∀ − Ns ≤ i ≤ Ns (15)

where (2Ns + 1) is the length of the Hamming window.
Eq. (13) indicates that the frame-conditioned estimate

φ̂i (k, l) who has a small M̂ (k, l + i) contributes little to the final
estimate φ̂ (k, l), which verifies the correctness of our strategy
on the initial phase estimation, i.e., Eq. (11).

3) Phase Reconstruction Along the Frequency Axis: Be-
cause the initialized T-F units are only reliable in the high local
SNR regions, there still exist large grooves between two neigh-
boring harmonic bands that are not well estimated by the phase
reconstruction along the time axis due to the low local SNRs. To
recover the phase in these grooves, we employ the linear phase
assumption [6] to reconstruct the phase along the frequency
axis.

The main idea is that a speech signal can be represented by
a sinusoidal model [40]. We first define the frequency index set
of the harmonic bands at the l-th frame as Kl , which is an index
set of the local peaks of the estimated magnitude spectrogram
|X̂(k, l)| along the frequency axis:

Kl :=
{

k
∣∣∣∀k : |X̂(k, l)| > |X̂(k ± 1, l)|

}
. (16)

where the symbol “:=” denotes the term “defined as” in mathe-
matics. Then, after applying the STFT with a symmetric analysis
STFT window w(n) to the speech signal, the phases between
two harmonic bands, supposed to be k1 and k2 ({k1 , k2} ⊆ Kl),

are recalculated by the following equation:

φ̂ (k, l) ≈ arg
(

X̂ (k1 , l)
W (k − k1)

W (0)

+ X̂ (k2 , l)
W (N + k − k2)

W (0)

)
(17)

where k1 < k < k2 , W (k) is the DFT of the analysis window
w(n) at the k-th frequency band, X̂ (k1 , l) and X̂ (k2 , l) are
the estimated STFT spectrograms of the harmonic bands at the
stage of phase reconstruction along the time axis:

X̂(ku , l) = |X̂(ku , l)|ejφ̂(ku ,l) , ∀ku ∈ Kl (18)

where φ̂(ku , l) is calculated by Eq. (13), and |X̂(ku , l)| is
the estimated magnitude which is calculated by masking the
noisy magnitude Y (ku , l) with the estimated magnitude mask
M̂x(ku , l) produced from DNN. The derivation of Eq. (17) is
presented in Appendix B.

4) Overview of the Post-Processing Method: The post-
processing method is summarized in Algorithm 1. To illus-
trate the effectiveness of Algorithm 1, we visualize the dis-
tance between the reconstructed phase and the original clean
phase by |principle(φ̂ (k, l) − φx (k, l))| in Fig. 8, where the
dark regions indicate small deviations. In the initialization
stage, the dark regions are the high SNR regions identified
by the estimated RM (Fig. 8a). After the phase reconstruction
along the time axis, the dark regions are expanded horizontally
(Fig. 8b). After the phase reconstruction along the frequency
axis, the bright spots inside the dark regions are reduced, espe-
cially at the low frequency bands (Fig. 8c).

IV. EXPERIMENTS

In this section, we first present the experimental settings in
Section IV-A and then present the main results with the stan-
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Algorithm 1: Post-Processing for Phase Reconstruction.

Input: Estimated IFD Ω̂, estimated magnitude mask M̂ ,
noisy magnitude |Y (k, l)|, and noisy phase φy (k, l)

Output: Estimated phase φ̂(k, l)
1: Compute the estimated IF ÎF(k, l) from Eq. (9)
2: Initialize phase estimates φ̂init(k, l) from noisy phases

by Eq. (11)
3: Get the frame-conditioned estimates of phase along the

time axis, i.e., φ̂i (k, l), by Eq. (12)
4: Get the phase estimate φ̂ (k, l) by integrating the

frame-conditioned estimates by Eq. (13)
5: Get the enhanced spectral magnitude |X̂| by masking

the noisy spectral magnitude |Y | with the output mask
of DNN M̂ , where the DNN takes an ideal mask
defined in Table I as the training target

6: Get the index set of the harmonic bands K by Eq. (16)
7: Recalculate the phase estimate φ̂ (k, l) around the

harmonic bands along the frequency axis by Eq. (17)

dard feedforward DNN in Section IV-B. To study the effective-
ness of the IFD-based phase estimation in detail, we analyze
the effectiveness of the IFD-based phase estimation beyond the
multi-objective DNN framework in Section IV-C, then study the
effects of the hyperparameters on performance in Section IV-D,
and at last report the results of the proposed method with long
short-term memory networks in Section IV-E.

A. Experimental Settings

We first evaluated our algorithm on the TIMIT corpus [41]
where each speaker utters 10 clean utterances. For each gen-
der, we selected 136 speakers for training and 56 speakers
for testing, which produced 1360 clean training utterances and
560 clean test utterances, respectively. We selected the babble,
factory1, factory2, and buccaneer1 noises from the NOISEX-
92 [42] database, and separated each noise signal to two parts,
one for constructing training mixtures and the other for test.
We mixed each clean utterance with 20 short noise segments
at the SNR levels of −5, −3 and 0 dB respectively, where the
20 noise segments came from the 4 types of noises, each with
5 random noise segments. We mixed each clean test utterance
with 1 short noise segment at the same SNR level as the train-
ing mixtures. Eventually, for each SNR level, we have 27200
training mixtures and 2240 test mixtures.

The training and test noise environments of the TIMIT corpus
in the above experimental setting is matching. To study the gen-
eralization ability of the proposed methods, we further trained
DNN models with all four kinds of noises in the training set
and both genders at an SNR of −3 dB, and then evaluated the
models in an unseen noise environment—destroyer operation
room in NOISEX-92 at the same SNR.

We also conducted an experiment on the simulated training
data of the 4th CHiME speech separation and recognition chal-
lenge (CHiME-4) [43]. CHiME-4 has 4 noisy environments
which are the bus, cafe, pedestrian area, and street junction

noises respectively, with 17 noise segments in total. We se-
lected 50 and 4 speakers from the WSJ0 SI-84 training set of
CHiME-4 for training and test respectively. We selected 1 noise
segment from each noisy environment respectively as the ad-
ditive noise of the test data, and used the remaining 13 noise
segments as the additive noise of the training data. The genders
in both the training and test speakers are also balanced. Finally,
we have 4313 training mixtures and 1012 test mixtures.

We resampled all corpora to 16 kHz, and extracted 512-
dimensional STFT features with the frame length set to 20 ms
and the frame shift set to 5 ms, where the Hamming window is
used as the analysis window of STFT.

As will be shown later, the difference between any two com-
parison methods is that their DNNs have different training tar-
gets. Hence, we use the name of the training target of a
comparison method to represent the method itself in this
section. For example, we use IRM+ IFD to represent the pro-
posed phase-aware DNN that takes IRM and IFD as the training
target. We denote the phase-aware DNN method with different
magnitude mask estimation methods in Table I as IRM+ IFD,
IAM+ IFD, and PSF+ IFD respectively. We set the length of
the Hamming window, i.e., (2Ns + 1) in Eq. (13), to 5, and set
the window length of the input frames of the multi-objective
DNN, i.e., (2W + 1), to 5.

We compared with the following methods:
� IRM: DNN that takes the ideal ratio mask as the training

target.
� IAM: DNN that takes the ideal amplitude mask as the

training target.
� PSF: phase-sensitive filter [12].
� cIRM: complex ideal ratio mask [16].
We also reported oracle performance “oracle” which is pro-

duced from a method that first uses the above IRM-based DNN
method to enhance the magnitude spectrograms and then re-
constructs the signals with the clean phase spectrograms. We
reported a lowerbound “noisy” as well, which evaluates the
original noisy data.

We evaluated the performance from the perspective of speech
quality and intelligibility. To show the effect of incorporating
phase processing into speech enhancement, we used phased-
aware metrics, including the perceptual evaluation of speech
quality (PESQ) [44], [45], short-time objective intelligibility
(STOI) [46], extended STOI (ESTOI) [47] and singal to dis-
tortion ratio (SDR) [48]. PESQ is a phase-aware metric for
speech quality. Its score ranges from −0.5 to 4.5. The higher
the PESQ score is, the better the predicted speech quality is.
STOI evaluates the objective intelligibility of a degraded speech
signal by computing the correlation of the temporal envelopes
of the degraded speech signal and its clean reference. It has been
shown empirically that STOI scores are strongly correlated with
human speech intelligibility scores. ESTOI evaluates the objec-
tive intelligibility of a degraded speech signal by computing the
spectral correlation coefficients of the degraded speech signal
and its clean reference in short time segments. Unlike STOI,
ESTOI does not assume that frequency bands are mutually in-
dependent. Both STOI and ESTOI scores range from 0 to 1. The
higher the scores are, the better the predicted intelligibility is.
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Fig. 9. Comparison between the outputs of the proposed method and the
ground-truth labels in the factory1 noise at the SNR of −3 dB.

The SDR scores are computed by blind source separation evalu-
ation measurements [48]. It has been widely used for evaluating
speech quality.

B. Main Results

We show an output pattern of the proposed method in Fig. 9.
From the figure, we observe that the estimated IFD values in
the silent regions are mostly zero, which indicates that the silent
regions have no structure.

We reported the comparison results3 on males and females
of TIMIT in Tables II and III respectively, where MA was used
as the training loss function of all DNN models. From the ta-
bles, we observe the following experimental phenomena. (i) The
proposed phase-aware methods improve the speech quality and
intelligibility over their magnitude-based counterparts. That is to
say, IRM+IFD outperforms IRM, IAM+IFD outperforms IAM,
and PSF+IFD outperforms PSF. (ii) The overall performance
of the proposed methods is higher than that of the comparison
methods. For example, the SDR and ESTOI scores of the pro-
posed methods are at least 0.4 and 0.02 higher than those of the
comparison methods respectively on the female speakers at the
SNR of 0 dB, and around 0.3 and 0.01 higher respectively on
the male speakers at the SNR of 0 dB. (iii) The performance
improvement on the female speakers is larger than that on the
male speakers. (iv) The performance improvement in the three
nonvocal noises, i.e., factory1, factory2, and buccaneer1 noises,
is higher than that in the babble noise, since that the phase struc-
ture of the speech signals is different from the phase structures
of the nonvocal noises, but similar with the phase structure of
the babble noise.

The generalization performance of the comparison methods is
shown in Table IV, where all DNN models were trained with the

3Some demos are uploaded to https://github.com/njzheng/speech-
enhancement-DNN/blob/master/DemoPackage.zip.

data from the both genders and in all four types of the noises at
the SNR of−3 dB. The result on the “destroyer operation room”
test noise scenario shows that the proposed methods improve the
speech intelligibility.

We also reported the comparison results on CHiME-4 in
Tables V and VI, where the loss functions were set to MA and
MA+mSA respectively. The results indicate that the experimen-
tal conclusions are consistent across different loss functions.

C. Analysis of IFD-Based Phase Estimation

In this subsection, we investigate the effectiveness of the
IFD-based phase estimation beyond the multi-objective DNN
framework on both TIMIT and CHiME-4, so as to identify
how much the phase enhancement component contributes to the
performance improvement.

1) IFD-Based Phase Estimation With Noisy Magnitude: We
evaluated a method that uses the enhanced phase spectrograms
and noisy magnitude spectrograms to resynthesize signals in
the time domain. The experiment was conducted on the female
speakers of TIMIT in the factory1 noise environment at the SNR
of 0 dB. The training target of DNN was IAM+IFD. Note that,
because the magnitude mask estimation is a requirement for the
proposed phase estimation method, here we still used it for the
phase estimation, but not for the magnitude enhancement.

Figure 10 shows the experimental result, where the effects of
the phase reconstruction along the time axis, phase reconstruc-
tion along the frequency axis, and their combinations are shown
separately. As a comparison, we also show the performance of
the phase reconstruction along frequency method in [6] which
have the best performance among the three proposed methods
in [6]. The comparison method [6] assumes that the phase shift
between two adjacent bands that are close to their harmonic
bands is a constant, which does not use magnitude information
for its phase reconstruction. The comparison result shows that
our phase reconstruction with the IFD estimates improves the
speech quality and intelligibility.

As a complementary experiment, we applied the enhanced
magnitude spectrograms to both our method and the method in
[6] for the resynthesis of the time-domain signals. The compari-
son result in Table VII shows that our IAM+IFD performs better
than the method in [6].

2) IFD-Based Phase Estimation With Oracle Magnitude
Masks: We evaluated a method that uses the estimated IFD and
oracle magnitude masks to resynthesize signals in the time do-
main, where we used the oracle magnitude masks for the initial-
ization of the phase reconstruction stage of the IFD-based phase
estimation. The experiment was conducted on the CHiME-4
corpus. Experimental result in Table VIII demonstrates the ef-
fectiveness of the proposed IFD-based phase estimation given
oracle magnitude masks.

3) IFD-Based Phase Estimation With Single-Objective Net-
works: We compared the multi-objective network with a
method that estimates the magnitude masks and IFD separately
by two independent DNNs on CHiME-4. The comparison re-
sult in Table IX shows that training two separate networks yields
similar performance with the multi-objective network in terms
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TABLE II
PERFORMANCE COMPARISON ON THE FEMALE SPEAKERS OF THE TIMIT CORPUS. THE NUMBERS IN BOLD DENOTE THE

BEST PERFORMANCE AMONG THE COMPARISON METHODS

TABLE III
PERFORMANCE COMPARISON ON THE MALE SPEAKERS OF THE TIMIT CORPUS

of PESQ, ESTOI, and STOI, and performs better than the latter
in terms of SDR. However, the proposed method is more effi-
cient than the method of training two separate deep networks.

D. Effects of the Hyperparameter Ns in Eq. (13) on
Performance

Hyperparameter Ns is the window length in Eq. (13). In our
above experiments, we have set Ns to 2. In this subsection,

we analyze the effect of Ns on performance. Specifically, we
plot the relative performance improvement of IAM+IFD over
IAM with respect to different Ns in Fig. 11. From the figure,
we observe that setting Ns to a relatively large window length
leads to improved performance in terms of PESQ, ESTOI and
STOI, and a performance drop in terms of SDR especially at
high SNR levels. This phenomenon, which was caused by the
time shifts introduced by the phase reconstruction, can be ex-
plained from Eq. (12) where large windows may violate the
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TABLE IV
AVERAGE PERFORMANCE OF THE COMPARISON METHODS OVER BOTH

GENDERS IN THE DESTROYER OPERATION ROOM NOISE TEST ENVIRONMENT

ON THE TIMIT CORPUS AT −3 DB

TABLE V
PERFORMANCE OF THE COMPARISON METHODS WITH THE MA LOSS

FUNCTION ON THE CHIME-4 CORPUS

TABLE VI
PERFORMANCE OF THE COMPARISON METHODS WITH THE MA+MSA LOSS

FUNCTION ON THE CHIME-4 CORPUS

short-time stability of the phase, and the corresponding errors
caused by this violation will be accumulated during the phase
reconstruction in Eq. (13). To illustrate this error accumulation
problem more apparently, we showed a reconstructed utterance
in Fig. 12 where Ns was set to 7. From the figure, we observe
a clear time shift between the reconstructed utterance and the
original clean utterance.

E. Results With LSTM and BLSTM Networks

All of the above experiments were conducted with the stan-
dard feedforward deep neural networks. To our knowledge, the
state-of-the-art deep models for speech enhancement are long-
short term memory (LSTM) and bidirectional long-short term
memory (BLSTM) [12]. In this subsection, we investigated the
performance of the proposed method with the LSTM or BLSTM
network on CHiME-4. The parameter settings of the two net-
works are as follows. The adaptive gradient descent algorithm

Fig. 10. Performance of the speech signals resynthesized from the IFD-based
phase estimates and the noisy magnitude spectrograms, where the experiment
was conducted on the females of TIMIT in the factory1 noise at the SNR of 0 dB.
The legends “IFD time”, “IFD freq.”, and “IFD comb.” denote the phase recon-
struction along the time axis, phase reconstruction along the frequency axis, and
their combinations of the proposed IFD-based phase estimation, respectively.
As a comparison, the “oracle IFD” legends mean that the phase is calculated
from the oracle IFD and ideal magnitude mask (instead of the output of the
multi-objective DNN); the legend “freq. [6]” denotes the phase reconstruction
along frequency method in [6].

TABLE VII
PERFORMANCE COMPARISON OF THE PROPOSED IAM+IFD AND THE PHASE

RECONSTRUCTION METHOD IN [6] GIVEN THE ENHANCED MAGNITUDE

SPECTROGRAMS (i.e., IAM+FREQ.)

TABLE VIII
PERFORMANCE OF THE IFD-BASED PHASE ESTIMATION WITH ORACLE

MAGNITUDE MASKS ON THE CHIME-4 CORPUS, WHERE THE MA LOSS

FUNCTION ARE ADOPTED BY ALL DEEP MODELS

TABLE IX
PERFORMANCE COMPARISON BETWEEN THE MULTI-OBJECTIVE DNN AND THE

METHOD THAT ESTIMATES THE IFD AND MAGNITUDE MASKS SEPARATELY BY

TWO INDEPENDENT DNNS ON CHIME-4, WHERE THE MA LOSS FUNCTION

ARE ADOPTED BY ALL DEEP MODELS



74 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2019

Fig. 11. Relative performance improvement of IAM+IFD over IAM at differ-
ent Hamming half-window lengths Ns on the females at the factory1 noise.

Fig. 12. The phenomenon of time shift generated by the proposed method.

TABLE X
PERFORMANCE OF THE COMPARISON METHODS WITH THE LSTM NETWORK

THAT ADOPTS THE MA LOSS FUNCTION ON THE CHIME-4 CORPUS

was used to train the networks. The initial learn rate was set to
0.001. The maximum number of epochs was set to 80. The mini-
batch size was set to 50. Each network has two hidden layers
with 256 hidden units per layer. For the BLSTM network, half
of the hidden units per layer were used for the forward direction,
and the other half were used for the backward direction.

The comparison results on CHiME-4 are listed in Tables X
and XI. From the two tables and Table V, we observe that
the effectiveness of the proposed method is consistent across
different types of deep models. Moreover, LSTM reaches higher
SDR than the standard DNN, and BLSTM performs the best
among the three models.

We have also analyzed the effectiveness of the IFD-based
phase estimation that adopts BLSTM as the base deep model
in a similar experimental setting with Section IV-C. The exper-
imental conclusions with DNN and BLSTM are consistent.

TABLE XI
PERFORMANCE OF THE COMPARISON METHODS WITH THE BLSTM NETWORK

THAT ADOPTS THE MA LOSS FUNCTION ON THE CHIME-4 CORPUS

V. CONCLUSIONS

In this paper, we have proposed a phase-aware speech en-
hancement method based on DNN. The method introduces a
new training target for DNN-based speech enhancement meth-
ods, named IFD, which is the derivative of the clean phase spec-
trogram along the time axis. In the training stage, it optimizes
IFD and a magnitude mask simultaneously in a multi-objective
learning framework. In the test stage, it first uses noisy phase
as an initial phase estimate, and then conducts phase recon-
struction along the time and frequency axes with the estimated
IFD and the estimated magnitude mask. To our knowledge, this
method is the first DNN-based approach that directly processes
phase spectrograms which appear to be randomly distributed
and highly unstructured. Moreover, the proposed new target is a
general one. It can be adopted by any algorithms who use mag-
nitude spectrograms or their variants as targets. The proposed
post-processing method also provides a robust way for recon-
structing the phase spectrograms under the difficult situation
where the initial point of the derivatives of the phase spectro-
grams is unknown. We have evaluated the proposed method in
several adverse environments at low SNR levels. The experi-
mental results show that the proposed method outperforms the
counterparts that do not conduct phase processing, in terms of
both speech quality and intelligibility.

APPENDIX A

A sinusoid signal s(n) in time domain is written by

s (n) = 2A (n) cos (Ω · n + ϕ) (19)

where A is the magnitude, Ω is the normalized angular frequency
and ϕ is the initial phase. The STFT of s(n) in the dominant
frequency band k = Ω

2π N can be derived as

S (k, l) =
N −1∑

n=0

s (lL + n) w (n) e−j 2 π
N kn

= Aej (Ω lL+ϕ)
N −1∑

n=0

w (n). (20)

From Eq. (20), we can see that the phase at the dominant
frequency is a linear function of the frame index l with slope
ΩL.
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APPENDIX B

We first represent a short-time speech segment signal x(n) as
a sum of sinusoids [40]:

x (n) =
H−1∑

h=0

2Ah (n) cos (Ωh · n + ϕh) (21)

where H is the number of harmonics, h denotes the harmonic
index, 2Ah is the corresponding real magnitude, and Ωh is the
normalized harmonic frequency.

We then calculate the STFT of x(n) with a causal symmet-
ric STFT analysis window w(n), where we assume that the
length of DFT N is long enough to resolve the harmonics for
typical sounds and w(n). Suppose there are two adjacent har-
monics with their normalized frequencies as Ω1 = 2π

N k1 and
Ω2 = 2π

N k2 respectively.
The T-F units of the STFT spectrogram between the two har-

monic bands k1 and k2 , denoted by X (k, l), can be represented
by:

X (k, l) =
N −1∑

n=0

x (lL + n) w (n) e−j 2 π
N kn

≈
N −1∑

n=0

(
A1 (lL + n) ej (Ω1 ·(lL+n)+ϕ1 )

)
w (n) e−j 2 π

N kn

+
N −1∑

n=0

(
A2 (lL+n) ej (Ω2 ·(lL+n)+ϕ2 )

)
w(n)e−j 2 π

N kn

≈ Ak1 ,le
j (Ω1 lL+ϕ1)

N −1∑

n=0

w (n) ej(Ω1 − 2 π
N k)n

+ Ak2 ,le
j (Ω2 lL+ϕ2)

N −1∑

n=0

w(n)ej(Ω2 − 2 π
N k)n ,

∀k1 < k < k2 (22)

where the approximation is made under the following
two assumptions. The first assumption is that there is no
interference from other neighbor harmonics. The second as-
sumption is that the amplitude of the h-th harmonic in time
domain over the period of a single frame l is a constant, i.e.,
Au (lL + n) ≈ Aku ,l ,∀u = 1, 2. Then, with Ω1 = 2π

N k1 and
Ω2 = 2π

N k2 , Eq. (22) can be simplified to:

X (k, l) ≈ Ak1 ,le
j (Ω1 lL+ϕ1 )W (k − k1)

+ Ak2 ,le
j (Ω2 lL+ϕ2 )W (N + k − k2) (23)

where W (k) is the DFT of w(n) which is a complex number.
Given X(ku , l) = Aku ,le

j (Ωu lL+ϕu )W (0), the phase of
X (k, l) can be approximated from the harmonic bands by:

φx(k, l) ≈ arg
(
Ak1 ,le

j (Ω1 lL+ϕ1 )W (k − k1)

+ Ak2 ,le
j (Ω2 lL+ϕ2 )W (N + k − k2)

)

= arg
(

Ak1 ,le
j (Ωh 1 lL+ϕ1 )W (0)

W (k − k1)
W (0)

+Ak2 ,le
j (Ω2 lL+ϕ2 )W (0)

W (N + k − k2)
W (0)

)

= arg
(

X(k1 , l)
W (k − k1)

W (0)

+X(k2 , l)
W (N + k − k2)

W (0)

)
.

(24)

Finally, in the test stage, the phase of the (k, l)-th T-F unit can
be estimated by replacing X(ki, l) in Eq. (24) by its estimate
X̂(ki, l) :

φ̂x (k, l) ≈ arg
(

X̂ (k1 , l)
W (k − k1)

W (0)

+ X̂ (k2 , l)
W (N + k − k2)

W (0)

)
. (25)
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