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Deep Belief Networks Based Voice Activity Detection
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Abstract—Fusing the advantages of multiple acoustic features
is important for the robustness of voice activity detection (VAD).
Recently, the machine-learning-based VADs have shown a superi-
ority to traditional VADs on multiple feature fusion tasks. How-
ever, existing machine-learning-based VADs only utilize shallow
models, which cannot explore the underlying manifold of the fea-
tures. In this paper, we propose to fuse multiple features via a deep
model, called deep belief network (DBN). DBN is a powerful hi-
erarchical generative model for feature extraction. It can describe
highly variant functions and discover the manifold of the features.
We take the multiple serially-concatenated features as the input
layer of DBN, and then extract a new feature by transferring these
features through multiple nonlinear hidden layers. Finally, we pre-
dict the class of the new feature by a linear classifier. We further
analyze that even a single-hidden-layer-based belief network is as
powerful as the state-of-the-art models in the machine-learning-
based VADs. In our empirical comparison, ten common features
are used for performance analysis. Extensive experimental results
on the AURORAZ2 corpus show that the DBN-based VAD not only
outperforms eleven referenced VADs, but also can meet the real-
time detection demand of VAD. The results also show that the DBN-
based VAD can fuse the advantages of multiple features effectively.

Index Terms—Deep learning, information fusion, voice activity
detection.

I. INTRODUCTION

OICE activity detector (VAD) tries to separate speech

signals from background noises. It is an important
front-end of modern speech signal processing systems [1]-[3].
With the rapid development of speech recognition [4]-[9], the
machine-learning-based VAD techniques are receiving more
and more attention [10]-[21]. They are highly competitive to
traditional VADs [22]-[29] in the following three respects.
First, the machine-learning-based VADs can be integrated to
the speech recognition systems naturally. Second, they have
rigorous theoretical bases that guarantee the performance of the
VAD. Third, they can fuse the advantages of multiple features
much better than traditional VADs.
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This paper pay particular attention to the third respect of
the machine-learning-based VAD—multiple feature fusion.
The research on the multiple feature fusion topic is rather
important due to the following two reasons. First, the discrim-
inability of a single-acoustic-feature-based VAD is limited.
Traditional VADs pay much attention on exploring new compli-
cated acoustic features that are more discriminative. However,
seldom features perform overwhelmingly better than the others.
Second, the topic of feature fusion is not fully mined. Although
most machine-learning-based VADs do some efforts to the
feature fusion task, the main advantage of these VADs still lies
in the superiority of the machine-learning-based approaches to
the non-machine-learning-based approaches, while the feature
fusion methods seem still lack of thorough study.

We present the existing machine-learning-based VADs that
utilize feature fusion techniques [10]-[18] briefly as follows:
Kang et al. [11] proposed the discriminative weight training
method for the first time in 2008. It fuses the likelihood ratio
tests of different statistical models in a linear weighted combina-
tion way with the weights optimized by the gradient descent al-
gorithm. Yu and Hansen [14] inherited the advantages of the sta-
tistical-model-based multiple observation techniques [25], [27],
and proposed to fuse the likelihood ratio tests of multiple ob-
servations by the discriminative weight training. Inspired by
Kang’s VAD and Yu’s VAD [14], Suh and Kim [18] further
proposed to conduct the linear weighted combination of mul-
tiple acoustic models and multiple observations together with
all weights optimized by a generalized probabilistic descent al-
gorithm.

Enqing et al. [10] concatenated the acoustic features used in
the G.729B VAD [1] in serial, and proposed to apply support
vector machine (SVM) to VAD for the first time in 2002, where
the kernel-induced feature mapping is further utilized to en-
hance the discriminability of the learning machine. It achieves
significant improvement over the G.729B VAD. Jo et al. [12]
and Shin ef al. [13] adopted a similar serial concatenation
method of multiple features with Enqing’s VAD, but replaced
the traditional acoustic features by advanced statistical models
[22], [23], [26]. Inspired by Shin’s VAD [13] and Yu’s VAD
[14], Wu and Zhang [15] proposed to take the linear weighted
combination of different statistical models as the input of the
unsupervised SVM. To overcome the weight optimization
problem of Wu’s VAD [15], Wu and Zhang introduced the
multiple kernel support vector machine (MK-SVM) [16], and
further extended it to the unsupervised MK-SVM [17] for the
multiple-feature-based VAD.

However, the aforementioned feature fusion methods are not
strong ones. They cannot fuse the advantages of multiple fea-
tures perfectly. Specifically, these methods only utilize shallow
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models, i.e., models with zero or one hidden layer, for the fea-
ture fusion task. Because the shallow models do not fully take
the diversity of the space distributions of the features into con-
sideration, the aforementioned VADs lack the ability of discov-
ering the manifold, i.e., underlying regularity, of the features.
As will be further discussed in Sections II-B, due to the weak-
ness of the shallow models, the multiple features can merely be
concatenated linearly in the original feature space, statistical-
model-based feature spaces, or kernel-induced feature spaces.

In this paper, we propose a nonlinear combination method
of multiple features by a deep model, i.e., model with multiple
hidden layers, called deep belief network (DBN) [30]-[35]. As
far as we know, this is the first work that adopts the nonlinear
combination of the features.

DBN [30]-[35], proposed in 2006, is a powerful hierarchical
generative model for feature extraction. Compared to the
training methods of traditional deep models, such as multilayer
perceptron, DBN can prevent over-fitting to the training set via
a special unsupervised pre-training procedure. Compared to
the popular shallow models, such as SVM, DBN can express
highly variant functions, discover the underlying regularity of
multiple features, and have strong generalization abilities than
shallow ones in that “functions that can be compactly repre-
sented by a depth k architecture might require an exponential
number of computational elements to be represented by a depth
k — 1 architecture” [32]. Recently, DBN has received much
attention in both the machine learning community [36] and the
signal processing community [37] with successful applications
to the speech recognition [4]-[9], natural language processing
[38], etc.

We apply DBN to the multiple-feature-based VAD for
the strong information fusion ability and low detection time
complexity of VAD. Compared to the existing multiple-fea-
ture-based VADs [10]-[18], it not only fuses the shallow
advantages of all acoustic features together naturally, but is also
able to incorporate the deep regularity of the acoustic features,
so that the overall advantage of the features can be fully mined.

Extensive experimental comparisons on the AURORA2
corpus demonstrate the following merits of the DBN-based
VAD on the multiple acoustic feature fusion task. First, it out-
performs 11 referenced VADs that cover broad research topics
of VAD. Second, it can meet the real-time detection demand of
VAD. Third, it can fuse the advantages of new acoustic features
effectively.

The paper is organized as follows: in Section II, we first pro-
pose the DBN-based VAD, and then present the motivation and
advantages of the proposed method. In Section III, we compare
the DBN-based VAD with other VADs, and further analyze its
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feature fusion ability. In Section IV, we conclude this paper and
present some future work.

II. DBN BASED VAD

In this section, we will first propose the deep-belief-networks-
based VAD, and then present our motivation in detail.

A. DBN Based VAD

The DBN-based VAD first connects multiple acoustic fea-
tures of an observation in serial to a long feature vector which is
used as the visible layer [i.e., input] of DBN [30]-[35]. Then, a
new feature is extracted by transferring the long feature vector
through multiple nonlinear hidden layers. Finally, the class of
the observation is predicted by a linear classifier [i.e., sofimax
output layer] of DBN with the new feature as its input. The pre-
diction function of DBN is formulated as follows:

Given a K class classification problem, an observation o is
predicted to belong to the category whose corresponding output
unit is assigned a value of 1. The output unit ¢, k= 1,..., K,
is calculated by the following decision function

{L ifs, >s;,Vi=1,...,K,i#k
“*“=90,

otherwise
where sy, is the probabilistic soft output of the event “c, = 17,
sy is defined as exp (di)/ Y-, exp (d;) with dy, defined in (2)!
shown at the bottom of the page with g{/)(-) denoted as the non-
linear activation function of the /-th hidden layer, ! =1, ..., L,

(1)

{111,5’1;171) } ~denoted as the weights between the adjacent two
: i

layers with ¢ as the ¢-th unit of the /-th layer and j as the j-th

unit of the [ — 1-th layer, and {z, },. denoted as the input feature

vector. In this paper, all activation function ¢(-) uses the logistic

function:

1
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)

Because VAD only contains two classes [i.e., K = 2], we
can further get the prediction function of the DBN-based VAD
as follows:

H,eH,

Jfoe~(0) 25y — 51 = 7
H;cHg

4)

where Hy/Hjy denotes the speech/noise hypothesis, and 7 is a
tunable decision threshold, usually setting to 0.
We review DBN briefly as follows:

!In this equation, we omit the bias term b of all layers for simplicity, since
they can be incorporated to the model weights naturally by adding the feature
in each layer a nonzero constant dimension.
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Deep neural networks have a long history. They can describe
highly variant functions via few parameters. If trained suc-
cessfully, they can achieve a strong generalization ability with
few training data. However, traditional deep neural networks
are depressing in that they not only suffer from local minima
but also are computationally intractable. Hence, in real-world
applications, researchers still prefer shallow models that are
usually easily trained, such as SVM [10], [13], [14], [19],
MK-SVM [16], single-hidden-layer-based multilayer percep-
tron [39], [40], group lasso [41], or Gaussian mixture model
[42], [43].

DBN [30]-[35] is the first work that trains a very deep neural
network successfully. It is a probabilistic generative model that
consists of multiple hidden layers of stochastic latent variables.
The top two layers of DBN have undirected, symmetric connec-
tions and form an associative memory [37]. Other hidden layers
form a top-down directed acyclic graph. The units in the lowest
layer are called visible units, which represent an input feature
vector [37]. Successively connected two layers formulate a con-
stituent module of DBN, called restricted Boltzmann machine
(RBM), therefore, DBN is a stack of RBMs.

The training process of DBN consists of two phases. First, it
takes a greedy layer-wise unsupervised pre-training phase [34],
[44] of the stacked RBMs to find initial parameters that are close
to a good solution of the deep neural network. Then, it takes a
supervised back-propagation training phase to fine-tune [30] the
initial parameters. The key point that contributes to the success
of DBN is the greedy layer-wise unsupervised pre-training of
the RBM models [34], [44]. It performs like a regularizer of the
supervised training phase that prevents DBN from over-fitting
to the training set [44].

Because the layer-wise unsupervised pre-training of the RBM
models contributes to the success of DBN, we introduce this
special training process below. RBM is an energy-model-based
two layer, bipartite, undirected stochastic graphical model.
Specifically, one layer of RBM is composed of visible units
v, and the other layer is composed of hidden units h. There
are symmetric connections between the two layers and no
connection within each layer. The connection weights can be
represented by a weight matrix W. In this paper, we only con-
sider the Bernoulli (visible)-Bernoulli (hidden) RBM, which
means v; € {0,1} and h; € {0,1}. RBM tries to find a model
W that maximize the likelihood of v, which is equivalent to
the following optimization problem

min — log P(v; W) 5)
where the marginal distribution P(v; W) is defined as
—Energy(v,h;W)
PlviW) = 20° ©)

Z

with Z = Y 5, e Enersy(V.hW) denoted as the partition
function or the normalization factor, and the energy model
“Energy(v,h; W)” for the Bernoulli (visible)-Bernoulli
(hidden) RBM defined as

Energy(v,h; W) = —b’v — ¢'h — h"Wv @)

TABLE I
FEATURES AND THEIR ATTRIBUTES. THE SUBSCRIPT OF EACH FEATURE
IS THE WINDOW LENGTH OF THE FEATURE [14], [15], [25].
THE TERM “ID” IS SHORT FOR IDENTIFICATION

ID | Feature | Dimension ID Feature Dimension
1 Pitch 1 7 MFCC16 20

2 DFT 16 LPC 12

3 DFTg 16 RASTA-PLP 17

4 DFTi6 16 10 AMS 135

5 MFCC 20 Total 273

6 MFCCg 20

where b and ¢ are the bias terms of the visible layer and the
hidden layer, respectively. The stochastic gradient descent al-
gorithm is used to solve problem (5).

Because the accurate calculation of the maximum likelihood
is computationally intractable, the efficient contrastive diver-
gence algorithm [33] is further proposed to calculate it approxi-
mately. Although the contrastive divergence learning is a biased
approximation of the maximum likelihood learning, it works
well in practice.

B. Motivation and Related Work

In this section, we will first summarize the existing feature
fusion methods in VAD, and then compare them with the DBN-
based VAD theoretically, so as to show the advantage of the
latter.

Existing feature fusion models in VAD have the following
uniform prediction function

) A Hga€H,
FO) &Y wpgn, (%) 2 m ®)
p=1 HaCHo

where gy, (-) is a predefined (probably nonlinear) activation
function with v, as its parameters, w = [wy, ..., wp|" is the
weight vector. Usually, w satisfies the constraint 21]::1 wy = 1.
Equation (8) contains two parts. The first part, which is formu-
lated as the function gy, (x,), is a feature extraction stage. It
extracts a series of new features that are more discriminative
and summary than the original acoustic features { xp}ll;l via
the activation functions {gy, (-)}/—;. The second part can be
viewed as a feature selection stage. It fuses the new features
via the linear weighted combination. The existing feature fusion
models try to find the optimal w and {vp}ff:l simultaneously
for some kind of minimum risk, such as minimum classifica-
tion error (MCE), or maximum the area under the receiver-op-
erating-characteristic (ROC) curve.

They can be categorized as the following three types:

* The discriminative-training-based VADs [11], [14], [18]
comply with framework (8) with the weights optimized via
the gradient descent algorithm and the activation functions
set to a linear mapping.

* The SVM-based VAD [10], [13], [15] is a special case of
the framework (8). It uses only one activation function.

* The MK-SVM-based VAD [16] is also a special case of (8)
with multiple activation functions.
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However, the main problem of the aforementioned three
types is that all of them use shallow models, so that they can
only conduct linear weighted combinations of multiple fea-
tures, which lack the ability of exploring the regularity of the
features. Specifically, first, the discriminative-training-based
VADs do the feature selection job only in the original feature
space without any feature extraction action. We call these
fusion models the shallow ones with zero hidden layer. Second,
the SVM-based VADs first concatenate the features serially in
the original feature space, and then map the serially combined
features to a unique kernel-induced feature space. We regard the
nonlinear-kernel-based SVM as a shallow model with only one
hidden layer. The SVM-based VADs only focus on the feature
extraction job without considering any feature selection action.
Because different features have different space distributions,
either a simple weighted combination function in the original
feature space or a single kernel mapping function can hardly
express the variations of all features simultaneously [see [15]
as an example].

At last, the MK-SVM-based VAD is a method that fully car-
ries out the two stages of (8). However, although it has taken
the distribution difference of the features into consideration by
projecting the features independently into a number of kernel
spaces, the kernel functions are predefined ones which might
not be powerful enough yet to express the nonlinear discrimi-
nant boundary of the original features, hence, a linear weighted
combination of a large number of kernels has to be used. As
will be shown in our experimental part, although dozens of ker-
nels have been adopted, the performance of the MK-SVM-based
VAD is still inferior to the proposed one.

In order to further improve the performance, we propose to
introduce DBN to VAD. Fundamentally, the advantage of the
DBN-based VAD is rather apparent: comparing (4) and (8), it is
clear that DBN has a much stronger ability of describing the
variations of the features. Therefore, a better fusion result is
expected.

Because the input of a given nonlinear activation function
in a deep hidden layer is a linear weighted combination of the
outputs of the shallower hidden layer, we call this feature fusion
method a nonlinear combination one.

Particularly, a DBN model with only a single hidden layer?2
still consists of multiple nonlinear activation functions, which
is as powerful as MK-SVM.

III. EXPERIMENTAL ANALYSIS

In this section, we will first compare the effectiveness and
efficiency of the proposed DBN-based VAD with 11 referenced
VADs, and then study the information fusion ability of the
DBN-based VAD with respect to different number and types of
features.

All experiments are conducted with MATLAB 7.12 on a
2.27 GHZ 8-physical-core Itel(R) Xeon(R) Server running

2Because DBN is specified as a deep model that has at least two hidden layers,
the sentence “DBN model with only a single hidden layer” is not an accurate
usage. We just use it for simplicity without confusion.

Windows XP with 16 GB main memory. Each thread only
occupies one physical core.

A. Experimental Settings

1) Dataset: Seven noisy test corpora of AURORA2 [45]
is used for performance analysis. Four signal-to-noise ratio
(SNR) levels of the audio signals are selected, which are
[—5,0,5,10] dB respectively. Therefore, there are totally 28
test corpora used for evaluation. Each test corpus of AURORA2
contains 1001 utterances, which are split randomly into three
groups for training, developing and test respectively. Each
training set and development set consist of 300 utterances
respectively. Each test set consists of 401 utterances. Note
that the corpora in the same background noise scenario but at
different SNR levels are split with the same random seed, and
have the same manual labels.

We concatenate all short utterances in each data set to a long
one so as to simulate the real-world application environment
of VAD. Eventually, the length of each long utterance is in a
range of (450,750) seconds long with the percentages of speech
ranging from 54.57% to 73.32%.

Because speech can be approximated as a stationary process
in short-time scales, we usually divide speech signals into a
sequence of overlapped short-time frames [i.e., observations]
with all frames set to an equivalent length of 10 to 30 ms long.
The frame is used as the basic detection unit in most cases,
such as G.729B VAD [1]. It can only be categorized as speech
or noise. Hence, the VAD problem can be partly viewed as
a binary-class classification problem, where each frame is re-
garded as an example of the classification problem. Because
the real-world working environments of VAD are rather com-
plicated, the machine-learning-based approach is a challenging
topic.

In this paper, the sampling rate is 8 kHz. We set the frame
length to 25 ms long with a frame-shift of 10 ms, which means
that each frame consists of 200 samples. Given a frame, if the
samples labeled as speech are more than a half, the frame is la-
beled as speech, otherwise, the frame is labeled as noise. This
labeling scheme will not cause a severe bias on the experimental
results, since there are few frames that contain both speech sam-
ples and noise samples.

Note that, after classification, we need to smooth the fragile
segments and cover trivial speeches via so-called hangover
schemes, such as hidden Markov model [22], empirical rules
[2], [42], etc. Moreover, we can further bias the classification
result towards speech by tuning the decision threshold for
special applications, such as speech recognition. But the post-
processing techniques are beyond the discussion of this paper.

2) Acoustic Features for VAD: To better show the advan-
tages of the feature fusion techniques, we extract 10 acoustic
features from each observation. They are pitch, discrete Fourier
transform (DFT), mel-frequency cepstral coefficients (MFCC),
linear predictive coding (LPC), relative-spectral perceptual
linear predictive analysis (RASTA-PLP) [46], and amplitude



ZHANG AND WU: DEEP BELIEF NETWORKS BASED VOICE ACTIVITY DETECTION 701

Car noise scenario, SNR =5 dB

y T T

Sample value

400 600 800

0 200

1000

Clean wave with manual labeling

R
1 1 L L 1

0 200 400 600 800 1000

Sample value
o

SVMr

2, s
_zw TR A AR

Soft output
o

200 400 600 800 1000
- MK-SVM
3
H f,‘m/\/\WmWW\v/\w/\\wM\q I
2F
) 0 200 400 600 800 1000
DBN

1

-

AN,
B PVAAW AP M W AT A ARV

200 400 600 800 1000

Soft output
o

DBN3

I AR,
VAIWA VLR VARV A

200 400 600 800 1000
Frame index

_

Soft output
o

Fig. 1.

Sohn
*g_ : :
"g g)_ k m
B A e M) [
3 ; ; : ;
200 400 600 800 1000
Ramirez05
5 6 T
=3
Ll N
§ 0 Y \_/\.J \ . - L\_/ N7
0 200 400 600 800 1000
Ramirez07
g ° ‘ e jj\ '
S 1.5} f\ /
o
£ ok j\w W . I
3 ; i . :
200 400 600 800 1000
Yu
5 0.06 T .
e
3 0.03f /\
% 0_\_J /AN Vaal == \_.\_JA\:,\
3 ; i 1 .
0 200 400 600 800 1000
Shin

Soft output
o o
oo

o 200

Ying

W\ Jlmp'\ MAMMM..& ﬂ\

W Am/ \f\mJ”'V “w’
400 600 800 1000
Frame index

Soft output
o
o (J'l -

o

200

Soft output comparison of different VADs in the car noise (SNR = 5 dB). The blue lines are the optimal decision thresholds. The red lines are the manual

labeling or the hard decisions of the soft outputs. Note that 1) the reported decision thresholds of the referenced VADs are the optimal ones over the entire test wave
file; 2) the soft output of the Ying VAD is an average of the hard decisions of all sub-bands; 3) the 10 seconds’ audio segment is randomly chosen from the test set.

modulation spectrograms (AMS) [47], [48].3, 4 The attributes
of the features are listed in Table I.

Note that although the pitch detection technique has been
greatly improved in recent years [39], [49]-[54], we extract
pitch features from the noisy speech signals by an early subhar-
monic-to-harmonic-ratio-based pitch detection algorithm [55]
for simplicity since we focus on demonstrating the advantage
of the DBN-based VAD over existing feature fusion methods in
this paper. The spectrum of DFT is compressed from 256 bands
to 16 critical bands which is analogous to that of the IS-127
speech enhancement technique [56]. It is mainly for the de-
tection efficiency. We apply the multiple observation technique
[14], [15], [25] to the DFT and MFCC features. This technique
has two advantages. First, the features with different window

3The implementation code of the MFCC, LPC, and RASTA-PLP features is
downloaded from ‘http://www.ee.columbia.edu/~dpwe/resources/matlab/ras-
tamat/’.

4The implementation code of the AMS feature is downloaded from ‘http:/
www.utdallas.edu/~loizou/speech/software.htm’

lengths can be seen as different features, since they yield dif-
ferent ROC curves. Second, the technique is good at suppressing
random background noises. We only use 3 bands of the AMS
features with two delta features [48], which is much smaller than
the AMS features used in [48], this is mainly for the detection
efficiency.
All features are normalized into the range of [0, 1] in dimen-
sion [57].
3) Parameter Settings: We compare the DBN-based VAD
with 11 VADs, which cover a broad research area of VAD:
a) VADs in standard speech processing systems.
* G.729B VAD [1].5
* ETSI advanced frontend via Wiener filter (WF VAD)
[2].6
» ETSI advanced frontend via frame dropping (FD VAD)
[2].

Shttp://www.itu.int/rec/T-REC-G.729/e
Shttp://pda.etsi.org/pda/queryform.asp, search for ‘ES 202050’
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Fig. 2. ROC curve comparison in the babble, car, restaurant, and street noise scenarios. Note that because the ROC curves of the DBN-based VADs are
overlapped in most cases, we only plot the ROC curves of the DBN-based VAD for clarity.

b) Statistical-signal-processing-based VADs.

Sohn VAD [22]. It is the first statistical-model-based
VAD.

Ramirez05 VAD [25]. It introduces a simple multiple
observation technique to the Sohn VAD, which greatly
improves the performance of the latter. According to
the experimental results of [25], the window length is
set to 8.

Ramirez07 VAD [27]. It utilizes a Hankel-matrix-based
global hypothesis to the multiple observation technique
so as to lower the false alarm rate of the Ramirez05
VAD. The window length is set to 8.

¢) Supervised-machine-learning-based VADs.

Yu VAD [14]. It is a discriminative training method
that uses a linear weighted sum instead of the simple
sum algorithm in the multiple observation technique
of the Ramirez05 VAD. The weights are optimized by
the gradient descent algorithm. In this paper, MCE is
used as the optimization objective. According to the

experimental results of [14], the window length is set
to 10.

Shin VAD [13]. It is a SVM-based method. It se-
rially concatenates three features that are extracted
from the Gaussian statistical model, and takes the
serially connected features as the input of SVM. In
this paper, the state-of-the-art SVMP*™ [58] is used
as the toolbox.”, 8 MCE is used as the optimization
objective of SVMP®**. The Gaussian RBF kernel is
used. The grid search is used for the model selection.
The parameter C is searched from {22,210 ... 214}
and the RBF kernel width ¢ is searched through
{272,271y, 2%, 21y, 224}, where « is the average
Euclidean distance between the observations.
SVM-based VAD. It is a baseline method of this
paper. It first concatenates all 10 acoustic features

http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html
8The SV VP! in use is a MATLAB version implemented by ourselves.
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Fig. 3. ROC curve comparison in the airport, train, and su bway noise scenarios. Note that because the ROC curves of the DBN-based VADs are overlapped

in most cases, we only plot the ROC curves of the DBN>-based VAD for clarity.

TABLE II
PARAMETER SETTINGS OF DBN

Number of the hidden units in different layers [52,7,7]
Learning rate of the unsupervised pre-training 0.004
Maximum epoch of the unsupervised pre-training 100
Learning rate of the supervised fune-tuning 0.005
Maximum epoch of the supervised fune-tuning 130

depicted in Section III-A2 serially, and then takes
the serially connected features as the input of SVM.
SVMP®! [58] is used as the toolbox. MCE is used
as the optimization objective of SVMP®. The SVM
with the linear kernel and the Gaussian RBF kernel
are denoted as SVM; and SVM,., respectively. For
SVM,, the regularization parameter C is searched from
the exponential grid {2'2,213,...,2%0}, For SVM,.,
the parameter C is searched from {2920 ..., 214},

and the RBF kernel width ¢ is searched through
{27%7,271y,209, 29,224},

MK-SVM-based VAD [16]. We regard the serial com-
bination of all 10 features as a new feature, so that 11
acoustic features are used. MCE is used as the objec-
tive of the structural MK-SVM. The regularization pa-
rameter C is searched from {2° 21V ... 214} Each
acoustic feature x,; uses three base RBF kernels with
kernel widths being {271, 20v,, 217, }, respectively,

where -y, is the average Euclidean distance between the
observations of the acoustic feature. Therefore, we to-
tally use 33 base RBF kernels. A similar usage of the
MK-SVM with ours can be found in [59].

d) Unsupervised-machine-learning-based VADs.

* Ying VAD [21]. It is an online algorithm. It introduces
a simplified sequential expectation-maximization
algorithm to update the parameters of a two-mix
Gaussian mixture model. According to [21], the deci-
sion threshold is set to 0.45 in all environments.

The parameters of all referenced VADs are set rigorously ac-
cording to the authors’ settings.

For the proposed DBN-based VAD, DBN? has three critical
parameters, which are the learning rate n, the number of the
hidden units /N, and the depth of DBN = [i.e., the number of
the hidden layers, or the number of the RBM models], respec-
tively. We denote the n-layers” DBN as DBN,,. Without con-
fusion, we further denote the DBN with only one hidden layer
as DBN;. The maximum number of the hidden layers is set to
3. We follow the guide of [7], [32], [35], [60] for the model se-
lection of DBN,,. As a result, the parameter settings of DBN is
summarized in Table II.

Note that in the supervised fine-tuning phase of DBN, we run
130 epoches thoroughly and pick up the model that achieves the
highest accuracy on the development set from all 130 models
without considering the early stopping scheme.

Shttp://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
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TABLE III
ACCURACY (%) COMPARISON OF THE REFERENCED VADS AND THE DBN-BASED VADS. “SVM;” DENOTES THE SVM WITH THE LINEAR KERNEL. “SVM,.”
DENOTES THE SVM WITH THE RBF KERNEL. “DBXN,,” MEANS THAT THE DBN MODEL HAS 7= HIDDEN LAYERS. THE VALUES IN BOLD MEANS THAT THE
CORRESPONDING VADS OF THE VALUES RANK THE BEST AMONG ALL VADS. IF THERE ARE MORE THAN ONE VALUES IN BOLD, THE PERFORMANCE
DIFFERENCES AMONG THE CORRESPONDING VADS ARE STATISTICALLY INSIGNIFICANT. NOTE THAT ASIDE FROM G.729B/WF/FD/SVM/MK-SVM, THE RESULTS
OF ALL OTHER REFERENCED VADS ARE THE OPTIMAL ONES OBTAINED BY TUNING THE DECISION THRESHOLDS OF THE SOFT OUTPUTS

Noise type SNR | G.729B WF FD Sohn | RamirezO5 | Ramirez07 Yu Shin Ying | SVM; | SVM, | MK-SVM || DBN; | DBN> | DBN3
—-5dB 58.07 5790 | 57.58 | 58.47 58.52 58.10 5838 | 54.57 | 5720 | 54.58 54.61 55.43 61.03 60.81 60.55

Babble 0dB 65.38 61.48 | 56.96 | 63.96 65.30 64.08 64.95 | 65.50 | 62.46 | 64.53 64.46 65.02 69.01 69.24 69.38
5dB 72.43 63.26 | 59.41 | 71.76 75.51 71.98 73.87 | 72.37 | 70.56 | 75.68 75.97 76.17 78.83 78.94 | 79.03

10 dB 74.18 62.57 | 55.62 | 78.00 82.04 79.17 81.26 | 77.99 | 71.57 | 79.95 79.53 80.18 80.99 81.23 80.78

—5dB 56.82 59.97 | 57.11 | 5877 60.26 58.60 59.30 | 55.80 | 60.27 | 73.40 7220 75.01 77.24 77.88 71.75

Car 0dB 70.27 76.63 | 64.22 | 65.02 68.47 64.50 66.36 | 62.92 | 6542 | 8148 81.59 83.50 84.10 84.14 83.97
5dB 79.25 7834 | 63.05 | 7242 77.68 72.04 7470 | 71.90 | 71.64 | 86.12 86.34 86.38 87.18 87.04 87.00

10 dB 81.31 76.61 | 61.52 | 79.44 83.30 80.26 8175 | 79.73 | 7143 | 87.67 87.60 87.94 88.48 88.44 88.14

—5dB 57.76 64.44 | 6449 | 64.38 64.38 64.38 64.38 | 6438 | 63.07 | 68.84 69.04 70.44 70.23 70.10 69.75

Restaurant 0dB 65.31 64.60 | 64.57 | 64.38 64.56 64.38 64.51 | 65.08 | 65.21 | 73.59 74.22 75.71 75.73 75.68 75.57
5dB 69.67 65.77 | 66.00 | 66.03 69.59 66.22 68.10 | 68.79 | 68.69 | 81.58 82.09 83.25 83.43 83.59 83.54

10 dB 72.46 65.52 | 64.50 | 70.02 75.65 70.92 73.38 | 74.11 | 74.24 | 8451 84.83 86.30 86.12 86.08 85.92

—5dB 5745 55.61 | 54.64 | 5458 55.25 54.58 54.58 | 54.64 | 5458 | 60.01 5832 63.38 66.63 6741 67.33

Street 0 dB 65.71 5524 | 54.68 | 57.43 58.28 56.65 57.59 | 59.48 | 5894 | 67.20 67.98 73.35 73.15 73.76 72.83
5dB 72.63 55.83 | 54.89 | 64.84 67.69 64.13 65.68 | 66.59 | 66.27 | 74.83 74.88 77.60 78.47 78.70 | 79.03

10 dB 74.45 55.63 | 54.87 | 70.07 69.52 68.05 71.05 | 7480 | 70.51 | 78.86 78.12 79.10 80.42 80.86 80.49

—-5dB 57.00 56.32 | 56.00 | 56.94 57.18 56.66 57.53 | 64.48 | 58.00 | 64.95 64.48 65.86 66.18 66.35 66.62

Airport 0dB 65.54 5726 | 5591 | 61.32 62.22 60.05 62.29 | 66.44 | 63.06 | 73.97 74.26 75.59 76.63 76.66 76.38
5dB 69.64 56.10 | 55.82 | 68.25 71.46 67.54 70.21 | 72.45 | 69.09 | 81.03 80.94 82.30 81.89 81.92 81.85

10 dB 72.02 56.38 | 55.86 | 77.31 80.05 77.42 80.04 | 79.87 | 77.42 | 85.00 85.21 85.38 86.63 86.41 86.50

—5dB 57.56 57.74 | 5743 | 58.32 58.41 57.97 58.20 | 57.53 | 59.97 | 65.95 66.24 68.78 68.59 68.99 68.89

Train 0dB 67.91 60.74 | 57.95 | 59.48 61.17 59.32 59.95 | 63.50 | 64.59 | 75.20 74.29 76.31 76.95 76.95 76.14
5dB 75.26 60.09 | 57.70 | 68.84 72.89 67.96 70.88 | 72.61 | 71.35 | 82.07 82.91 83.99 83.65 83.49 83.56

10 dB 77.05 5925 | 57.58 | 75.81 79.35 75.44 7842 | 77196 | 7549 | 85.00 85.28 85.34 85.72 85.68 85.62

—5dB 49.25 64.46 | 67.68 | 6823 68.15 68.15 68.25 | 68.19 | 67.00 | 74.39 7475 79.50 78.54 79.10 78.95

Subway 0 dB 55.20 6747 | 67.70 | 68.15 68.16 68.16 68.16 | 68.18 | 68.30 | 81.06 81.24 83.82 82.70 83.29 83.26
5dB 62.08 69.82 | 68.46 | 68.64 73.16 69.75 69.68 | 68.76 | 71.32 | 82.76 83.58 86.11 85.60 85.77 85.81

10 dB 70.51 7140 | 68.56 | 70.03 77.93 72.20 7293 | 71.01 | 7433 | 84.33 85.18 87.46 85.79 86.25 86.01

TABLE IV

AVERAGE CPU TIME (IN SECONDS) OF THE SVM/MK-SVM AND DBN-BASED VADS OVER DIFFERENT SNR LEVELS. THE AUDIO FILES FOR TRAINING IN ANY
SNR LEVEL IS TOTALLY 3689.49 SECONDS LONG. THE AUDIO FILE FOR TEST IN ANY SNR LEVEL IS TOTALLY 5004.39 SECONDS LONG. “SVM,” DENOTES THE
SVM WITH THE LINEAR KERNEL. “SVM.,.” DENOTES THE SVM WITH THE RBF KERNEL. “DBN,,” MEANS THAT THE DBN MODEL HAS 1 HIDDEN LAYERS.
THE TERM “REAL TIME WORKING RATIO” IS A RATIO OF THE TIME OF THE AUDIO FILE TO THE CPU TIME OF THE MODEL TRAINING/TEST

Training time
Noise type SVM; SVM,. MK-SVM DBN; DBN, DBNj
Babble 93.32433.43 | 1221.494285.33 | 3352.794988.34 | 2797.214183.86 | 5985.40-£649.48 | 8542.83-£1057.09
Car 181.02£79.08 | 766.98+174.53 | 877339451572 | 3190.11+119.41 | 6724.88+149.26 | 10161.28+553.37
Restaurant 164.33+47.49 | 1094.134317.58 | 10677.53+831.15 | 2591.03+393.93 | 5481.594+423.45 | 8135.824911.01
Street 151.014£60.28 | 1031.69+476.49 | 9566.80+1201.66 | 3140.30+77.19 | 6417.574423.72 | 9834.294492.79
Airport 127.19460.86 | 1039.71£429.18 | 17872.6142628.54 | 2674.51+531.36 | 5710.76£1021.01 | 9119.724+1023.34
Train 167.52455.84 | 693.79+296.55 | 7483.194934.79 | 2413.53+450.23 | 4675.424967.10 | 7241.6841829.59
Subway 109.80+53.75 | 853.77+309.12 | 10965.90+1236.89 | 2688.31+211.03 | 4728.42+444.61 | 7320.404+942.43
Total 993.84 6701.56 68692.22 19495.00 39724.03 60356.02
Real time working ratio | 1/3.7124 1/0.5505 1/0.0537 1/0.1896 1/0.0929 1/0.0611
Test time
Noise type SVM, SVM, MK-SVM DBN; DBN, DBNj
Babble 1.4540.19 2.6240.71 19.8344.11 234026 2.3640.41 2.2440.38
Car 1.5140.34 2.2540.26 21.60£4.43 2.0140.25 2.2440.36 2.2640.29
Restaurant 1.59+0.23 2.64+0.68 25.5343.01 2.10+0.40 2.1440.43 2.384+0.30
Street 1.6940.43 2.6740.45 28.08+4.21 2.1940.43 2.3040.29 2.36+0.41
Airport 1.4940.36 2.4340.50 27.58+7.30 1.824+0.19 2.0240.25 2.03£0.23
Train 1.85+0.44 2.20+0.57 41.30+5.00 2.1140.23 2.2140.39 2.3240.27
Subway 1.5240.42 2.4340.59 29.15+8.15 2.1240.25 2.3040.28 2.1940.17
Total 1111 17.25 193.07 14.67 15.51 15.78
Real time working ratio | 1/450.6398 1/290.0857 1/25.92 1/340.9196 1/322.5571 1/317.0464
4) Comparison Schemes: We run all experiments 10 times B. Results

and report the average performances. We evaluate the signifi-
cant statistical difference of the performances via the two-tailed
t test with a confidence interval at 95%.

1) Comparison of Effectiveness: In this subsection, we try to
show the advantage of the DBN-based VAD empirically via a
broad experimental comparison with other VADs.
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Fig. 4. Soft output of the DBN;-based VAD with respect to different feature ensembles in the babble and subway noise scenarios at a SNR level of 5 dB. The
blue lines are the optimal decision thresholds. The red lines are the manual labeling or the hard decisions of the soft outputs. The numbers in the braces are the
identifications of the features depicted in Table I. The term “ALL” means that all 10 features are taken into the ensemble.

Fig. 1 shows the soft output comparison of different VADs.
Figs. 2 and 3 shows the ROC curve comparison of these VADs
in different noise scenarios. From these figures, it is clear that
the DBN-based VADs have an apparent superiority to the refer-
enced VADs.

Table III lists the accuracy comparison between the refer-
enced VADs and the DBN-based VADs. From the table, we ob-
serve that the DBN-based VADs are significantly better than the
referenced VADs, which is consistent with our theoretical anal-
ysis in Sections II-B. Moreover, the DBNs-based VAD outper-
forms other VADs in 21 scenarios, which shows the potential of
the deeper models. However, DBN3 does not yield a better per-
formance than DBNs,, and even suffer from slight performance
degradations in some scenarios. The following two explanations
might be reasonable.

One possible explanation is that DBN is good at finding the
latent manifold of a highly variant problem, such as speech
recognition, handwriting recognition, face recognition, and
topic recognition in natural language processing, but when the

manifold characteristic of the problem is relatively apparent,
it will not be much better than a well tuned shallow model.
Hence, in the future work, we should pay particular attention
to the acoustic features that are developed from physical and
physiological areas for the diversity between the features [61],
[62].

Another possible explanation is that concatenating all fea-
tures to a long feature vector and further using the full connec-
tions between any adjacent two layers might not be the most
effective topological network structure, since different features
might be good at reflecting different local patterns of the time
and spacial distributions of speech [63]-[67]. Therefore, in the
future, we should also concentrate on designing effective deep
structures.

2) Comparison of Efficiency: In this subsection, we focus
on the CPU time comparison between the SVM/MK-SVM and
DBN-based VADs, since they use the same input.

The results are listed in Table IV. From the table, we can see
that DBN and MK-SVM has comparable training time, while
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DBN is much more efficient than MK-SVM in prediction. How-
ever, both DBN and MK-SVM need much longer training time
than the single-kernel-based SVM. The reasons are as follows:

In respect of DBN, if we change the size of the input units
without modifying the network structure, which is the case of
this paper, the training and test time complexities of DBN are
both O(d), where we suppose the size of the input units is d.
But if we set the sizes of all layers equivalent or approximate to
the size of the input layer, which is a common usage that may
capture the whole information of the inputs, the training and
test time complexities of DBN will suddenly increase to O(d?).
Hence, in the future work, it is valuable to change the topology
of DBN for efficiency, which is also a key research topic of the
probabilistic graphic models [68].

In respect of MK-SVM, the time complexity of MK-SVM is
O(>_, Qpdy) where Q,, is the number of the kernels for the g-th
feature with (), > 1, and d,, is the dimension of the ¢-th fea-
ture with > » dp = d. The more kernels we use, the longer the
training and test time of MK-SVM will be. In our experiments,
33 kernels are used, which is responsible for the inefficiency of
MK-SVM.

Because we have to use a large number of kernels for
the state-of-the-art performance of MK-SVM, while we
might lower the time complexity of DBN by changing the

topology of DBN without suffering a performance degradation.
From this point, the DBN-based VADs are superior to the
MK-SVM-based VAD.

Anyway, both methods meet the real-time detection demand
of VAD [i.e., high test efficiency demand] under the parameter
settings of this paper.

3) Analysis of the Information Fusion Ability: In this sub-
section, we study the generalization ability of the DBN-based
VAD on fusing the advantages of any new acoustic features.
The SVM/MK-SVM-based VADs are used for comparison.

This analysis is rather important and necessary for the fol-
lowing two reasons. First, as shown in Table III, using multiple
features can greatly improve the performance. However, it is
still not clear that whether the superiority of the DBN-based
VAD only lies in the selected feature assemble in Table I, or it is
a general characteristic. Second, we assume that any new feature
contains some positive information, and fusing the new feature
to the existing feature ensemble might contribute to the perfor-
mance improvement. However, from Table III, we just observe
that the DBN-based VADs can achieve better performances than
the referenced VADs, but still do not know whether the advan-
tages of all features have been mined deeply.

In order to discover the regularity of the performance im-
provement with respect to the number of the acoustic features,
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we simulate the real-word development process of new features.
Specifically, we first arrange all 10 features depicted in Table I
in a random order. The identification sequence of the reordered
features is {3,2,6,10,7,1,9,5,4,8}. Then, we start training
with a subset of the features indexed by {3}, and add new fea-
tures one by one to the subset from the beginning of the feature
sequence to the end. For simplicity, we only conduct the exper-
iments in the babble and subway noise scenarios.

Fig. 4 gives a visualized comparison of the soft outputs of
the DBN3-based VAD with different feature ensembles. From
the figure, we can see clearly that when the feature ensemble
becomes larger, the probability estimation is becoming more
and more accurate. This experimental phenomenon not only em-
phasizes the importance of the multiple feature fusion task but
also demonstrates the strong information fusion ability of the
DBN-based VAD directly.

The accuracy comparisons of the SVM/MK-SVM and DBN-
based VADs with respect to different numbers of features in
the babble and subway noises are shown in Figs. 5 and 6 re-
spectively. From the two figures, we can observe that when
all 10 features are utilized, the accuracies of the DBN-based
VADs in the babble noise scenario are improved by an abso-
lute percentage of about 5%, and the accuracies in the subway
noise are even improved by about 10%! Moreover, from part

(a) of the two figures, we can observe that both MK-SVM and
DBN can benefit from new features, and both methods perform
equivalently well, according to the improvements of the accu-
racies in the development sets, while SVMs show a relatively
weak ability of fusing the advantage of new features. The afore-
mentioned two experimental phenomena support our theoret-
ical analysis in Section II-B. However, comparing Fig. 5(b) with
Fig. 6(b), we also observe that if the development sets and the
test sets do not match well, the DBN-based VADs suffer less
performance degradations than the MK-SVM-based one.

As a conclusion, 1) the multiple feature fusion task is
very important for the robustness of VAD; 2) both DBN and
MK-SVM is powerful in fusing the advantages of new features
to the VAD system, and DBN has a stronger generalization
ability than MK-SVM.

The CPU time with respect to the total dimension of the
features in the babble and subway noises are shown in Figs. 7
and 8 respectively, with an analysis of the empirical time
complexities summarized in Table V. From the figures and
the table, we can see clearly that both methods have linear or
sub-linear time complexities. Comparing DBN with MK-SVM,
we can further observe that DBN has a lower training time
complexity than MK-SVM, while DBN and MK-SVM have
similar empirical test time complexities. The experimental
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TABLE V

EMPIRICAL TIME COMPLEXITIES OF THE SVM/MK-SVM AND DBN-BASED VADS WITH RESPECT TO THE
TOTAL DIMENSION OF THE FEATURES IN THE babble anp subway Noise

Empirical training time complexity

Noise type SVM,; SVM, MK-SVM DBN; DBN DBN3

Babble O(d1'07) O(dl.OS) O(dl.ll) O(dO.SS) O(d0.45) O(d0.39)

Subway (’)(dl'lo) O(do.gs) O(dO.QO) O(dO.GO) O(d0'43) O(d0'40)
Empirical test time complexity

Noise type SVM; SVM,. MK-SVM DBN; DBN2 DBN3

Babble O(d1'05) o(dO.GO) O(d0'73) O(d0'57) O(d0'54) O(d0.48)

Subway O(dO.QS) O(dO.SG) O(d0'59) O(d0'49) 0(d0'39) O(dO.SQ)

phenomenon is consistent with our theoretical analysis in
Section III-B2.

IV. CONCLUSIONS AND FUTURE WORK

How to fuse the advantages of multiple acoustic features is a
key issue for the robustness of VAD. In this paper, we have pro-
posed a deep-belief-network-based VAD to address this issue.
The DBN-based VAD aims to extract a new feature that can
fully express the advantages of all acoustic features by trans-
ferring the acoustic features through multiple nonlinear hidden
layers. The main contribution of this paper is that we have intro-
duced a deep model to the multiple feature fusion task in VAD,
while the existing machine-learning-based VADs only utilize
shallow models. The key advantage of this introduction is that
the deep model can combine multiple features in a nonlinear
way, so that the regularity among the features might be discov-
ered, while the shallow models only combine the features in
a simple linear way. Experimental results have shown that the
DBN-based VAD not only outperforms 11 referenced VADs, but
also has a low detection complexity. Further experiment on the
information fusion task demonstrates that the DBN-based VAD
can fuse the advantages of multiple features effectively.

The deep-learning-based VAD is far from explored yet. We
wish this paper could inspire more work that contributes to the
performance improvement of the deeper layers over shallow
layers and the final successful application of the DBN-based
VAD to the real-world environments. In the future, we are par-
ticularly interested in the following topics. 1) Can DBN work
well in the complicated non-stationary noise environment with
multiple noise types? [69], [70] 2) Can we improve the per-
formance of the deep-neural-network-based VAD in the deep
layers via the stacked denoising autoencoder [71], [72] or other
improved stack modules with different energy models or dif-
ferent topological network structures [63]-[65], [73]? 3) Can
we further improve the performance of the DBN-based VAD by
enhancing the diversity between the features? [61], [62] 4) Can
the DBN-based VAD work in the unsupervised online learning
scenario? [74]

ACKNOWLEDGMENT

The authors thank the editors and the anonymous referees for
their valuable advice which greatly improved the quality of this

paper.

REFERENCES

[1] A. Benyassine, E. Shlomot, H. Y. Su, D. Massaloux, C. Lamblin, and
J. P. Petit, “ITU-T recommendation G. 729 Annex B: A silence com-
pression scheme for use with G. 729 optimized for V. 70 digital simul-
taneous voice and data applications,” IEEE Commun. Mag., vol. 35,
no. 9, pp. 64-73, Sep. 1997.

[2] “Speech processing, transmission and quality aspects (STQ); dis-
tributed speech recognition; advanced front-end feature extraction
algorithm; compression algorithms,” E7SI ES, vol. 202, no. 050.

[3] K. Han and D. L. Wang, “Towards generalizing classification based
speech separation,” IEEE Trans. Audio, Speech, Lang. Process., vol.
21, no. 1, pp. 1-27, Jan. 2012.

[4] A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence
training of deep belief networks for speech recognition,” in Proc.
Interspeech-10, 2010, pp. 2846-2849.

[5] D. Yu and L. Deng, “Deep-structured hidden conditional random
fields for phonetic recognition,” in Proc. Interspeech-10, 2010, pp.
2986-2989.

[6] A.Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using deep
belief networks,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20,
no. 1, pp. 14-22, Jan. 2012.

[7] G.Dahl,D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained
deep neural networks for large vocabulary speech recognition,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 20, no. 1, pp. 30-42, 2012.

[8] D. Yu, F. Seide, and G. Li, “Conversational speech transcription using
context-dependent deep neural networks,” in Proc. 29th Int. Conf.
Mach. Learn., 2012, pp. 1-2.

[9] G. Hinton et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,” IEEE
Signal Process. Mag., vol. 11, no. 3, pp. 229-241, Nov. 2012.

[10] D. Enging, L. Guizhong, Z. Yatong, and Z. Xiaodi, “Applying support
vector machines to voice activity detection,” in Proc. Int. Conf. Signal
Process., 2002, vol. 2, pp. 1124-1127.

[11] S.I.Kang, Q. H. Jo, and J. H. Chang, “Discriminative weight training
for a statistical model-based voice activity detection,” IEEE Signal
Process. Lett., vol. 15, pp. 170-173, 2008.

[12] Q. H. Jo, J. H. Chang, J. W. Shin, and N. S. Kim, “Statistical
model-based voice activity detection using support vector machine,”
IET Signal Process., vol. 3, no. 3, pp. 205-210, 2009.

[13] J. W. Shin, J. H. Chang, and N. S. Kim, “Voice activity detection
based on statistical models and machine learning approaches,” Comput.
Speech Lang., vol. 24, no. 3, pp. 515-530, 2010.

[14] T. Yu and J. H. L. Hansen, “Discriminative training for multiple ob-
servation likelihood ratio based voice activity detection,” IEEE Signal
Process. Lett., vol. 17, no. 11, pp. 897-900, 2010.

[15] J. Wu and X. L. Zhang, “Maximum margin clustering based statis-
tical VAD with multiple observation compound feature,” IEEE Signal
Process. Lett., vol. 18, no. 5, pp. 283-286, 2011.

[16] J. Wu and X. L. Zhang, “Efficient multiple kernel support vector ma-
chine based voice activity detection,” /EEE Signal Process. Lett., vol.
18, no. 8, pp. 466-499, 2011.

[17] X. L. Zhang and J. Wu, “Linearithmic time sparse and convex max-
imum margin clustering,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 42, no. 6, pp. 1669-1692, Dec. 2012.

[18] Y. Suh and H. Kim, “Multiple acoustic model-based discriminative
likelihood ratio weighting for voice activity detection,” IEEE Signal
Process. Lett., vol. 19, no. 8, pp. 507-510, 2012.

[19] J. Ramirez, P. Yélamos, J. M. Gorriz, and J. C. Segura, “SVM-based
speech endpoint detection using contextual speech features,” Electron.
Lett., vol. 42, no. 7, pp. 426428, 2006.



ZHANG AND WU: DEEP BELIEF NETWORKS BASED VOICE ACTIVITY DETECTION

[20] D. Cournapeau, S. Watanabe, A. Nakamura, and T. Kawahara, “Online
unsupervised classification with model comparison in the variational
bayes framework for voice activity detection,” IEEE J. Sel. Topics
Signal Process., vol. 4, no. 6, pp. 1071-1083, Dec. 2010.

[21] D.Ying, Y. Yan, J. Dang, and F. Soong, “Voice activity detection based
on an unsupervised learning framework,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 19, no. 8, pp. 26242644, Nov. 2011.

[22] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice
activity detection,” /EEFE Signal Process. Lett., vol. 6, no. 1, pp. 1-3,
1999.

[23] S. Gazor and W. Zhang, “A soft voice activity detector based on a
Laplacian-Gaussian model,” [EEE Trans. Speech, Audio Process., vol.
11, no. 5, pp. 498-505, Sep. 2003.

[24] J. Ramirez, J. C. Segura, C. Benitez, A. D. L. Torre, and A. Rubio,
“Efficient voice activity detection algorithms using long-term speech
information,” Speech Commun., vol. 42, no. 3—4, pp. 271-287, 2004.

[25] J. Ramirez, J. C. Segura, C. Benitez, L. Garcia, and A. Rubio, “Sta-
tistical voice activity detection using a multiple observation likelihood
ratio test,” IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689-692,
Oct. 2005.

[26] J.H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity detection based
on multiple statistical models,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 1965-1976, Jun. 2006.

[27] J.Ramirez, J. Segura, J. Gorriz, and L. Garcia, “Improved voice activity
detection using contextual multiple hypothesis testing for robust speech
recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no.
8, pp. 2177-2189, Nov. 2007.

[28] R. Tahmasbi and S. Rezaei, “A soft voice activity detection using
GARCH filter and variance Gamma distribution,” /EEE Trans. Audio,
Speech, Lang. Process., vol. 15, no. 4, pp. 1129-1134, May 2007.

[29] T. Petsatodis, C. Boukis, F. Talantzis, Z. Tan, and R. Prasad, “Convex
combination of multiple statistical models with application to VAD,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 8, pp.
2314-2327, Nov. 2011.

[30] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.

[31] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.

[32] Y. Bengio, “Learning deep architectures for Al,” Foundat. Trends® in
Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.

[33] M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive divergence
learning,” in Proc. Int. Conf. Artif. Intell. Stat., 2005, pp. 17-25.

[34] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” Proc. Adv. Neural Inf. Process. Syst.,
vol. 19, pp. 153161, 2007.

[35] G. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” Momentum, vol. 9, pp. 1-19, 2010.

[36] D. Yu, L. Deng, and S. Wang, “Learning in the deepstructured condi-
tional random fields,” in Proc. NIPS Workshop, 2009, pp. 1-8.

[37] D. Yu and L. Deng, “Deep learning and its applications to signal and
information processing [exploratory dsp],” IEEE Signal Process. Mag.,
vol. 28, no. 1, pp. 145-154, Jan. 2011.

[38] R. Collobertand J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proc.
25th Int. Conf. Mach. Learn., 2008, pp. 160—-167.

[39] Z.Jin and D. L. Wang, “Reverberant speech segregation based on mul-
tipitch tracking and classification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 8, pp. 2328-2337, Nov. 2011.

[40] C.L.Hsu, D. L. Wang, J. S. R. Jang, and K. Hu, “A tandem algorithm
for singing pitch extraction and voice separation from music accom-
paniment,” [EEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 5,
pp. 1482-1491, Jul. 2012.

[41] Y. X. Wang, K. Han, and D. L. Wang, “Exploring monaural features for
classification-based speech segregation,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 21, no. 2, pp. 270-279, Jan. 2013.

[42] J. Wu, X. L. Zhang, and W. Li, “A new VAD framework using sta-
tistical model and human knowledge based empirical rule,” in Proc.
Interspeech-10, 2010, pp. 3090-3093.

[43] J. Wu and X. L. Zhang, “An efficient voice activity detection algo-
rithm by combining statistical model and energy detection,” EURASIP
J. Adv. Signal Process., vol. 2011, no. 1, pp. 18-27, 2011.

[44] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S.
Bengio, “Why does unsupervised pre-training help deep learning?,” J.
Mach. Learn. Res., vol. 11, pp. 625-660, 2010.

[45] D. Pearce et al., “The AURORA experimental framework for the per-
formance evaluation of speech recognition systems under noisy condi-
tions,” Proc. ICSLP-00, vol. 4, pp. 29-32, 2000.

709

[46] D. P. W. Ellis, “PLP and RASTA (and MFCC, and Inver-
sion) in Matlab,” 2005 [Online]. Available: http://www.ee.co-
lumbia.edu/~dpwe/resources/matlab/rastamat/

[47] J. Tchorz and B. Kollmeier, “Snr estimation based on amplitude mod-
ulation analysis with applications to noise suppression,” IEEE Trans.
Speech, Audio Process., vol. 11, no. 3, pp. 184-192, May 2003.

[48] G.Kim, Y. Lu, Y. Hu, and P. C. Loizou, “An algorithm that improves
speech intelligibility in noise for normal-hearing listeners,” J. Acoust.
Soc. Amer-., vol. 126, pp. 1486—1494, 2009.

[49] M. Wu, D. L. Wang, and G. J. Brown, “A multipitch tracking algorithm
for noisy speech,” IEEE Trans. Speech, Audio Process., vol. 11, no. 3,
pp. 229-241, May 2003.

[50] G. Hu and D. Wang, “Monaural speech segregation based on pitch
tracking and amplitude modulation,” IEEE Trans. Neural Netw., vol.
15, no. 5, pp. 1135-1150, Sep. 2004.

[51] Z. Jin and D. L. Wang, “A supervised learning approach to monaural
segregation of reverberant speech,” /[EEE Trans. Audio, Speech, Lang.
Process., vol. 17, no. 4, pp. 625-638, May 2009.

[52] G. Hu and D. L. Wang, “A tandem algorithm for pitch estimation
and voiced speech segregation,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 18, no. 8, pp. 2067-2079, Nov. 2010.

[53] Z.Jin and D. L. Wang, “Hmm-based multipitch tracking for noisy and
reverberant speech,” IEEE Trans. Audio, Speech, Lang. Process., vol.
19, no. 5, pp. 1091-1102, Jul. 2011.

[54] C.L.Hsu, D. L. Wang, J. S. R. Jang, and K. Hu, “A tandem algorithm
for singing pitch extraction and voice separation from music accom-
paniment,” IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 5,
pp. 1482-1491, Jul. 2012.

[55] X. Sun, “Pitch determination and voice quality analysis using subhar-
monic-to-harmonic ratio,” in Proc. Int. Conf. Acoust., Speech, Signal
Process., 2002, vol. 1, pp. 333-336.

[56] “Enhanced variable rate codec, speech service option 3 for wideband
spectrum digital systems,” TIA/EIA/IS-127, 2004, 3GPP2 C.S0014-A.

[57] C. W. Hsu, C. C. Chang, and C. J. Lin, “A practical guide to support
vector classification,” 2003 [Online]. Available: http://www.csie.ntu.
edu.tw/~cjlin/papers/guide/guide.pdf

[58] T. Joachims and C. N. J. Yu, “Sparse kernel SVMs via cutting-plane
training,” Mach. Learn., vol. 76, no. 2, pp. 179-193, 2009.

[59] Z. Xu, R. Jin, H. Yang, 1. King, and M. R. Lyu, “Simple and efficient
multiple kernel learning by group lasso,” in Proc. 27th Int. Conf. Mach.
Learn., 2010, pp. 1175-1182.

[60] Y. Bengio, “Deep learning of representations for unsupervised and
transfer learning,” in Proc. ICML Workshop Unsupervised Transfer
Learn., 2011, vol. 7, pp. 1-20.

[61] A.S.Bregman, Auditory Scene Analysis: The Perceptual Organization
of Sound. Cambridge, MA: MIT Press, 1994.

[62] D. L. Wang and G. J. Brown, Computational Auditory Scene Analysis:
Principles, Algorithms and Applications. New York: Wiley-IEEE
Press, 2006.

[63] D. L. Wang and D. Terman, “Locally excitatory globally inhibitory
oscillator networks,” IEEE Trans. Neural Netw., vol. 6, no. 1, pp.
283-286, Jan. 1995.

[64] D. L. Wang, “The time dimension for scene analysis,” /IEEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1401-1426, Nov. 2005.

[65] A. Coates and A. Y. Ng, “Selecting receptive fields in deep networks,”
Proc. Adv. Neural Inf. Process. Syst., vol. 24, pp. 2528-2536, 2011.

[66] K.HuandD. L. Wang, “Unvoiced speech segregation from nonspeech
interference via casa and spectral subtraction,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 19, no. 6, pp. 1600-1609, Aug. 2011.

[67] K. Hu and D. L. Wang, “An unsupervised approach to cochannel
speech separation,” IEEE Trans. Audio, Speech, Lang. Process., vol.
21, no. 1, pp. 122-131, Jan. 2013.

[68] D. Koller and N. Friedman, Probabilistic Graphical Models: Princi-
ples and Techniques. Cambridge, MA: MIT Press, 2009.

[69] S.J. Pan and Q. Yang, “A survey on transfer learning,” /EEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.

[70] F. Sha and B. Kingsbury, “Domain adaptation in machine learning and
speech processing,” in Tutorial of Interspeech-12,2012, pp. 1-214.

[71] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Mach. Learn., 2008, pp. 1096—1103.

[72] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising
autoencoders for domain adaptation,” in Proc. 29th Int. Conf. Mach.
Learn, 2012, pp. 1-8.

[73] Y. X. Wang and D. L. Wang, “Cocktail party processing via structured
prediction,” in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1-8.



710 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 4, APRIL 2013

[74] Q. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. A. Ranzato, J.
Dean, and A. Y. Ng, “Building high-level features using large scale
unsupervised learning,” in Proc. 29th Int. Conf. Mach. Learn., 2011,
pp. 1-8.

Xiao-Lei Zhang (S’08-M’12) received the B.S.
degree in Education Technology from Nanjing
University of Posts and Telecommunications, Nan-
jing, China, in 2005, the M.S. degree in Signal and
Information Processing from Nanjing University,
Nanjing, China, in 2008, and the Ph.D. degree
in Information and Communication Engineering
p from Tsinghua University, Beijing, China, in 2012.

4 He is currently a postdoctoral assistant researcher
, with the Department of Electronic Engineering,
Tsinghua University, Beijing, China. His current
research interests include the topics on machine learning, statistical natural
language processing, audio signal processing, and information retrieval. He
has published over ten journal articles and conference papers. He received the

Student Travel Grant Award from ICASSP2012. He was also conferred with
the Major Award of Tsinghua University in 2011. He is a member of IEEE,
IEEE Signal Processing Society, and ISCA.

Ji Wu (M’06) received his B.S degree and his
Ph.D degree from the Department of Electronic
Engineering, Tsinghua University, in 1996 and 2001
respectively. He is currently an associate professor
and the deputy director of the Department of Elec-
tronic Engineering, Tsinghua University. From 2006,
Prof. Wu is the director of Tsinghua-iFlyTek Joint
Lab for Speech Technologies. He is currently the
leader of TWG (Technical Work Group) of Speech
Industry Alliance of China. His research interests
include speech recognition, natural language pro-
cessing, pattern recognition, machine learning and data mining. Prof. Wu has
published over 60 peer-reviewed papers.



