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Abstract—It is known that the reverberant speech in differ-
ent acoustic environments varies according to reverberation time.
However, most deep learning based speech dereverberation meth-
ods rely on a single deep model to learn the context information. It
may make the deep model biased to only part of the reverberant
time durations. In this paper, we propose a multi-resolution frame-
work to address this issue. The framework integrates the derever-
berant ability of multiple deep subnetworks with different time
resolutions into a unified model by transferring the dereverberant
information from high-resolution subnetworks to low-resolution
subnetworks. By doing so, the unified model can perform well in
both long and short reverberant time. We further propose two
implementations of the framework based on advanced convolu-
tional residual neural networks. The first implementation, named
multi-resolution UNet, uses our new implementation of UNet based
on convolutional blocks as the dereverberation subnetwork. The
second implementation, named multi-resolution stacked convolu-
tional blocks, uses our new stacked convolutional blocks as the
subnetwork. Experimental results in both simulated and real-world
environments show that the proposed algorithms outperform the
state-of-the-art dereverberation methods in terms of both the eval-
uation metrics for speech dereverberation and word error rate
(WER) for speech recognition.

Index Terms—Multi-resolution framework, speech dereverb-
eration, UNet, stacked convolutional blocks.

I. INTRODUCTION

S PEECH is usually corrupted by reverberation from surface
reflections in indoor environments [1]. Strong reverberation
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significantly degrades speech intelligibility and speech quality
for human listeners, especially for hearing impaired people. Re-
verberation may also dramatically deteriorate the intelligence of
machines, like automatic speech recognition (ASR). Therefore,
speech dereverberation becomes an importance topic of speech
processing in the last decades. This paper focuses on monaural
speech dereverberation.

Conventional speech dereverberation algorithms are usually
unsupervised signal processing methods. In [2], Lebart et al. pro-
posed spectral subtraction where an exponential decay model
is used to model reverberation. In [3], Wu and Wang proposed
a two-stage algorithm, which first suppresses late reverberation
by spectral subtraction, and then reduces early reverberation via
an inverse filter. In [4], Yoshioka et al. proposed the weighted
prediction error (WPE) dereverberation algorithm, which first
obtains a set of linear prediction filters based on historical frames
and then obtains dereverberant speech by subtracting the filtered
speech from the reverberant speech. In [5], Kalman filters, which
are built by an expectation-maximization algorithm, are applied
to speech dereverberation.

With the fast development of deep learning technologies,
speech dereverberation based on supervised deep learning re-
ceives much attention. It demonstrates good performance in
strong reverberant scenarios. The first research respect of this
direction mainly focuses on the training objectives and acoustic
features. In [6], Han et al. proposed to learn spectral mapping
from the log magnitude spectrogram of reverberant speech to
the corresponding anechoic speech by a deep neural network
(DNN). In [7], they further extended the above approach to
the tasks of both denoising and dereverberation, which learns a
mapping from the spectrogram of noisy and reverberant speech
to its clean speech counterpart. In [8], Zhao et al. observed
that spectral mapping is more effective for dereverberation than
T-F masking, whereas masking works better than mapping for
denoising. Therefore, they proposed a two stage DNN, where the
first stage performs ratio masking for denoising and the second
stage spectral mapping for dereverberation.

Another important research respect is the design of the
network structure. Early work used feedforward DNN where
the contextual information is modeled by grouping the con-
textual frames into a long feature [6], [7]. Later, recurrent
neural networks (RNN) was used to extract long-term infor-
mation to perform speech dereverberation [9]. Some related
work also used long short-term memory (LSTM) to model the
contextual information [10], [11], [12]. Recent state-of-the-art
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models are built on UNet. The UNet, which was first proposed
for biomedical image segmentation [13], consists of multiple
upsampling layers, downsampling layers, and skip connections
between them. In [14], Ernst et al. introduced UNet to speech
dereverberation, where the skip connection is important to avoid
the loss of the essential low level information during the down-
sampling process. In [15], Kothapally et al. observed that the
skip connection may limit the learning ability of UNet due to the
granularity mismatch between the features. To address this issue,
they added some convolutional layers into the skip connection.
The new skip connection is named SkipConv block.

The work above mainly focused on estimating the magnitude
spectrogram of a noisy speech signal, leaving its noisy phase
spectrogram unprocessed. To address this issue, conducting
enhancement and dereverberation in the complex domain is a
recent trend. First, some methods try to recover the clean phase
spectrogram in the polar coordinates of the complex spectro-
gram. For example, in [16], Zheng et al. proposed to address
the phase wrapping problem by estimating the instantaneous
frequency deviation (IFD) of the clean phase spectrogram, and
then reconstruct the clean phase spectrogram from IFD and
a reliable initial phase estimate. Another type of methods re-
cover the clean complex spectrogram by enhancing its real and
imaginary parts respectively. Specifically, in [17], Williamson
et al. performed denoising and dereverberation simultaneously
in the complex domain by estimating a complex ideal ratio
mask in both the real and imaginary domains. Based on [17],
Zhang et al. proposed a weighted magnitude-phase loss function
in [18], which outperforms the regular mean squared error for
speech dereverberation. The third type of methods use complex-
valued networks to predict the complex-valued spectrograms
of short-time Fourier transform (STFT) directly. In [19], Choi
et al. proposed DCUNet, which is a UNet-based model incor-
porating well-defined complex-valued building blocks to deal
with complex-valued spectrograms. Inspired by [19], Hu et al.
proposed a deep complex convolution recurrent network in [20],
which utilizes complex LSTM module to handle complex-
valued operations.

Similar to the work on the complex domain, studies on time
domain, which directly take original audio waveforms as the
input of the network without utilizing STFT, is another popular
topic. In [21], Stoller et al. proposed Wave-U-Net which takes
one-dimensional audio signals directly as its input. By utilizing
a one-dimensional convolution operator, it resamples feature
maps at different time scales. In [22], Luo et al. proposed Conv-
TasNet, which uses a linear encoder to learn a representation
that is comparable to the STFT spectrogram, and then uses an
advanced network to enhance the learned representation. In [23],
Wang et al. proposed a transformer neural network based on
UNet. It adopts dilated-dense blocks in both the encoder and
decoder layers of the UNet to strengthen the feature propaga-
tion and enlarge the receptive field. It also utilizes transformer
modules to extract contextual information.

Recently, the study on contextual information and reverber-
ation time is becoming a focus of deep learning based speech
dereverberation. In [24], Wu et al. observed that selecting appro-
priate frame length and frame shift based on the reverberation

time in terms of T60 can improve the performance. Based on
the observation, they incorporated T60 into the feature selec-
tion stage. Inspired by [24], Zhao et al. [25] argued that the
parameters related to reverberation time can be obtained from
the reverberant speech by encoding the relationship between the
input features extracted from the reverberant speech rather than
using a reverberation time estimator. Therefore, they applied
a self-attentive mechanism to extract the correlation between
the features in different time steps, which can produce dynamic
representations varying along with different reverberant envi-
ronments. In [26], Wang et al. proposed an effective method
to exploit contextual information for environment-aware speech
dereverberation in real reverberant environments. The method is
a DNN-based temporal-contextual attention approach that adap-
tively attends to contextual information. In addition, considering
that the room impulse response decays faster at high frequencies
than those lower, the authors also proposed a sub-band-based
timing attention method. In [27], Zhou et al. proposed a new
learning objective based on reverberation time to reduce predic-
tion errors as well as signal distortions.

Although the above advanced context-aware learning ap-
proaches are able to address the variation of the reverberation
time in different acoustic environments to some extent, how to
identify the acoustic environments or estimate the reverberation
time is a hard issue. To prevent this hard problem, in this paper,
we propose to integrate multiple dereverberation subnetworks
that serve the best for different reverberation time into a unified
model by a multi-resolution processing framework. Under this
framework, the unified model could make the subnetworks com-
plement with each other for improving the performance in a wide
range of reverberation time, without resorting to identifying the
environments apparently. The novelty and contribution of our
work are summarized as follows:
� A multi-resolution framework was proposed for monaural

speech dereverberation: The framework contains multiple
dereverberation branches. The branches first partition an
input utterance into different number of non-overlapping
speech segments that have an equal length. The number of
segments are called resolution. Then, the dereverberation
process is executed from the branch with the highest reso-
lution to the branch with the lowest resolution in sequence.
Each branch receives dereverberation information from its
previous branch for improving its dereverberation perfor-
mance, and then generates dereverberation information for
its successive branch. The output of the branch with the
lowest resolution is used as the final dereverberation result.
With this information transfer function (ITF), the derever-
beration ability of different branches is integrated without
having to identify the reverberation time apparently.

� Two advanced implementations of the framework were
proposed: Each of the implementations contains four suc-
cessive blocks, which are the convolutional block (CB),
ITF, dereverberation subnetwork, and mask block (MB),
respectively. Particularly, ITF is responsible to receive
dereverberation information from another branch, while
MB is responsible to generate dereverberation informa-
tion for other branches. All components are convolutional
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residual neural networks (CRNNs). The two implemen-
tations differ in the dereverberation subnetwork. The first
one is a new UNet implementation based on CB for speech
dereverberation. The other one is a stack of multiple CBs,
which is, to our knowledge, also a new speech derever-
beration model. The two implementations are denoted as
multi-resolution UNet (MR-UNet) and multi-resolution
stacked convolutional blocks (MR-SCB) respectively.

� State-of-the-art performance on speech dereverberation
was achieved: We have compared the proposed meth-
ods with the representative WPE [28] as well as eight
state-of-the-art deep learning based speech dereverbera-
tion methods [10], [11], [13], [15], [23], [29], [30], [31],
in both simulated and real-world highly-reverberant en-
vironments. Experimental results show that the proposed
methods outperform the comparison methods significantly
in a number of evaluation metrics. Ablation studies further
demonstrate the strong ability of the proposed methods in
dealing with different reverberation time. Moreover, the
proposed MR-SCB behaves quite similar to MR-UNet.

� Successful applications to far-field speech recognition
were made: After applying the comparison methods to two
conformer-based ASR systems. Experimental results show
that the proposed MR-UNet yields a relative word error rate
reduction of 37.23% over the best referenced method [15]
when the ASR system was trained with clean speech, and
9.63% over the best referenced method [28] when the ASR
system was trained with both clean speech and reverberant
speech.

The rest of the paper is organized as follows. In Section II, we
present the motivation of the proposed methods. In Section III,
we describe the proposed framework as well as its two imple-
mentations. In Section IV, we introduce the experimental setup.
In Sections V and VI, we present the experimental results on
simulated data and real-world data respectively. In Section VII,
we apply the proposed methods to speech recognition. Finally,
we conclude the paper in Section VIII.

II. MOTIVATION AND RELATED WORK

In real world applications, a common way of training a
dereverberation network is to gather or generate reverberant
utterances in various adverse environments with a wide range
of reverberation time as the training data, which is known
as the noise-independent training or multi-condition training.
However, the effect of the reverberant utterances to the training
loss is usually different. For example, some training utterances
may contribute more to the training loss reduction than the other
training utterances, which makes the trainable parameters of the
model change greater than that with the other training utterances.
As a result, the effectiveness of the model will bias towards
similar test conditions of these training utterances. Therefore, it
is needed to integrate multiple dereverberation networks that are
suitable to different ranges. This problem is particularly serious
in speech dereverberation, since the reverberation time varies
in a wide range. Moreover, a room impulse response (RIR)
function consists of the impulse responses of the direct sound,

early reflections, and late reflections. The power of the early and
late reflections is also fundamentally different. Making average
effort to all reflections may not be effective enough as well.

Therefore, it is needed to integrate multiple dereverberation
networks that are suitable to different ranges of reverberation
time into a unified one. Multi-resolution processing scheme
provides this opportunity. It has demonstrated the effectiveness
in many related tasks, including speech separation [32], speech
enhancement [33], image classification [34], image restora-
tion [35], [36], [37], etc. Although the implementations of the
scheme in the aforementioned applications may be different,
their motivation and core idea are similar, which motivate our
work as well.

III. MULTI-RESOLUTION CONVOLUTIONAL RESIDUAL NEURAL

NETWORKS

In this section, we first present the signal model of reverber-
ant speech in Section III-A, and then we show the proposed
multi-resolution dereverberation framework in Section III-B,
and finally we propose two implementations of the framework
in Sections III-C to III-G.

A. Signal Model

Given a RIR h[n] where n denotes time, a reverberant speech
signal received by an omni-directional microphone can be mod-
eled as:

y[n] = s[n] ∗ h[n] (1)

where ∗ denotes the convolution operation, s[n] denotes clean
speech, and y[n] denotes reverberant speech. Note that this paper
focuses on dereverberation without further considering additive
noise. Equation (1) can be further written as:

y[n] = s[n] ∗ hd[n] + s[n] ∗ hr[n]

= x[n] + r[n] (2)

wherex[n] denotes the direct sound, r[n] denotes the reverberant
noise of y[n], andhd[n] andhr[n] represent the impulse response
functions for direct sound and reverberation respectively. The
objective of dereverberation is to recover the direct sound x[n]
from the reverberant speech y[n].

We transform the speech signal in the time domain to a
spectrogram in the time-frequency domain by STFT:

yn = xn + rn, ∀n = 1, . . . , N (3)

where N is the number of frames of the speech signal, yn, xn,
and rn are the complex spectrograms of the reverberant speech,
direct sound, and reverberant noise respectively.

The proposed method works on the polar coordinates of the
STFT feature, though rectangular coordinates can be applied
as well by e.g. [17], [38]. In the polar coordinate system, we
denote |y| and ∠y as the magnitude spectrogram and phase
spectrogram of y respectively. Similarly, we denote |x| and
∠x as the magnitude spectrogram and phase spectrogram of
x respectively. The proposed method takes |y| as the input,
and aims to estimate |x|. In the prediction stage, after getting
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Fig. 1. Proposed multi-resolution framework.

the estimation of x, denoted as x̂, we can get the estimated
time-domain signal x̂[n] by inverse STFT using |x̂| and ∠y.

B. Multi-Resolution Dereverberation Framework

As shown in Fig. 1, the multi-resolution dereverberation
framework contains M branches, each of which contains a
dereverberation subnetwork. For the mth branch with m =
1, . . . ,M , the framework first partitions Y = [|y1|, . . . , |yN |]
into qm−1 equal-length non-overlapping segments, denoted as
{Ym,1, . . . ,Ym,i, . . . ,Ym,qm−1}, where q ∈ N is a resolu-
tion hyperparameter that is usually set to 2. Then, it takes
each segment Ym,i as an input to get an estimation of the
magnitude spectrogram of the clean speech, denoted as X̂m,i.
The estimations of all segments are concatenated as X̂m =
[X̂m,1, . . . , X̂m,i, . . . , X̂m,qm−1 ].

We propose to integrate all branches as a whole by transfer-
ring dereverberation information from high-resolution branches
to low-resolution branches in sequence. In other words, the
dereverberation information of the mth branch is sent to the
(m− 1)th branch so as to steadily increase the dereverberation
capability of the latter:

(X̂M , IM ) = fM (YM )

(X̂M−1, IM−1) = fM−1(YM−1, IM )

...

(X̂m, Im) = fm(Ym, Im+1)

...

(X̂2, I2) = f2(Y2, I3)

X̂1 = f1(Y1, I2) (4)

where fm(·) denotes the mth dereverberation branch, and Im+1

denotes the dereverberation information from the (m+ 1)th
branch. After steadily increasing the dereverberation capability,
the dereverberation output of the first branch, i.e. X̂1, is used
as the final output of the framework. Note that, I provides
supplement local information for the low-resolution branches to

improve their dereverberation performance. The multi-stage na-
ture of the proposed model breaks down the challenging derever-
beration task into sub-tasks, for progressively enhancing a dis-
torted spectrogram. At the early stage, multiple non-overlapping
segments provide multi-scale contextualized features for the
dereverberation subnetwork; and the intermediate dereverber-
ation output of each subnetwork plays like a reference for the
next stage. At the final stage, the dereverberation subnetwork
has abundant reference information provided from early stages,
which helps the final stage delivers stronger output in any range
of reverberation time than that of a single network.

The loss function of the proposed framework �all is defined
as:

�all =
M∑

m=1

wm�m(X̂m,Xm) (5)

where �m is the loss function of themth dereverberation network
branch, Xm = [|x|1, . . . , |x|N ] is the magnitude spectrogram
of the direct speech, and wm ∈ [0, 1] is the weight of the mth
branch with a constraint

∑M
m=1 wm = 1. The weights can be

set manually or learned automatically. For simplicity, we set
wm = 1/M , ∀m = 1, . . . ,M .

From the above framework, we can see that the multi-
resolution stacking in [32] is a special case of the proposed
framework with Im = X̂m. However, this early work does not
jointly train the branches. In the following subsections, we aim
to develop new implementations of the framework with recent
advanced CRNNs, and further jointly train the branches with
newly designed ITFs.

C. Implementation of the Framework Based on Convolutional
Residual Neural Networks

As shown in Fig. 2, we focus on describing the mth branch
with 1 < m ≤ M , which consists of a CB, a dereverberation
subnetwork, an ITF, and a MB that are connected in sequence.
All components are based on CRNNs. The only difference
between the two implementations is that they use different
dereverberation subnetworks. A general description of the im-
plementations are as follows:
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Fig. 2. Architecture of the proposed multi-resolution UNet.

The core contribution is that we integrate them properly into
an effective system for our special speech dereverberation task.
Specifically, CB, which was originally proposed as a building
block for image super-resolution [39], transforms the original
magnitude spectrogram of each input segment intoC features by
C convolutional channels. ITF, which was proposed originally
for object detection [40], [41], fuses each of the feature with
its corresponding intermediate dereverberation feature from the
(m+ 1)th branch. Different from [40], [41], we just use 1×1
CBs to refine the intermediate dereverberation feature, and prop-
agate them to the next stage for aggregation. The dereverberation
subnetwork conducts dereverberation on each of the convolu-
tional features. MB, which was proposed originally for image
deblurring [42], fuses all C convolutional channels into a single
output, and further produces C intermediate dereverberation
features as part of the input of ITF in the (m− 1)th branch.
When m = 1, because we do not need to generate intermediate
dereverberation features by MB, we simply fuse all C channels
by a convolution operator without resorting to a MB.

We use the spectral mapping [7], i.e. �m = ‖X̂m −Xm‖2, as
the training objective, though other advanced training objectives
could be employed as well, such as complex ratio masking [38].
We present the components in detail as follows.

D. Convolutional Block

As shown in Fig. 3, CB first transforms each
input segment Ym,i into C features, denoted as
{Pm,i,1, . . . ,Pm,i,c, . . .Pm,i,C}, byC convolutional channels,
∀i = 1, . . . , qm−1.

Then, for each channel, CB transforms Pm,i,c through two
convolutional layers and an activation function of the parametric
rectified linear unit (PReLU) [43]:

P̄m,i,c = conv3×3 (PReLU (conv3×3 (Pm,i,c))) (6)

where conv3×3(·) is a 3× 3 convolution operator. Next, a global
pooling layer transforms P̄m,i,c to pm,i,c by:

pm,i,c =
1

HW

H∑
t=1

W∑
f=1

P̄m,i,c(t, f) (7)

Fig. 3. Architecture of the CB.

where H and W represent the length and width of P̄m,i,c

respectively, and P̄m,i,c(t, f) is an element of P̄m,i,c at the tth
column and f th row. Note that, the global pooling function is
added to describe the global information of the spectrogram [44].

To exchange information across the convolutional channels,
a simple gating mechanism with a sigmoid function is further
added behind the global pooling function:

p̄m,i = sigmoid((W2ReLU (W1pm,i))) (8)

where

pm,i = [pm,i,1, . . . , pm,i,C ]
T (9)

and ReLU(·) denotes the rectified linear unit activation function,
and W1 and W2 are the weight matrices of the two convo-
lutional layers whose sizes are r × C and C × r respectively,
where r is a hyperparameter.

Finally, the output of CB is obtained by:

Em,i,c = Pm,i,c + p̄m,i,cP̄m,i,c (10)
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Fig. 4. Diagram of UNet.

where p̄m,i,c is the cth element of p̄m,i, and the summation
operator between Pm,i,c and p̄m,i,cP̄m,i,c is a skip connection
of CRNN for improving the robustness of the network training.

E. Information Transfer Between Dereverberation Branches

For each convolutional channel, ITF concatenates Em,i,c

with an intermediate dereverberation feature [Im+1,q(i−1)+1,c,
. . . , Im+1,qi,c] produced by the MB of the (m+ 1)th branch:

Qm,i,c =

[
Em,i,c

conv3×3

([
Im+1,q(i−1)+1,c, . . . , Im+1,qi,c

])]

(11)
where the intermediate dereverberation feature has the same time
duration as Em,i,c.

F. Dereverberation Subnetworks

For each convolutional channel, a dereverberation subnetwork
based on CRNN obtains a dereverberant feature Zm,i,c from
Qm,i,c. Here we first describe a UNet-based dereverberation
subnetwork which has demonstrated its effectiveness on the
dereverberation task, and then propose a CB-based dereverber-
ation subnetwork.

1) Unet: As shown in Fig. 4, the UNet in a branch contains an
encoder and a decoder. The encoder consists of three downsam-
pling layers. The decoder consists of three upsampling layers.1

There will be a downsampling operation to halve the feature
dimension between the two downsampling layers and an up-
sampling operation to recover the feature dimension between the
two upsampling layers. Each downsampling layer is connected
to the corresponding upsampling layer by a skip connection.
Particularly, each downsampling or upsampling layer is com-
posed of 2 CB, which is to our knowledge a new implemen-
tation of UNet for speech dereverberation. Like [45], we use
a bilinear upsampling followed by a convolutional layer as the
upsampling layer, instead of using the transposed convolution.
This modification reduces the checkerboard artifacts caused by
the transposed convolution. The proposed implementation with
UNet is denoted as MR-UNet.

1To reduce the large model size introduced by the increased number of
branches, we only use three upsampling layers and three downsampling layers
here.

Fig. 5. Diagram of the MB.

2) Stacked Convolutional Blocks: To avoid possible infor-
mation loss induced by repeating downsampling operations, we
stack multiple CB into a new dereverberation network, denoted
as stacked CB (SCB), followed by a convolutional layer. The
input and output of SCB are further connected by a skip con-
nection. The proposed implementation with SCB is denoted as
MR-SCB.

G. Mask Block

As shown in Fig. 5, MB first fuses the intermediate dere-
verberation features of the dereverberation subnetworks, i.e.
{Zm,i,c}Cc=1, into a single feature by a 1× 1 convolution op-
erator, followed by a skip connection connected to the input
magnitude spectrogram of the mth branch Ym,i:

X̂m,i = Ym,i + conv1×1(Zm,i,1, . . . ,Zm,i,C). (12)

Then, MB produces {Im,i,c}Cc=1 from X̂m,i for the (m−
1)th branch. Specifically, it first transforms X̂m,i into
C features by a 1× 1 convolution operator, denoted as
{Km,i,1, . . . ,Km,i,c, . . . ,Km,i,C}, and then gets a set of masks
by a sigmoid activation function,

K̄m,i,c = sigmoid(Km,i,c) (13)

which are finally masked to the output of the dereverberation
subnetwork:

Im,i,c = conv1×1(Zm,i,c)K̄m,i,c + Zm,i,c (14)

where the summation operator is a skip connection of CRNN.

IV. EXPERIMENTAL SETUP

This section presents the experimental settings, including the
datasets, comparison methods, and evaluation metrics.
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A. Datasets

The evaluation was conducted on one simulated data and two
real-world data. For the simulated data, we randomly selected
7000, 4000, and 7000 clean utterances from the Librispeech
corpus [46] as the clean speech source of training, validation
and test data, respectively. Specifically, the training and valida-
tion data are selected from the train-clean-100, train-clean-360
and train-other-500 of Librispeech, while the testing data are
selected from the dev-clean, dev-other, test-clean and test-other
of Librispeech. The room impulse response (RIR) function was
generated by the image source model [47]. For each utterance,
we generated a room with its length, width, and height randomly
selected from [3,10], [3,8], and [2.5, 6] meters respectively. The
reverberation time T60 of the room was randomly generated
from [0.2, 1.2] seconds. The speech source and a microphone
were placed randomly in the room and satisfy the following
constraints: (i) the distance between them was controlled to be
in [0.5,10] meters, and (ii) the distance from the speech source or
microphone to the walls was controlled to be at least 0.3 meters.

The first real-world data was the real recorded reverberant
utterances from the Libri-adhoc40 corpus [48]. It is a replayed
version of the Librispeech corpus in a real office environment.
The recording environment is an office room with a size of
9.8× 10.3× 4.2 meters. The room is highly reverberant with
T60 around 0.9 s and little additive noise. Each replayed utterance
has 40 recordings recorded by 40 microphones. The locations of
both the microphones and speakers of the training, evaluation,
and test data are different. The distances between the speakers
and the microphones were ranged from 0.8 m to 7.4 meters,
which makes the dataset suitable for the study of far-field speech
processing. For each replayed utterance, we randomly selected
one reverberant recording from all 40 recordings. Finally, we
had 28540 training utterances, 2621 testing utterances and 2704
validating utterances. Moreover, the clean utterances of Libri-
adhoc40, which are replayed recordings of Librispeech in a full
anechoic chamber, was used for model training and evaluation.
They were recorded by the same microphones and speakers as
those in the office room, so as to eliminate the effect of the
equipments.

The second real-world data was the real recorded reverberant
utterances from the VOICES corpus [49], which is a replayed
version of the Librispeech corpus in acoustically challenging
conditions. The recordings took place in four rooms of various
sizes, each of which has its own background and reverbera-
tion profile. Four types of distractor noise were simultaneously
played with clean speech. Here, we randomly selected 25560
training utterances and 6400 validation utterances from the train
subset of the VOICES corpus, and 6400 testing utterances from
its test subset.

B. Comparison Methods

Our network was trained for 100 epochs with batch size 4. We
used Adam optimizer [50] with β1 and β2 set to 0.9 and 0.999 re-
spectively. The initial learning rate is 2×10−4, which is steadily
decreased to 1×10−6 using the cosine annealing strategy [51]
and a warmup step of 5250. Our MR-UNet contains 3 branches.

The CB of each branch transforms the input acoustic feature into
96 channels. The dimension r of W1 and W2 in (8) was set to
6. Each branch of the UNet contains 3 downsampling layers and
3 upsampling layers, where each layer consists of 2 CB. The
downsampling rate between two downsampling layers is 0.5.
The upsampling rate between two upsampling layers is 2. The
first downsampling layer has 96 channels. The second downsam-
pling layer has 144 channels. The third downsampling layer has
192 channels. The number of channels of each upsampling layer
is the same as the number of the channels of its corresponding
downsampling layer. Our proposed MR-UNet contains around
25.78 M parameters. For the proposed MR-SCB, each SCB
dereverberation network consists of a stack of 8 CB.

We compared the proposed method with the following repre-
sentative dereverberation algorithms 2:
� Weighted prediction error (WPE): It is a well-known con-

ventional dereverberation algorithm. Here we use the open
source NARA-WPE algorithm [28] as an implementation.

� Long short-term memory (LSTM) [10]: It concatenates the
magnitude spectrograms of neighboring frames in a context
window as its input, and predicts the central frame of the
window. The window size is 11. The LSTM model consists
of two LSTM layers with 400 hidden units per layer. The
number of parameters of the model is around 6.13 M.

� Late reverberation suppression LSTM (Late-LSTM) [11]:
It first estimates late reverberation by an LSTM model,
and then subtracts the estimated late reverberation from
the magnitude spectrogram of the reverberant speech. It
consists of two LSTM hidden layers with 512 hidden units
per layer. The dropout rate of the LSTM layers was set
to 0.3. The number of parameters of the model is around
3.48 M.

� UNet [13]: It uses an encoder-decoder network with skip
connections. The encoder contains four downsampling lay-
ers, each of which downsamples its input with a stride of
2 to the next layer until there is a bottleneck. The decoder
conducts a reverse process by upsampling its input until
the output reaches to the original size of the input of the
network. The number of the parameters of the model is
around 31.04 M.

� Skip convolutional neural network (SkipConvNet) [15]:
It has a similar structure with UNet, which consists of
an encoder of 8 downsamling layers and a decoder of 8
upsampling layers. The skip connection between the en-
coder layer and its corresponding decoder layer is replaced
by multiple convolutional modules, which improve the
learning capacity of the network by providing the decoder
with intuitive feature maps rather than the output of the
encoder. The number of parameters of the model is around
64.33 M.

2The source codes of all baselines are available on at: https:
//github.com/fgnt/nara_wpe (WPE), https://github.com/DiegoLeon96/Neural-
Speech-Dereverberation(LSTM, Late LSTM and UNet), https://github.
com/zehuachenImperial/SkipConvNet (SkipConvNet), https://github.com/
key2miao/CAUNet (CAUnet), https://github.com/Andong-Li-speech/DARCN
(DARCN), https://github.com/sp-uhh/sgmse (SGMSE and SGMSE+).

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on April 28,2024 at 02:11:35 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/fgnt/nara_wpe
https://github.com/fgnt/nara_wpe
https://github.com/DiegoLeon96/Neural-Speech-Dereverberation
https://github.com/DiegoLeon96/Neural-Speech-Dereverberation
https://github.com/zehuachenImperial/SkipConvNet
https://github.com/zehuachenImperial/SkipConvNet
https://github.com/key2miao/CAUNet
https://github.com/key2miao/CAUNet
https://github.com/Andong-Li-speech/DARCN
https://github.com/sp-uhh/sgmse


ZHAO et al.: MULTI-RESOLUTION CONVOLUTIONAL RESIDUAL NEURAL NETWORKS FOR MONAURAL SPEECH DEREVERBERATION 2345

� CAUnet [23]: It is also a UNet-based network, which uses
the dilated-dense block in each layer of the encoder and
decoder. It adopts stacked two-stage transformer blocks
between the encoder and decoder to extract contextual
information from the output of the encoder. The number of
parameters of the model is around 1.04 M.

� DARCN [29]: It is a separated sub-network, which adap-
tively generates an attention distribution to control the
information flow throughout the major network. By in-
troducing recursive learning, the number of its trainable
parameters is reduced dynamically, because of reusing a
network for multiple stages. The number of parameters of
the model is around 1.23 M.

� SGMSE [30]: It is a score-based generative models, which
adopts DCUNet [17] as the backbone network. So called
time-embedding layers, which aim to provide the informa-
tion of the time steps into the network, are added into the
encoder and decoder blocks. The network has two input
channels for noisy and clean spectrograms respectively,
and one output channel for the prediction. The number of
parameters of the model is around 3.5 M.

� SGMSE+ [31]: It is an improved version of SGMSE, where
its DCUNet is replaced by the Noise Conditional Score
Network, a more sophisticated than the former. The number
of parameters of the model is around 65.6 M.

C. Evaluation Metrics

We used short-time objective intelligibility (STOI) [52],
perceptual evaluation of speech quality (PESQ) [53],
and frequency-weighted segmental signal-to-noise ratio
(fwSegSNR) [54] to evaluate the dereverberation performance
at the signal level. PESQ is a phase-aware metric for speech
quality. STOI evaluates the objective intelligibility of a
degraded speech signal by computing the correlation of the
temporal envelopes of the degraded speech signal and its
clean reference. FwSegSNR evaluates the signal discrepancy
between dereverberant speech and clean speech in a reweighted
frequency domain where the weights of the frequency bins are
calculated based on the amplitude of the clean speech.

V. EXPERIMENTAL RESULTS ON SIMULATED DATA

This section first reports the results of the proposed MR-UNet
and 9 referenced methods on the simulated data in general,
then evaluates the components of proposed method in detail.
Because the state-of-the-art speech dereverberation models are
based on UNet, we focus on presenting the result of the proposed
MR-UNet in Sections V-A to V-B, so as to better demonstrate
the advantage of the proposed method, leaving the result of the
proposed MR-SCB in Section V-C as a supplemental discussion
to MR-UNet.

A. Main Results

Table I lists the results of the comparison methods on the
simulated data. From the table, we observe that, compared to
the reverberant speech, most dereverberation algorithms except

TABLE I
RESULTS OF THE COMPARISON METHODS ON THE SIMULATED DATASET

the LSTM dereverberation algorithm improves the speech qual-
ity significantly. For example, the proposed MR-UNet improves
the speech quality over the unprocessed reverberant speech by
18.4% in STOI, 0.61 in PESQ, and 4.65 dB in fwSegSNR. For
the comparison methods, the proposed MR-UNet outperforms
the referenced methods in all metrics. For example, it achieves
relative STOI improvement of 17.7% and 2.02 dB fwSegSNR
improvement over the runner-up method UNet, and relative
PESQ improvement of 8.7% over the runner-up method Skip-
ConvNet. Note that, the overall performance of the UNet and its
variants is better than that of the LSTM and its variants, while
WPE does not work well in this highly reverberant scenario.

Fig. 6 visualizes the magnitude spectrograms of the derever-
berant speech produced by the comparison methods on a random
sample with T60 = 756 ms of the simulated dataset. From the
figure, we see that the proposed MR-UNet performs well in
suppressing the smearing effect caused by the reverberation. It
behaves similarly with SkipConvNet and SGMSE+ in general,
and seems better than the latter two methods in maintaining
a clear local pattern of the speech. It achieves apparently better
performance than the remaining comparison methods. Note that,
although UNet achieves runner-up in STOI of Table I, it suffers
from a spectrogram leakage problem. In addition, although
LSTM maintains the spectrogram pattern clearly, it introduces
unexpected artifacts.

B. Ablation Study

This subsection studies the effects of the number of branches
and the ITF of MR-UNet on performance, as well as the effect
of MR-UNet on different reverberation time.

1) Effects of the Number of Branches and the Information
Transfer Function: In this subsection, we study the effect of the
number of branches of MR-UNet, particularly with or without
CB. Specifically, in Fig. 2, CBs are used in two positions of the
proposed multi-resolution algorithm: (i) CB1 is located between
the input image and ITF, and (ii) CB2s are the components of
the dereverberation subnetwork. As mentioned in Section III-F,
both subnetworks, i.e. UNet and SCB, are composed of CBs.
Here, to address whether the performance improvement of the
MR-UNet with respect to the number of branches is related to
CB, we use plain convolutional layers instead of CBs, and study
the performance of MR-UNet in the absence of CBs.
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Fig. 6. Magnitude spectrograms of the unprocessed reverberant speech and the dereverberant speech produced by the comparison methods on a random simulated
sample with T60 = 756 ms.

TABLE II
EFFECT OF THE NUMBER OF BRANCHES AND CBS OF MR-UNET ON

PERFORMANCE, WHERE M DENOTES THE NUMBER OF BRANCHES OF

MR-UNET

Table II investigated the effect of the number of branches and
CBs of MR-UNet, where we increased M from 1 to 4. From the
table, generally we observe that the performance of MR-UNet
without CB is increasing with respect to the number of branches.
Specifically, the MR-UNet with four branches outperforms that
with a single branch by relatively 26.7% in STOI, relatively
11.4% in PESQ, and 1.59 dB in fwSegSNR. We also can see
that the MR-UNet with CB1 and CB2 further outperforms that
without CB by relatively 32.5% in STOI, relatively 13.7% in
PESQ, and 2.25 dB in fwSegSNR, which verifies the effective-
ness of CB.

TABLE III
EFFECT OF THE ITFS OF MR-UNET WITH M = 3 ON PERFORMANCE. THE

TERM “ITF3-2” INDICATES THE ITF FROM BRANCH 3 TO BRANCH 2, WHILE

“ITF2-1” INDICATES THE ITF FROM BRANCH 2 TO BRANCH 1

To further investigate the influence of the information transfer
functions on performance, we list the results of all three dere-
verberation subnetworks of MR-UNet in Table III. We observe
that, without ITF3-2, the performance of the UNet subnetwork
in branch 2 degrades to the same result as the UNet subnetwork
in branch 3. For the UNet in branch 1, the same result appears
when we turn off both ITF3-2 and ITF2-1. The UNet in branch 1
achieves the best performance only when both ITFs are activated.
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TABLE IV
IMPACT OF THE INFORMATION FLOW DIRECTION ON PERFORMANCE.

FORWARD: THE PROPOSED MR-UNET

TABLE V
COMPARISON BETWEEN MR-UNET THAT HAS MULTIPLE BRANCHES AND A

MODIFIED MR-UNET WITH ONLY A SINGLE BRANCH AND ENLARGED MODEL

SIZE

All the above results verified the effectiveness of the ITFs in the
proposed method.

To study whether the information flow direction will affect
the effectiveness of the proposed method, we take the standard
MR-UNet whose information flow direction is from branch 3
to branch 1 as the Forward model, and constructed another
MR-UNet whose information flows from branch 1 to branch 3 as
the Reverse model. Table IV lists the performance comparison.
From the table, it can be seen that the Reverse model yields
similar results to the Forward model, indicating that informa-
tion can be transmitted in different directions. This also meets
our expectations. Because each branch is only responsible for
learning spectral information at different scales, the order of the
branches is not important.

To study whether the improvement is caused by simply in-
creasing the number of parameters, we constructed a MR-UNet
with a single branch, and increased its parameters to 29 M
by adding two dowmsample layers and two upsample layers.
Eventually, the number of its parameters is comparable to the
MR-UNet with three branches. We compared two MR-UNets
(M = 1 and M = 3) with the modified one-branch MR-UNet
(Modified MR-UNet, M = 1) in Table V. From the table we
observe that increasing the model size improves the performance
of the Modified MR-UNet over “MR-UNet (M = 1)”, but there
is sill a gap between Modified MR-UNet and “MR-UNet (M =
3)”, which also proves the effectiveness of the MR-UNet and
particularly the information transfer function.

2) Effect on Different Reverberation Time: To study how
the robustness of the proposed algorithm has improved against
different reverberation time when the number of branches is
increased, we divided the test data into 5 groups according to the
reverberation time, and evaluated the performance of the algo-
rithm on each group. Here we first define two evaluation metrics
ΔSTOI and ΔPESQ. ΔSTOI indicates the absolute value of the
difference of the STOI scores between the proposed MR-UNet
and the original reverberant speech. A similar definition applies
to ΔPESQ too.

Table VI shows the statistical results. From the table, we
observe that the values of ΔSTOI and ΔPESQ tends to stabilize
when the number of branches increases. That is to say, with

TABLE VI
IMPROVEMENT OF THE PROPOSED MR-UNET OVER THE ORIGINAL

REVERBERANT SPEECH IN DIFFERENT GROUPS OF TEST DATA ACCORDING TO

THE REVERBERATION TIME

Fig. 7. Curves of σΔSTOI and σΔPESQ with respect to the number of
branches of MR-UNet.

the increased number of branches, the difference of the scores
(ΔSTOI or ΔPESQ) between each pair in a group will be
decreasing, which indicates that our proposed multi-resolution
method can improve the robustness against different reverbera-
tion times.

To illustrate Table VI more clearly, we further define two
evaluation metrics σΔSTOI and σΔPESQ: σΔSTOI represents
the standard deviation of the ΔSTOI scores in a group of test
data, and σΔPESQ is defined similarly.

Fig. 7 plots the σΔSTOI and σΔPESQ scores for differ-
ent number of branches. From Fig. 7, we observe a decrease
trend in terms of both σΔSTOI and σΔPESQ as the num-
ber of branches increases. Specifically, σΔSTOI = 13.06 and
σΔPESQ = 29.54 when branch = 1, and they drop to 11.40
and 24.77 respectively when branch = 4. The results support
our conclusion that the multi-resolution approach is effective
in improving the robustness of the system against different
reverberation time when the number of branches increases.
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TABLE VII
COMPARISON BETWEEN MR-UNET AND MR-SCB

TABLE VIII
RESULTS OF THE COMPARISON METHODS ON THE REAL-WORLD

LIBRI-ADHOC40 DATASET

C. Result of Multi-Resolution Stacked Convolutional Blocks

To study the effectiveness of the proposed SCB, we compare
MR-UNet with MR-SCB in the setting of four branches. In
Table VII, we observe that the performance of both models is
improved with respect to the number of branches, at the expense
of increased complexity. This trend is consistent with the result in
Table II. In addition, comparing Tables I and VII, we observe that
the MR-UNet with a single branch, which degrades to our novel
UNet implementation based on CB, outperforms the baseline
UNet. This phenomenon further demonstrates the advantage
of our UNet implementation. We also see that MR-SCB and
MR-UNet have similar performance in both STOI and PESQ,
and the latter has higher fwSegSNR scores in all scenarios.
Moreover, although they yield similar performance, the pro-
posed MR-SCB can use less parameters than MR-UNet. The
most effective improvement for both models happens when the
number of branchesM from 1 to 2. WhenM is increased from 3
to 4, the performance of both models is increased slightly while
the number of parameters is increased by 23% for MR-UNet and
33.8% for MR-SCB. Eventually, we set M = 3 for both models
in the following experiments so as to balance the model size and
performance.

VI. EXPERIMENTAL RESULTS ON REAL-WORLD DATA

This section studies the dereverberation performance of the
comparison methods on the two real-world data.

Table VIII lists the results of the comparison methods on the
real-world Libri-adhoc40 dataset. From the table, we see that the
proposed MR-UNet and MR-SCB achieve the best performance
among the comparison methods in the strongly-reverberant real-
world scenario. For example, they achieve 22% and 16.6% rela-
tive improvement respectively over the best referenced method
UNet in STOI, 1.88 dB and 1.47 dB improvement respectively

TABLE IX
RESULTS OF THE COMPARISON METHODS ON THE REAL-WORLD VOICES

DATASET

over the best referenced method SkipConvNet in fwSegSNR.
The proposed MR-UNet behaves similarly to SkipConvNet in
PESQ, while MR-SCB is slightly worse than SkipConvNet
in PESQ. Note that, the UNet-based methods perform better
than the LSTM-based methods, which is consistent with our
observation in the simulation scenario.

Table IX lists the results of the comparison methods on the
real-world VOICES dataset. From the table, we observe that
the proposed MR-UNet outperforms the referenced methods
in all metrics. The proposed MR-SCB achieves the runner-up
performance in PESQ and fwSegSNR, and is only slightly worse
than MR-UNet and DARCN in STOI.

VII. APPLICATION TO FAR-FIELD SPEECH RECOGNITION

It is known that some deep learning based speech denoising
and dereverberation methods may introduce strong distortion to
the enhanced speech, which hinders their applications to speech
recognition. For this problem, here we study the comparison
methods on two speech recognition systems.

The acoustic model of the first speech recognition system
for the evaluation is a conformer [55] trained with 960 hours of
annotated speech from the Librispeech data. The language model
is a transformer [56] trained using the transcripts of the 960 hours
of annotated speech of Librispeech added with a text-only corpus
of additional 800 M word tokens. The decoding algorithm is the
joint CTC-attention decoding [57].

The architecture of the second speech recognition system is
the same as the first one. Its acoustic model was trained with
4000 hours reverberant data and 100 hours clean data from Libri-
adhoc40. Its language model was trained using the transcripts
of the above 4100 hours of annotated speech added with the
800 M word token corpus. We used word error rate (WER) as the
evaluation metric and took the dereverberant speech produced
by the comparison methods on the real-world Libri-adhoc40
dataset as the input of the two ASR systems.

Table X lists the WERs of the comparison methods on the
first ASR system. For the integrity of the table, we also reported
the ASR system on the clean speech as a reference. From the
table, we observe that the proposed MR-UNet and MR-SCB
achieve the lowest WERs, which are 37.2% and 34.9% relatively
lower than that of the best referenced method—SkipConvNet.
Comparing Tables VIII and X, we see a positive correlation

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on April 28,2024 at 02:11:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: MULTI-RESOLUTION CONVOLUTIONAL RESIDUAL NEURAL NETWORKS FOR MONAURAL SPEECH DEREVERBERATION 2349

TABLE X
WERS OF THE COMPARISON DEREVERBERATION ALGORITHMS ON THE FIRST

ASR SYSTEM WHICH WAS TRAINED WITH CLEAN SPEECH

TABLE XI
WERS OF THE COMPARISON DEREVERBERATION ALGORITHMS ON THE

SECOND ASR SYSTEM WHICH WAS TRAINED WITH BOTH CLEAN SPEECH AND

REVERBERANT SPEECH

between the dereverberation performance and WER for both
conventional WPE and the deep learning based methods.

Table XI lists the WERs of the comparison methods on
the second ASR system. For each test utterance, we not only give
the ASR performance on the clean speech, but we also provide
the reverberant speech from a random channel of all 40 channels.
From the table, we see that, similar to the results in Table X, the
proposed MR-SCB and MR-UNet also have apparent superiority
over the other dereverberant methods. However, they are less
effective than simply applying reverberant speech to the ASR.
The phenomena was caused by that the ASR system was trained
to fit the reverberant environment, therefore, the dereverberant
speech produced from the comparison methods mismatches with
the reverberant training data.

However, if we take Tables X and XI together, we find that the
proposed method achieves the lowest WER. Moreover, because
training the first ASR system with the clean speech is easier than
training the second system with the noisy data that is over 40
times larger than the clean speech, the advantage of the proposed
method was further demonstrated.

VIII. CONCLUSION

In this paper, we have proposed a multi-resolution framework
to address speech dereverberation, and further proposed an
implementation of the framework based on UNet. Specifically,
the framework consists of multiple dereverberation branches,
each of which partitions the input into non-overlapping segments

under a specific resolution. The dereverberation branches are
connected via information transfer functions, which help the
branches jointly trained. We also proposed two implementations
based on CRNN. The first one, named MR-UNet, is based on our
new implementation of UNet based CB. The second one, named
MR-SCB, is based on our newly proposed SCB dereverberation
network. We have conducted a systematic comparison with
9 representative dereverberation methods in both a simulated
environment and two real-world scenarios. Experimental results
demonstrate that the proposed method outperforms the refer-
enced methods in both of the environments. The experimental
conclusion is consistent not only in the dereverberant effect but
also in the application to far-field speech recognition. We also
find that the performance of the proposed SCB in the multi-
resolution framework is close to that of UNet in all experimental
results.

Some weaknesses of the proposed method, such as the ineffi-
ciency for the on-line processing and for the processing of very
long mixtures at the inference time, need further investigation
in the future. Some improvement can also be made in the future,
e.g. designing new training objectives in the time domain or
complex domain.
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