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Abstract—Recently, a new clustering method called maximum
margin clustering (MMC) was proposed and has shown promising
performances. It was originally formulated as a difficult noncon-
vex integer problem. To make the MMC problem practical, the
researchers either relaxed the original MMC problem to inefficient
convex optimization problems or reformulated it to nonconvex
optimization problems, which sacrifice the convexity for efficiency.
However, no approaches can both hold the convexity and be
efficient. In this paper, a new linearithmic time sparse and convex
MMC algorithm, called support-vector-regression-based MMC
(SVR-MMC), is proposed. Generally, it first uses the SVR as the
core of the MMC. Then, it is relaxed as a convex optimization
problem, which is iteratively solved by the cutting-plane algo-
rithm. Each cutting-plane subproblem is further decomposed to
a serial supervised SVR problem by a new global extended-level
method (GELM). Finally, each supervised SVR problem is solved
in a linear time complexity by a new sparse-kernel SVR (SKSVR)
algorithm. We further extend the SVR-MMC algorithm to the
multiple-kernel clustering (MKC) problem and the multiclass
MMC (M3C) problem, which are denoted as SVR-MKC and
SVR-M3C, respectively. One key point of the algorithms is the
utilization of the SVR. It can prevent the MMC and its extensions
meeting an integer matrix programming problem. Another key
point is the new SKSVR. It provides a linear time interface to
the nonlinear kernel scenarios, so that the SVR-MMC and its
extensions can keep a linearthmic time complexity in nonlinear
kernel scenarios. Our experimental results on various real-world
data sets demonstrate the effectiveness and the efficiency of the
SVR-MMC and its two extensions. Moreover, the unsupervised
application of the SVR-MKC to the voice activity detection (VAD)
shows that the SVR-MKC can achieve good performances that are
close to its supervised counterpart, meet the real-time demand of
the VAD, and need no labeling for model training.

Index Terms—Clustering, maximum margin, multiple-kernel
learning (MKL), unsupervised learning, voice activity detection
(VAD).

I. INTRODUCTION

C LUSTERING finds a structure in a collection of unlabeled
data and has been identified as a significant technique

for many applications, such as classification of documents,
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marketing analysis, biology [1], human–computer interaction
systems [2], and city planning. Since the early works in
k-means clustering [3]–[5], data clustering has been studied
for years, and many algorithms have been developed, such as
mixture model [6], fuzzy clustering [7], [8], spectral clustering
[9]–[11], graph-theoretic clustering [12], mean-shift clustering
[13], [14], and agglomerative mean-shift clustering [15].

Recently, the maximum margin clustering (MMC) technique
has attracted much attention [16]. It borrows the idea of the
large margin from support vector machine (SVM) [17]. Unlike
the support vector clustering [18]–[20], which aims at finding
the smallest sphere in the feature space that encloses the images
of the data and has a weak control on the number of clusters,
MMC aims at finding not only the maximum margin hyperplane
in the feature space but also the optimal label pattern, such that,
if an SVM trained on the optimal label pattern, the optimal
label pattern will yield the largest margin among all possible
label patterns {y|y = {yi}ni=1}, where n is the number of
samples and yi denotes the possible class of the ith sample.
However, unlike supervised SVM, which is formulated as a
convex optimization problem, the MMC is formulated as a
nonconvex integer optimization problem, which is difficult to
solve. Because of this, there are two research directions over
MMC, i.e., how to relax the nonconvex integer MMC problem
to a convex problem and how to decrease the time and storage
complexities of the MMC.

Originally, Xu et al. [16] relaxed the integer label matrix
M = yyT in the dual form of the MMC to a semidefinite
matrix and eventually reformulated the MMC problem to a
convex semidefinite programming (SDP) problem. The experi-
mental results showed that the MMC often achieved more accu-
rate results than conventional clustering methods. Valizadegan
and Jin [21] further proposed the generalized MMC (GMMC)
method that reduces the number of parameters from O(n2) in
[16] to O(n). The GMMC has accelerated MMC by a factor
of 100 times. However, the algorithms previously mentioned
are formulated as SDP problems, which make them computa-
tionally intolerable when the data sets contain over hundreds
of samples. As an example, for multiclass problems, the time
complexity of the SDP-based method is as high as O(n6.5) [22].

In order to solve the MMC problem efficiently, several ap-
proaches sacrificed the convexity for efficiency [23]–[30]. For
example, Zhang et al. [24], [25] proposed an alternative opti-
mization algorithm, called iterative support vector regression
(IterSVR), which converts the MMC problem to serial SVM
training problems. Although the IterSVR has an empirical time
complexity scaled between O(n) and O(n2.3), an auxiliary
clustering algorithm is necessary for a good guess of its initial
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label vector, and there is no guarantee on how fast it can
converge. Zhao et al. [26] and Wang et al. [27] proposed a linear
time cutting-plane MMC (CPMMC) algorithm. It employs the
constrained concave–convex procedure (CCCP) [31], [32] to
decompose the MMC problem into serial supervised SVM
problems, and it uses the linear time cutting-plane SVM solver
[33], [34] to solve each SVM problem. Because the CCCP is
a nonconvex optimization tool, the CPMMC algorithm suffers
from local minima. Moreover, its linear time complexity is re-
stricted to the linear kernel; the nonlinear kernel is accessed by
kernel decompositions, such as the kernel principle components
analysis (KPCA) [35], [36] or the Cholesky decomposition
[37], which results in an additional time complexity of at
least O(n2) [38], [39]. This weakness is rather explicit in its
extension to the unsupervised multiple-kernel learning (MKL),
called multiple-kernel clustering (MKC), which mainly works
in nonlinear kernel-induced feature spaces [40].

To avoid nonconvexity and SDP simultaneously, more re-
cently, Li et al. [41] proposed the convex label-generating
MMC (LG-MMC), which has time and storage complexities of
O(n2). It first relaxes the MMC problem by constructing a con-
vex hull [42] on all feasible label matrices M and then solves
the relaxed MMC problem approximately via the cutting-plane
algorithm (CPA) [33]. Not only the LG-MMC is much faster
than its previous convex relaxation methods [16], [21], but also,
the convex relaxation method of the LG-MMC, which is to
construct a convex hull [42] on all feasible label matrices M,
M = yyT , is the tightest convex relaxation of M. However,
LG-MMC still seems time consuming on large-scale data sets
(as shown in Section IX). Aside from the utilization of the
simple MKL solver [43], constructing a convex hull on the
integer matrix M hinder the LG-MMC from utilizing efficient
SVM solvers to further lower the overall time complexity.

In this paper, we propose a new MMC algorithm called SVR-
MMC. Specifically, we use the Laplacian-loss SVR [44], [45]
as the core of the MMC. Then, we relax the SVR-based MMC
problem to a convex optimization problem by constructing a
convex hull on the integer label vector y of the new objec-
tive, which is a similar convex formulation method with the
LG-MMC in [41]. The relaxed problem is iteratively solved by
CPA. Moreover, in each cutting-plane iteration, a single cutting-
plane subproblem is further decomposed to a serial supervised
SVR learning problems by a new global extended-level method
(GELM). At last, we apply the cutting-plane subspace pursuit
(CPSP) algorithm [33], [34], [46], [47], which is a combination
of the CPA and the sparse-kernel estimation techniques [38],
[48], to solve each SVR problem.

For real-world applications, we also extend the SVR-MMC
to the MKC scenario and the multiclass MMC (M3C) scenario,
which are denoted as SVR-MKC and SVR-M3C, respectively.

Technically, the following two items are important for the
advantages of the proposed algorithms.

1) Using the SVR [44], [45] as the core prevents the MMC
and its extensions meeting an integer matrix program-
ming problem. Therefore, we can utilize efficient super-
vised SVM techniques to lower the time and storage
complexities of the proposed algorithms.

2) Using the sparse-kernel estimation techniques [38], [48]
makes the MMC and its extensions work in linear time
complexities with nonlinear kernels. This utilization is
rather important. As we know, the discriminability of
large margin methods can be greatly improved in the
framework of kernel learning.

The main contributions of this paper are as follows.

1) The SVR-MMC is both effective and efficient. From the
respect of the effectiveness, the SVR-MMC is formulated
as a convex one, such that a global minimum solution is
available. From the respect of the efficiency, the follow-
ing are considered: 1) In the linear kernel scenario, the
SVR-MMC has the lowest time complexity among the
convex MMC algorithms [16], [21], [41]. It also achieves
a comparable time complexity with the fastest nonconvex
MMC algorithm [26]. 2) In the nonlinear kernel scenar-
ios, the SVR-MMC is the most efficient one in existing
MMC algorithms.

2) The SVR-MKC and the SVR-M3C maintain all proper-
ties and advantages of the SVR-MMC.
a) The SVR-MKC is not only formulated as a convex one

but also much faster than the existing nonconvex MKC
algorithm [40].

b) The SVR-M3C is a convex M3C method. It is much
faster than its previous convex M3C algorithm [22],
which scales with O(n6.5) in time. It achieves a
comparable time complexity with the nonconvex M3C
[27], [49] in the linear kernel scenario. It is the most
efficient one in the nonlinear kernel scenarios.

The rest of this paper is organized as follows: In Section III,
we briefly introduce some works related to this paper. In
Section IV, we present a new SVR-MMC algorithm. In
Section V, we present the multiple-kernel extension of the
SVR-MMC, which is called SVR-MKC. In Section V, we pre-
sent the multiclass extension, i.e., SVR-M3C. In Section VII,
we explain in brief why we use SVR. In Section VIII, we
analyze the time and storage complexities of the proposed
algorithms briefly. In Section IX, we report the experimental
results on various data sets and further apply the SVR-MKC
algorithm to the voice activity detection (VAD). Finally, we
conclude this paper in Section X.

II. NOTATIONS

We first introduce some notations here. Bold small letters,
e.g., w and α, indicate vectors. Bold capital letters, e.g., K
indicate matrices. Letters in calligraphic bold fonts, e.g., A, B,
Y , and R, indicate sets, where R

n denotes an n-dimensional
real space. 0 (1) is a vector with all entries being 1 (0). Operator
T denotes the transpose. Operator ◦ denotes the element-wise
product, and 〈x,y〉 defines the inner product of x and y. Op-
erator ‖ · ‖m denotes the m-norm, where m is a constant. The
abbreviation “s.t.” is short for “subject to.” E(α;β) denotes
function E with parameters α and β.
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III. RELATED WORKS

A. CPA

Recently, the CPA [33] has been employed into SVM, such
as SVMperf [34], [50], [51] and bundle method based risk
minimization [46]. It lowers the complexity of large-scale SVM
problems significantly. In CPA terminology, a problem with a
full constraint set is called a master problem [47], whereas a
problem with only a constraint subset from the full set is called
a reduced problem or a cutting-plane subproblem.

Generally, CPA begins with a reduced problem that only has
an empty working constraint set and then iterates two steps.

1) Solve the reduced problem.
2) Add one most violated constraint at the current solution

point from the full set to the working constraint set, so as
to form a new reduced problem.

If the newly generated constraint violates the solution of
the reduced problem by no more than ε, CPA can be stopped,
where ε is a user-defined cutting-plane solution precision. It has
been proved that the number of the iterations scales only with
O(1/ε) [46].

B. MMC

MMC is to extend the theory of the supervised SVM to the
unsupervised learning scenario. Given the unlabeled samples
{xi}ni=1 with xi ⊆ R

d, MMC aims to find their best labels y =
{yi}ni=1, such that an SVM trained on {(x1, y1), . . . , (xn, yn)}
will yield the largest margin. It can be formulated as the
following computational optimization problem:

min
y∈B0

min
w,b

1

2
|w|2 + C�

(
{fw,b(xi)}ni=1 ,y

)
(1)

where set B0 = {y|yi ∈ {±1},−l ≤ 1Ty ≤ l} with l ≥ 0 be-
ing a constant and � is the empirical risk of function f . f
takes a linear form with hyperplane parameters w and b as
fw,b(x) = wTφ(x) + b, where φ(·) is the mapping function
that is to map xi into a (possibly) high-dimensional kernel-
induced feature space. Constraint −l ≤ 1Ty ≤ l in B0 was
added in [16] to avoid classifying all samples to only one class
with a very large margin.

Unfortunately, unlike the supervised SVM, the MMC
was formulated as a difficult nonconvex mixed-integer-
programming (MIP) problem. Researchers have tried several
approaches to reformulate this problem for its practical use.
However, these approaches either reformulated MMC as non-
convex optimization problems or relaxed it as inefficient convex
optimization problems. For the nonconvex formulation methods
[23]–[28], [30], the CPMMC [26], [27] has linear time and
storage complexities with the linear kernel. For the convex
relaxation methods [16], [21], [41], the LG-MMC is the tightest
convex relaxation of the original MMC problem and has time
and storage complexities of O(n2).

Summarizing the aforementioned, no method can both main-
tain the convexity and have a linear time complexity. In this
paper, we will try to solve this problem.

C. MKL

The success of the kernel methods, such as SVM and MMC,
strongly relies on a good selection of the kernel representa-
tions/functions/models of data samples. The kernel function is
specified by the inner product of data points mapped in a kernel-
induced feature space, e.g., K(·, ·) = 〈φ(·), φ(·)〉. Recently, the
problem of learning the optimal kernel functions has attracted
much attention. One of the essential kernel learning methods is
the MKL [43], [52]–[57].

Given Q mapping functions φ1(x), φ2(x), . . . , φQ(x) corre-
sponding with Q base kernel functions K1, . . . ,KQ, the MKL
tries to find an optimal linear combination of the multiple
predefined kernel functions Kq , q = 1, . . . , Q, (referred to as
base kernel functions) by minimizing the following nonconvex
optimization problem:

min
w,b,θ≥0

1

2
‖w‖2 + C�

(
{fw,b,θ(xi)}ni=1 ,y

)
s.t. J(θ) ≤ 1

(2)
where � is the empirical risk of function f and � is supposed to
be a convex function, θ = {θq}Qq=1 is the kernel weight vector
that needs to be learned from the samples, J(θ) ≤ 1 is the
convex constraint on θ, and fw,b,θ(x) is defined as

fw,b,θ = wTφθ(x) + b =

Q∑
q=1

√
θqw

T
q φq(x) + b (3)

where (w, b) are the hyperplane parameters of the MKL,
weight w is defined as w = [wT

1 , . . . ,w
T
Q]

T , and the
composite feature mapping φθ(·) is defined as φθ(·) =
[
√
θ1φ1(·)T , . . . ,

√
θQφQ(·)T ]T .

As the authors in [55] and [58] did, the nonconvexity of (2)
can be avoided by applying the variable transformation vq =√
θqwq . Hence, problem (2) can be reformulated as

min
v,b,θ≥0

1

2

Q∑
q=1

‖vq‖2
θq

+ C�
(
{fv,b(xi)}ni=1 ,y

)
s.t. J(θ) ≤ 1

(4)
where v = [vT

1 , . . . ,v
T
Q]

T and fv,b(x) is defined as

fv,b(x) =

Q∑
q=1

vqφq(x) + b. (5)

Another challenge work is on the computation of MKL.
Due to the efficiency in solving SVM, a number of SVM-
based techniques have been proposed to alleviate the compu-
tational burden of MKL. Examples include sequential minimal
optimization [53], quadratically constrained quadratic program-
ming [55], semi-infinite linear programming [54], gradient
method [43], [59], and extended level method (ELM) [56], [57].
Many of the MKL techniques belong to the wrapping-based
methods. In the wrapping-based methods, the first step is to
search for the optimal v, b by an SVM solver given θ. The
second step is to renew θ to further decrease the objective value
of the MKL given v and b.

However, traditional MKL researches are mostly focused on
the supervised machine learning scenario; the MKL problem in
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the unsupervised learning scenario is an insufficiently explored
research topic yet. Only recently, Zhao et al. [40] proposed
an unsupervised MKL algorithm, called cutting-plane MKC
(CPMKC). The CPMKC is a multiple-kernel extension of the
MMC. It employs the CCCP [31], [32] to decompose the MKC
problem to a serial convex second order cone programming
(SOCP) problems, which can be solved in a similar way with
[53] in polynomial time. The experimental results showed that
the CPMKC algorithm can lead to better clustering results than
the single-kernel-based CPMMC algorithm [26], [27] and can
moreover emphasize those most powerful kernel functions in
a given application. However, because CCCP is a nonconvex
optimization tool, the CPMKC algorithm suffers from local
minima. In the respect of efficiency, current SOCP solvers are
still too slow to meet the command of large-scale problems,
and the CPMKC algorithm has to first calculate each full base
kernel matrix in time O(n2). Then, it gets explicit expressions
of the data samples in each kernel-induced feature space by
some expensive kernel matrix decomposition methods, such as
KPCA [35].

Summarizing the aforementioned, the CPMKC suffers from
local minima and seems still inefficient in dealing with large-
scale problems.

1) ELM: Here, we introduce a state-of-the-art MKL method
that will be later used in our proposed methods.

The level method [60] is from the family of bundle meth-
ods. It has recently been extended to efficiently solve MKL
problems [56], [57]. However, the core idea of the ELM is
irrelevant to the MKL problem itself. Given a concave–convex
objective function E(θ;α) that is convex on θ and concave on
α, the ELM is to provide a serial increasingly tight (upper and
lower) bounds for the optimal objective value E(θ�;α�), where
(θ�,α�) denotes the optimal solution. Generally speaking, it
iterates the following two steps until convergence.

For the first step, it solves the concave problem
maxα E(θj ;α) with known θj so as to get αj , where j
denotes the current ELM iteration number.

For the second step, it aims to obtain θj+1 by projecting
θj into a level set Lj that is constructed from the last j

solutions {(θi,αi)}ji=1. Specifically, for any optimal solution
(θ�,α�), we have the fact that E(θ�;α) ≤ maxα E(θ�;α) =
E(θ�;α�) = minθ E(θ;α�) ≤ E(θ;α�). By utilizing the in-
equality, we can find the following lower bound Ej and upper
bound E

j
of the objective E(θ;α):

Ej = min
θ

hj(θ) E
j
= min

1≤i≤j
E(θi;αi)

where hj(θ) = max1≤i≤j E(θ;αi) is a cutting-plane model.
Then, a level set, which specifies the set of solutions where the
objective E(θ;α) is bounded by Ej and E

j
, can be defined

as Lj = {θ|hj(θ) ≤ V j = τE
j
+ (1− τ)Ej}. Finally, θj+1

is obtained by projecting θj into the level set Lj , which is
formulated as the following optimization problem:

min
θj+1

‖θj+1 − θj‖2 s.t. E(θj+1;αi)≤V j ∀i=1, . . . , j.

We call the construction of the level set and the projection
process as the projection function.

D. Multiclass Classification

Multiclass classifiers are more useful than binary class clas-
sifiers in our real-world life. Also, multiclass classification
problem is a very broad research area. In this paper, we focus
on the large margin related topics.

The SVM was originally proposed to tackle binary-class
problems only [17]. To make it available for a multiclass
problem, the error-correcting output code (ECOC) was intro-
duced [61]. It decomposes the multiclass problem to a serial
binary-class problem and then manipulates on the outputs of
the dichotomizers. The ECOC belongs to the category of the
classifier ensembles [62]–[66]. Generally, the ECOC has two
research directions. One is called the problem-independent
coding design, which tries to find a code set that has a good
error-correcting ability without taking the characteristics of the
data set into consideration. The common one-versus-one and
one-versus-all codes belong to this class [67]. The other is
called the problem-dependent coding design, which tries to find
a code set that dedicates to a given data set [68]–[73].

One of the well-known problem-dependent coding design is
the multiclass SVM that is proposed in [69]. In the beginning,
they try to find the optimal problem-dependent binary codes,
which results in a MIP problem. To avoid MIP, they relaxed
the binary codes to continuous codes. Finally, they formulate
a “multiclass SVM” objective, which can be solved in time
O(n2). There are also several similar works that try to solve
multiclass problems in a single objective with large margin
thoughts [74]–[80].

Compared with the ECOC-based multiclass SVM [69], the
multiclass SVR approaches seem more natural for multiclass
problems [79], [80]. They just assign each class a unique
codeword and try to find the classification parameters that are
the most suitable ones to the codewords [80].

For the unsupervised multiclass SVM, which is also known
as M3C, it still has no uniform solution framework. Because
label y is generalized from a binary integer value, e.g.,
{−1,+1}, to a multiple integer value, the M3C problem seems
more complicated than the binary-class MMC problem. Cur-
rently, there are only two M3C techniques. The first M3C
method is a convex one that is based on SDP [22]. It has a time
complexity as high as O(n6.5). The second one is a nonconvex
one, named cutting-plane M3C (CPM3C) [49]. The CPM3C is
solved in the framework of CCCP in linear time with the linear
kernel, but it suffers from local minima and is inefficient with
nonlinear kernels.

Here comes the question. Can we solve M3C problem effi-
ciently with a global optimum solution?

E. Overview of the Related Work

Our SVR-MMC can be seen as a technical combination of
CPA [33], ELM [56], [57], LG-MMC [41], and the single kernel
SVMperf [34], [50], [51] solver. The CPA provides an efficient
framework of solving a problem that has a large number of
constraints. The ELM provides an efficient wrapping-based
method for the concave–convex problem that our MMC will
meet. The LG-MMC provides a convex relaxation method for
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the MIP problem that our MMC will meet. The SVMperf solver
provides several efficient algorithms for our SVR subproblem.
It also provides linear time interfaces to nonlinear kernels, but
all the aforementioned techniques have been revised for our
special task.

Our SVR-MKC and SVR-M3C are natural extensions of the
SVR-MMC, with the SVR replaced by the multiple-kernel SVR
and the multiclass SVR, respectively.

IV. SVR-BASED MMC

In this section, we will first present an SVR-based MMC
objective, which will be relaxed as a concave–convex optimiza-
tion problem. Then, we will solve the relaxed problem by the
CPA. Each cutting-plane subproblem is further decomposed to
a serial supervised SVR problem by a new GELM. Finally, each
SVR problem will be solved by the CPSP algorithm.

A. Objective Formulation

As analyzed in Section VII, existing convex MMC algo-
rithms operate on the label matrix M = yyT . The difficulty
with M lies in the fact that we have to either minimize the
objective function with O(n2) parameters [16] or do a serial
heavy computations related to M [41]. Therefore, we should
redefine the MMC objective so as to avoid operating on M.
The SVR provides us this feasibility.

Originally, given a training set of n examples {(xi, yi)}ni=1

with yi ∈ R, the SVR is used to estimate the linear regression
f(x) = wTφ(x) with precision ε [81], [82].1 For this, we
minimize2

1

2
‖w‖2 + C

n

n∑
i=1

|yi − f(xi)|ε

where | · |ε is the ε-insensitive loss function defined as

|z|ε = max{0, |z| − ε}.

Written as a constraint optimization problem, it amounts to
the following problem:

min
w,ξi≥0,ξ∗

i
≥0

1

2
‖w‖2 + C

n

n∑
i=1

(ξi + ξ∗i )

s.t. yi −wTφ(xi) ≤ ε+ ξi,

− yi +wTφ(xi) leqε+ ξ∗i ∀i = 1, . . . , n.

If we use SVR as a binary-class classifier, we just need to
restrict yi to {−1, 1}.

In this paper, we focus on the SVR with ε = 0, which is the
Laplacian-loss SVR [44], [45], i.e.,

min
w,ξi≥0,ξ∗

i
≥0

1

2
‖w‖2 + C

n

n∑
i=1

(ξi + ξ∗i )

1The bias term b is not considered.
2To better capture the scaling behavior of C, we divide it by n.

s.t. yi −wTφ(xi) ≤ ξi,

− yi +wTφ(xi) ≤ ξ∗i ∀i = 1, . . . , n. (6)

The empirical risk of the SVR is �l = (1/n)
∑n

i=1(ξi +
ξ∗i ) = (1/n)

∑
i |yi −wTφ(xi)| = (1/n)

∑
i |1−

yiw
Tφ(xi)|, which is similar to the squared hinge loss

�s =
∑n

i=1 ξ
2
i =

∑
i(1− yiw

Tφ(xi))
2 in [41].

Here, we use the Laplacian-loss SVR as the core of the MMC
problem. The new MMC problem is formulated as follows:

min
y∈B0

{
min

w,ξi≥0,ξ∗
i
≥0

1

2
‖w‖2 + C

n

n∑
i=1

(ξi + ξ∗i )

s.t. yi −wTφ(xi) ≤ ξi,

− yi +wTφ(xi) ≤ ξ∗i , ∀i = 1, . . . , n

}
. (7)

1) One-Slack Formulation: Objective (7) has 2n unknown
slack variables. Inspired by the formulation method of the
efficient SVMperf solver [34], [50], [51], now, we will reduce
the number of slack variables from 2n to 1 by reformulating
problem (7) into the following optimization problem:

min
y∈B0

{
min
w

1

2
‖w‖2 + Cξ

s.t.
1

n

n∑
i=1

giyi −
1

n

n∑
i=1

giw
Tφ(xi)≤ξ, ∀g ∈ {1,−1}n

}
. (8)

Problems (7) and (8) are equivalent in the following theorem.
Theorem 1: Any solution (w,y) of problem (8) is

also a solution of problem (7) and vice versa, with ξ =
(1/n)

∑n
i=1(ξi + ξ∗i ).

Proof: The proof of Theorem 1 is provided in
Appendix A. �

We are to solve (8) in the dual of the SVR in the brackets as
follows:

min
y∈B0

max
α∈A

E(y;α) (9)

where the semicolon “;” is used to separate different parame-
ters, α = {αi}2

n

i=1 is a dual variable vector with 2n elements,
A = {α|αT1 ≤ C,α ≥ 0}, and E(y;α) is defined as

E(y;α) = αTGTy − 1

2
αTGTKGα. (10)

We can also get w as

w =

2n∑
k=1

αk

(
1

n

n∑
i=1

gk,iφ(xi)

)
. (11)

B. Convex Relaxation

Problem (9) is formulated as a difficult nonconvex MIP
problem. In MMC studies, there are several convex relaxation
works [16], [21], [41] on the label matrices M = yyT , where
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global minima can be achieved. We follow the convex relax-
ation method in [41] and construct a convex hull [42] on all
feasible label vectors y directly, which is the tightest convex
relaxation on y.

According to the minimax theorem [83], the optimal objec-
tive of (9) is an upper bound of maxα miny E(y;α), which
means that problem (9) can be rewritten as

max
α∈A

{
max

θ
−θ s.t. θ ≥ −E(yk;α), ∀yk ∈ B0

}
.

(12)
We are to solve the subproblem in the brace of (12) in its

dual, so that problem (12) can be formulated as the following
concave–convex optimization problem:

max
α∈A

min
y′∈B1

E(y′;α) = min
y′∈B1

max
α∈A

E(y′;α) (13)

where B1 = {y′|y′ =
∑

k:yk∈B0
μkyk,μ ∈ M} is the convex

hull of B0. Until now, we have constructed a convex hull
directly on all feasible label vectors.

C. Solving the Convex Optimization Problem

Problem (13) [or (12)] can be also rewritten as

min
μ∈M

max
α∈A

E

⎛
⎝ ∑

k:yk∈B0

μkyk;α

⎞
⎠ . (14)

It is clear that the problem is convex on μ and concave on
α. However, solving problem (14) directly is difficult, since
the lengths of unknown parameter vectors μ and α grow
exponentially with the data set size.

In this subsection, we are to solve problem (14) approxi-
mately with the thoughts of CPA. An overview of the solution
are first given as follows:

Layer 1 We first reduce the computational load on μ by CPA.
For each CPA iteration, we first solve the cutting-plane
subproblem of the master problem (14), which will be
shown as (15). Then, we calculate the most violated y.

Layer 2 Because each cutting-plane subproblem (15) is also
a concave–convex optimization problem, it can be ap-
proximately solved by the ELM algorithm (described in
Section III-C1). However, because solving each problem
(15) independently via ELM cannot guarantee the conver-
gence of the CPA, we further propose to solve each cutting-
plane subproblem (15) by ELM with all historical ELM
information. The new method is called GELM.

Layer 3 As presented in Section III-C1, the ELM for problem
(15) contains two steps. The first step is to get α with
fixed μ by solving an SVR problem. The second step is
to get μ with fixed α by the projection function. For the
first step, because the parameter vector α might be large,
the CPSP algorithm, which is a combination of the CPA
and the sparse-kernel estimation techniques, is employed
to solve the SVR problem approximately. The new method
is called sparse-kernel SVR (SKSVR).

Now, we present the aforementioned method in detail.

1) Layer 1: Solving Problem (14) via CPA: From the fact
that most constraints of problem (12) can be inactive, we know
that most elements of μ in (14) can be zero, since μ is the
Lagrangian variable vector of the constraints in (12). Thus, we
are to solve the MMC problem (14) iteratively by CPA [33].
The CPA iterates the following two steps until convergence.

The first step is to solve the current cutting-plane subproblem
of (14), which is formulated as

min
μ∈M|Ω|

max
α∈A

E

⎛
⎝ |Ω|∑

k=1

μkyk;α

⎞
⎠ (15)

where the cutting-plane working constraint set Ω is Ω = {y1,

. . . ,y|Ω|}, |Ω| is the size of Ω, and M|Ω| = {μ|
∑|Ω|

k=1 μk =
1,μ ≥ 0}. The method of solving (15) will be presented later
in this subsection.

The second step is to calculate the most violated constraint y
of problem (12).

Theorem 2: Given solution (μ,α) of the cutting-plane sub-
problem (15), the most violated y can be obtained by solving
the following simple binary-integer-linear-programming prob-
lem:

min
y∈B0

αTGTy (16)

which can be efficiently solved in the same way as [41, Propo-
sition 2] in time O(n log n) without any numeric optimization
solver.

Proof: The proof of Theorem 2 is provided in
Appendix B. �

After obtaining the most violated y, if −E(y;α) ≤
−E(

∑|Ω|
k=1 μkyk;α) + η, the CPA can be stopped; otherwise,

we add y to Ω and continue, where η is a user-defined cutting-
plane solution precision.

2) Layer 2: Solving the Cutting-Plane Subproblem (15)
via GELM: At first glance, we can solve each cutting-plane
subproblem (15) independently (locally) via ELM since the
subproblem is a concave–convex optimization problem.

However, although the objective value of a reduced cutting-
plane subproblem is monotonic w.r.t. the number of the ELM
iterations, the ELM does not guarantee the convergence behav-
ior of the master problem of the CPA.

To overcome the problem, we will try ELM to solve the
master problem (14) globally but not to solve serial reduced
problems (15) locally. The key point of solving the master
problem (14) globally is to make sure that the objective value
of the previous cutting-plane subproblem is an upper bound of
that of the successive cutting-plane subproblem. For this, the
ELM of the successive cutting-plane subproblem should start
at the terminating point of the previous one by inheriting all
previous ELM solutions that account for the objective value
of the previous one.

Suppose the ith ELM solution of the (current) |Ω|th cutting
plane subproblem (15) is (μi

|Ω|,α
i
|Ω|). Suppose the previous kth

cutting-plane subproblem needs Tk ELM iterations to converge
and yields Tk ELM solutions denoted as {(μi

k,α
i
k)}

Tk
i=1, where

k = 1, . . . , |Ω| − 1.
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Fig. 1. Convergence behavior comparison of (left) the GELM- and (right) local ELM-based MMC.

Theorem 3: To guarantee the convergence of the CPA,
the ELM solutions {(μi

k,α
i
k)}

Tk
i=1 of the kth cutting-plane

subproblem (15) should be inherited by the |Ω|th (|Ω| > k)
cutting-plane subproblem by adding each μi

k with |Ω| − k
zeros.

Proof: The proof of Theorem 3 is provided in
Appendix C. �

From this point of view, the CPA and the ELM algorithm are
combined together. We call the combination of the CPA and the
ELM as the GELM algorithm.

Fig. 1 gives a convergence behavior comparison of
the GELM-based MMC (left) and the local ELM-based
SVR-MMC (right). From the right figure, we can clearly see
that, although the objective values of the ELM within any
cutting-plane subproblem decrease w.r.t. the ELM iterations,
the objective values of the cutting-plane subproblems do not
rigorously decrease w.r.t. the number of the cutting-plane iter-
ations, whereas we can see from the left figure that the GELM
guarantees the convergence of the CPA.

The detailed processes of the GELM algorithm for a single
cutting-plane subproblem (15) are presented below.

Initialization of the GELM: The first thing in this step is
to inherit all historical ELM solutions for the (current) |Ω|th
cutting-plane subproblem (15). The inheritance can be realized
by adding μi

k with |Ω| − k zeros

μ′i
k =

[
μi

k

0|Ω|−k

]
∀k = 1, . . . , |Ω| − 1, i = 1, . . . , Tk (17)

so as to make μ′i
k the same length as μ.

Main procedure of the GELM: After inheriting the histori-
cal ELM solutions, problem (15) can be solved in the same way
as the ELM. It iterates two steps until the ELM converges.

a) Suppose we are currently at the uth ELM iteration of
the |Ω|th cutting-plane subproblem. We have all the last ELM
solutions chronologically as

{
(μi,αi)

}j−1

i=1
=

{{(
μ′i

k,α
i
k

)}Tk

i=1

}|Ω|−1

k=1

∪
{(

μi
|Ω|,α

i
|Ω|

)}u−1

i=1
(18)

and solution μj of current ELM iteration, where j =∑|Ω|−1
k=1 Tk + u is the total number of all last ELM

iterations.
In this step, we need to get αj by solving the following

concave SVR problem:

max
α∈A

E(y∗;α) (19)

with y∗ defined as y∗ =
∑|Ω|

k=1 μk
jyk, where μk

j denotes the
kth elements of μj .
Because problem (19) has 2n unknown parameters, its difficult
to solve it directly when the data set is large scale. Here,
we employ the CPSP algorithm [34], [50], [51], [84] to solve
problem (19) approximately with a sufficient estimation preci-
sion. The estimation algorithm is called SKSVR, which will be
presented in Section IV-D. The SKSVR algorithm is denoted
as the SKSVR function, which has linear time and storage
complexities.

b) The lower and upper bounds of the master problem (15)
is calculated as

Ej = min
μ

hj(μ);E
j
= min

1≤i≤j
E(y∗;αi) (20)

where hj(μ) = max1≤i≤j E(
∑|Ω|

k=1 μkyk;α
i). Then,

we use the bounds to construct the level set of ELM
and obtain μj+1 by the projection function (defined in
Section III-C1).

3) Layer 3: Solving the SVR Problem (19) via CPSP
Algorithm: Because the CPSP-based SVR can be indepen-
dently used as a supervised SVR toolbox, we present this part
as a separate section. See Section IV-D.

Algorithm 1 SVR-MMC.

Input: Data set x̄ = {xi}ni=1, regularization constant C, cut-
ting plane solution precision η, ELM solution precision τ ,
CPSP solution precision ε, and parameter l that controls the
class imbalance.
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Initialization: Arbitrary initial constraint labels y1 (−l ≤
1Ty1 ≤ l), cutting-plane working constraint set Ω ←
{y1}, |Ω| ← 1, μ1 ← 1, and the historical ELM solution
set J ← ∅, j ← 0.

Output: ŷ.
1: repeat
2: repeat
3: j ← j + 1

4: y∗ ←
∑|Ω|

k=1 μ
j
kyk

5: (αj ,Gj , {βj , K̂j}) ← SKSVR(x̄;y∗;C; ε)

6: J ← J ∪ (μj ,αj ,Gj , {βj , K̂j})
7: μj+1 ← projection(J ;Ω)
8: until ‖μj − μj+1‖2 ≤ τ

9: y|Ω|+1 ← miny∈B0
αjTGjTy

10: Ω ← Ω ∪ y|Ω|+1

11: for jj = 1, . . . , j do
12: μjj ← [μjjT , 0]T

13: end for
14: ξ′ ← −αjTGjTy|Ω|+1, and ξ ← −αjTGjTy∗

15: |Ω| ← |Ω|+ 1
16: until ξ′ ≤ ξ + η or Ω is unchanged
17: for i = 1, . . . , n do
18: ŷi ← sign(

∑
t α

j
tβ

j
tK(bt,xi))

19: end for

D. Linear Time SKSVR

In this subsection, we will solve problem (19) in linear time
and storage complexities in both the linear kernel scenario and
the nonlinear kernel scenarios by CPSP [34], [50], [51]. Specif-
ically, we will first solve problem (19) by CPA. Then, we will
overcome the computational burden of nonlinear kernels via
sparse-kernel estimation techniques [84]. Finally, the SKSVR
algorithm is summarized in Algorithm 2.

Algorithm 2 SKSVR.

Input:Data set x̄ = {xi}ni=1, label vector y∗, regularization
constant C, and CPSP solution precision ε.

Initialization:Arbitrary initial CPSP constraint vector g1,
CPSP working constraint set Ωg ← {g1}, and z ← 1.

Output: (α,Gz, {β, K̂}).
1: repeat
2: (βz,bz) ← estimate_basis(x̄,gz)

3: K̂ = [〈φ(bk), φ(bl)〉]zk,l=1

4: Get Gz from Ωg: Gz ← [g1, . . . ,gz]
5: Solve the quadratic programming problem (26), and get

the objective value O and α.
6: ŵ ≡

∑z
t=1 αtβtφ(bt)

7: Calculate the most violated gz+1 from (24).
8: Renew Ωg: Ωg ← Ωg ∪ gz+1.
9: Calculate ξ̂′ from (25).
10: ξ̂ ← (O − (1/2)‖ŵ‖2)/C
11: z ← z + 1
12: until ξ̂′ ≤ ξ̂ + ε.

1) CPA: Solving the master problem (19) by CPA needs to
iterates two steps.

The first step is to solve a cutting-plane subproblem, i.e.,

max
α∈Az

αTGT
z y

∗ − 1

2
αTGT

z KGzα (21)

where the current cutting-plane working constraint set
is Ωg = {g1, . . . ,gz} with z denoted as the size of
Ωg , Az = {α|αT1 ≤ C,αt ≥ 0, t = 1, . . . , z}, and Gz =
[g1,g2, . . . ,gz]. The primal of problem (21) is written as

min
w,ξ≥0

1

2
‖w‖2 + Cξ s.t.

1

n

n∑
i=1

gt,iy
∗
i

− 1

n

n∑
i=1

gt,iw
Tφ(xi) ≤ ξ, ∀t = 1, . . . , z (22)

with w formulated as

w =

z∑
t=1

αtΨt =

z∑
t=1

αt

(
1

n

n∑
i=1

gt,iφ(xi)

)
(23)

and ξ = (O − (1/2)‖w‖2)/C, where O is the objective value
of (21).

The second step is to calculate the most violated constraint
gz+1.

Theorem 4: Given solution (w, ξ), the most violated con-
straint of problem (21) can be calculated as follows:

gz+1,i =

{
1, if y∗i −wTφ(xi) ≥ 0
−1, otherwise.

(24)

Proof: The most violated constraint g|Ω|+1 is the one that
would result in the largest ξ in (22). According to (56), the
maximum value of ξ is calculated as

ξ′ =
1

n

n∑
i=1

max
gz+1,i∈{±1}

(
gz+1,i

(
y∗i −wTφ(xi)

))
. (25)

The corresponding gz+1 of ξ′ is calculated as (24). �
If ξ′ ≤ ξ + ε, the CPA can be stopped; otherwise, we add

gz+1 to Ωg and go to the next CPA iteration, where ε is the
user-defined cutting-plane solution precision.

2) Sparse-Kernel Estimation: From (21)–(23), we can see
that each constraint gt relates to a computationally expensive
operator Ψt = (1/n)

∑
i gt,iφ(xi), which causes a time com-

plexity of O(zn) for wTφ(x) and O((zn)2) for GT
z KGz . In

order to eliminate this expensive scaling behavior, we employ
the basis vector estimation algorithm [38], [48], [84] to get
an accurate sparse estimation of Ψt as Ψ̂t = βtφ(bt),3 where
(βt,bt) is called a basis vector in the reduced set of the kernel-
induced feature space [48].

After the basis vector estimation, problem (21) is accurately
approximated by the following problem:

max
α∈Az

αTGT
z y

∗ − 1

2
αT

(
K̂ ◦ (ββT )

)
α (26)

3Only one basis vector is used for the estimation.
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where operator ◦ denotes the element-wise product, β =
[β1, . . . , βz]

T , and K̂ = [〈φ(bk), φ(bl)〉]zk,l=1 is a sparse esti-
mation of the original kernel K.

Weight w is also accurately approximated by

ŵ =
z∑

t=1

αtβtφ(bt). (27)

With the basis vector estimation, the time complexity on
wTφ(x) and GT

z KGz is lowered to O(z) and O(z2), respec-
tively, which are irrelevant to n. Moreover, solving problem
(26) needs at most O(z3) time. When the data set is large scale,
z � n, which means that the computation of the SKSVR is
mostly consumed on the basis vector estimations.

In this paper, three basis vector estimation algorithms are
adopted.

• Linear kernel. The basis vector is calculated accurately as
follows:

βt = 1,bt =
1

n

n∑
i=1

gt,ixi ∀t = 1, . . . , z. (28)

The time complexity for the basis vector estimation is
O(sn), where s is the sparsity of the data set.

• Radial-basis-function (RBF) kernel. According to [84], the
fixed point iteration approach presented in [38, Chapter
18] is used as the basis vector estimation algorithm. Its
time complexity is O(rsn), where r is the average itera-
tion number of the algorithm.

• General kernels. If the nonlinear kernels K have first-order
derivatives, such as the polynomial kernel, a common
approximation method for them was presented in [48]. It
also has a linear time complexity O(rsn).

E. Overview of the Algorithm

First of all, what we want to solve is problem (14) [or its
primal problem (12)], which is the tightest convex relaxation
of the SVR-MMC objective (8). Because to solve problem
(14) [or (12)] directly is difficult, we propose Algorithm 1 to
solve it approximately with the SKSVR function described in
Algorithm 2.

Algorithm 1 contains two loops, i.e., the outer cutting-
plane loop and the inner ELM loop. Each outer cutting plane
iteration constructs a new cutting-plane subproblem (15) by
adding the most violated constraint (16) to the constraint set Ω.
Because subproblem (15) is formulated as a concave–convex
optimization problem, it is further solved by the inner ELM
loop. One special point in Algorithm 1 is that all historical ELM
information is saved in set J , which combined the two loops as
an integrate one.

Each inner ELM iteration contains two steps. The first step is
to update α by solving the concave optimization problem (18)
with the SKSVR function. The second step is to update μ by
calling the projection function (defined in Section III-C1) with
all inherited ELM solutions.

Particularly, because the first step of the inner ELM iteration
aims to solve a computationally expensive SVR problem (18),

we solve it approximately via CPSP algorithm, which is imple-
mented as the SKSVR function (described in Section IV-D). The
SKSVR function has linear time and storage complexities.

V. SVR-BASED MKC

In this section, we will extend the single-kernel-based SVR-
MMC algorithm to the multiple-kernel scenario.

A. Objective Formulation

The general form of the MKC objective can be generated
from the combination of the original MMC objective (1) and
the MKL objective (4), i.e.,

min
y∈B0

min
v,b,θ≥0

1

2

Q∑
q=1

‖vq‖2
θq

+ C�
(
{fv,b(xi)}ni=1 ,y

)
s.t. J(θ) ≤ 1. (29)

Taking multiple-kernel SVR (MKSVR) as the core of the
MKC objective results in the following computationally diffi-
cult MIP problem:

min
y∈B0

{
min

v,θ∈Θ,ξ≥0,ξ∗≥0

1

2

Q∑
q=1

‖vq‖2
θq

+
C

n

n∑
i=1

(ξi + ξ∗i )

s.t. yi −
Q∑

q=1

vT
q φq(xi) ≤ ξi

− yi +

Q∑
q=1

vT
q φq(xi) ≤ ξ∗i ∀i = 1, . . . , n

}

(30)

where the optimization problem in the brackets is the objective
of the Laplacian-loss MKSVR and the constraint J(θ) ≤ 1
is specified as the L1 norm regularization of θ, e.g., Θ =
{θ|

∑Q
q=1 θq = 1,θ ≥ 0}. Note that there are several discus-

sions on the constraint of θ, and the proposed method is not
limited to the L1 norm.

After n-slack to 1-slack reduction, objective (30) can be
reformulated as

min
y∈B0

min
θ∈Θ

{
min
v,ξ≥0

1

2

Q∑
q=1

‖vq‖2
θq

+ Cξ

s.t.
1

n

n∑
i=1

giyi −
1

n

n∑
i=1

gi

Q∑
q=1

vT
q φq(xi) ≤ ξ

∀g ∈ {1,−1}n
}
. (31)

Problems (30) and (31) are equivalent in the following
theorem.

Theorem 5: Any solution (v,y,θ) of problem (31) is
also a solution of problem (30) and vice versa, with ξ =
(1/n)

∑n
i=1(ξi + ξ∗i ).
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Proof: The proof is similar with the proof of Theorem 1.
�

As a kernel-based method, it is more convenient to solve
problem (31) in the dual of the MKSVR problem. Doing so
will derive the following problem:

min
y∈B0

min
θ∈Θ

max
α∈A

E(y;θ;α) (32)

where E(y;θ;α) is defined as

E(y;θ;α) = αTGTy − 1

2
αTGT

(
Q∑

q=1

θqKq

)
Gα (33)

with Kq = [Kq(xi,xj)]
n
i,j=1 denoted as the qth base kernel

matrix. We can also get vq as

vq = θq

2n∑
k=1

αk

(
1

n

n∑
i=1

gk,iφq(xi)

)
, q = 1, . . . , Q. (34)

Algorithm 3 SVR-MKC.

Input: Data set x̄ = {xi}ni=1, regularization constant C, cut-
ting plane solution precision η, ELM solution precision τ ,
CPSP solution precision ε, and parameter l that controls the
class imbalance.
Initialization: Initial kernel weights θq = 1/Q, q = 1, . . . , Q,
arbitrary initial constraint labels y1 (−l ≤ 1Ty1 ≤ l), cutting-
plane working constraint set Ω ← {y1}, |Ω| ← 1, μ1 ← 1, and
the historical ELM solution set J ← ∅, j ← 0.
Output: ŷ.

1: repeat
2: repeat
3: j ← j + 1

4: y∗ ←
∑|Ω|

k=1 μ
j
kyk

5: (αj ,Gj , {βj
q, K̂

j
q}Qq=1) ←

MKSVR(x̄;y∗;θj ;C; ε)

6: J ← J ∪ (μj ,θj ,αj ,Gj , {βj
q, K̂

j
q}Qq=1)

7: (μj+1,θj+1) ← projection(J ;Ω)
8: until ∥∥∥∥

[
μj

θj

]
−
[
μj+1

θj+1

]∥∥∥∥
2

≤ τ

9: y|Ω|+1 ← miny∈B0
αjTGjTy

10: Ω ← Ω ∪ y|Ω|+1

11: for jj = 1, . . . , j do
12: μjj ← [μjjT , 0]T

13: end for
14: ξ′ ← −αjTGjTy|Ω|+1, and ξ ← −αjTGjTy∗

15: |Ω| ← |Ω|+ 1
16: until ξ′ ≤ ξ + η or Ω is unchanged
17: for i = 1, . . . , n do
18: ŷi ← sign(

∑Q
q=1 θ

j
q

∑
t α

j
tβ

j
q,tKq(bq,t,xi))

19: end for

Algorithm 4 MKSVR.

Input: Data set x̄ = {xi}ni=1, label vector y∗, kernel weights
θ, regularization constant C, and CPSP solution precision ε.
Initialization: Arbitrary initial CPSP constraint vector g1,
CPSP working constraint set Ωg ← {g1}, and z ← 1.
Output:(α,Gz, {βq, K̂q}Qq=1).

1: repeat
2: for q = 1, . . . , Q do
3: (βq,z,bq,z) ← estimate_basis(q)(x̄,gz)

4: K̂q = [〈φq(bq,k), φq(bq,l)〉]zk,l=1

5: end for
6: Get Gz from Ωg: Gz ← [g1, . . . ,gz]
7: Solve the following quadratic programming problem,

and get the objective value O and α:

max
α∈Az

αTGT
z y

∗ − 1

2
αT

(
Q∑

q=1

θq

(
K̂q ◦

(
βqβ

T
q

)))
α

where operator ◦ denotes the element-wise product and
Az = {α|αT1 ≤ C,αt ≥ 0, t = 1, . . . , z}.

8: v̂q ≡ θq
∑z

t=1 αtβq,tφq(bq,t), q = 1, . . . , Q
9: Calculate the most violated gz+1 from

gz+1,i =

{
1, if y∗i −

∑Q
q=1 v̂qφq(xi) ≥ 0

−1, otherwise.

10: Renew Ωg: Ωg ← Ωg ∪ gz+1.
11: Calculate ξ̂′ by

ξ̂′ =
1

n

n∑
i=1

max
gz+1,i∈{±1}

(
gz+1,i

(
y∗i −

Q∑
q=1

v̂T
q φq(xi)

))

12: ξ̂ ← (O − (1/2)
∑Q

q=1 ‖v̂q‖2/θq)/C
13: z ← z + 1
14: until ξ̂′ ≤ ξ̂ + ε.

B. Convex Relaxation

As the SVR-MMC did in Section IV-B, problem (32) can be
rewritten

max
α∈A

min
θ

{
max
u

−u s.t. u ≥ −E(yk;θ;α), ∀k : yk ∈ B0

}
.

(35)

Its dual is formulated as the following optimization problem:

max
α∈A

min
θ∈Θ

min
y′∈B1

E(y′;θ;α) = min
y′∈B1

min
θ∈Θ

max
α∈A

E(y′;θ;α)

(36)

where B1 = {y′|y′ =
∑

k:yk∈B0
μkyk,μ ∈ M} is the convex

hull of B0.

C. Solving the Convex Optimization Problem

The convex optimization problem (36) can be solved in a
similar way with the algorithm presented in Section IV-C.
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In this subsection, we emphasize the difference between the
solution used in SVR-MMC and the solution used here.

1) Layer 1: Solving Problem (36) via CPA: Problem (36) is
solved by CPA. The CPA iterates the following two steps until
convergence.

The first step is to solve the following cutting-plane sub-
problem:

min
μ∈M|Ω|,θ∈Θ

max
α∈A

E

⎛
⎝ |Ω|∑

k=1

μkyk;θ;α

⎞
⎠ . (37)

The second step is to calculate the most violated y of
problem (37) in the same way as Theorem 2.

2) Layer 2: Solving the Cutting-Plane Subproblem (37) via
GELM: We also solve problem (37) by GELM described in
Section IV-C2. Some differences are emphasized below.

Initialization of the GELM: We inherit not only the histor-
ical μ but also the historical θ from previous CPA iterations.

Main procedure of the GELM: After inheriting the his-
torical ELM solutions, problem (37) is solved by iterating the
following two steps until the ELM converges.

a) Given μ and θ, we solve an MKSVR problem but not a
single-kernel SVR problem, i.e.,

max
α∈A

E

⎛
⎝ |Ω|∑

k=1

μkyk;θ;α

⎞
⎠ . (38)

Its solution will be presented in Layer 3 of this subsection.
b) Given α, we update μ and θ simultaneously by the

projection function presented in Section III-C1.
3) Layer 3: Solving the MKSVR Problem (38) via CPSP

Algorithm: The sparse-kernel MKSVR algorithm is summa-
rized in Algorithm 4. For simplicity of this paper, we will not
present Algorithm 4 in detail. The most significant difference
between Algorithms 2 (SKSVR function) and 4 is that, in
Algorithm 4, we estimate a basis vector for each base kernel
Kq in a single cutting-plane iteration.

D. Overview of the Algorithm

The SVR-MKC algorithm is a weighted version of the SVR-
MMC algorithm, which is summarized in Algorithm 3. There
are one significant difference between SVR-MMC (Algorithm
1) and SVR-MKC (Algorithm 3). That is, SVR-MMC solves
an SKSVR} problem in a single ELM iteration, whereas SVR-
MKC solves an MKSVR} problem in a single ELM iteration.
However, both SKSVR} and MKSVR} have similar time and
storage complexities, so as SVR-MMC and SVR-MKC.

Although SVR-MKC and SVR-MMC are very similar, as
shown in the experimental section, the SVR-MKC algorithm
can achieve more robust performance than the SVR-MMC
algorithm by automatically selecting the most suitable combi-
nation of the base kernels.

VI. SVR-BASED M3C

In this section, we will extend the binary-class SVR-MMC
algorithm to the multiclass scenario.

A. Objective Formulation

Unlike the uniform objectives of the MMC and the MKC [see
(1) and (29), respectively], we cannot get a uniform objective
for M3C. Because of this, we will give out our special M3C
objective “suddenly.”

Given a P class clustering problem, the sample x’s label y
belongs to the integer set {1, 2, . . . , P}. Now, we extend label
y to a P -dimensional row vector [77], [78], [80], denoted by ȳ.
Suppose y = k, k ∈ {1, . . . , P}, the label vector ȳ takes 1 for
the kth element and −1/(P − 1) for the others. For instance, if
the ith sample falls into the first class, then ȳi = [1,−1/(P −
1), . . . ,−1/(P − 1)]. Here, we define set Bȳ for all possible ȳ,
i.e.,

Bȳ =

{
ȳ

∣∣∣∣
{
ȳp=

{
1, if p = y
− 1

P−1 , otherwise. ∀p = 1, . . . , P

}

∀y = 1, . . . , P

}

We propose the following SVR-based M3C objective:

min
Y∈B2

{
min
W

1

2

P∑
p=1

‖wp‖2 +
C

n

P∑
p=1

n∑
i=1

(
ξi,p + ξ∗i,p

)

s.t. ȳi,p −wT
p φ(xi) ≤ ξi,p, −ȳi,p +wT

p φ(xi)≤ξ∗i,p,

ξi,p≥0, ξ∗i,p≥0 ∀p=1, . . . , P, ∀i=1, . . . , n

}

(39)

where the optimization problem in the brackets is the objective
of the “multiclass SVR,” W = [w1, . . . ,wP ], the unknown
label Y = [ȳT

1 , . . . , ȳ
T
n ]

T is an n× P matrix, and set B2 is
defined as

B2 �
{
Y

∣∣∣∣
{
− lp

P−1 ≤ ¯̄yT
p 1 ≤ lp, ∀p = 1, . . . , P,

ȳi ∈ Bȳ, ∀i = 1, . . . , n.

}

where ¯̄yp = [ȳ1,p, . . . , ȳn,p]
T denotes the pth column of Y

and {lp}Pp=1 are user-defined constants for controlling class
balance. Oftentimes, we set l1 = l2 =, . . . ,= lP = l for sim-
plicity. Hence, set B2 becomes

B2 �
{
Y

∣∣∣∣
{
− l

P−1 ≤ ¯̄yT
p 1 ≤ l ∀p = 1, . . . , P,

ȳi ∈ Bȳ ∀i = 1, . . . , n.

}
. (40)

Accordingly, an P -tuple of separating functions f(x) =
{f1(x), . . . , fP (x)} is defined, where fp(x) = wT

p φ(x). Once
the optimal W is obtained, x is predicted as

y = argmax
p

fp(x) = argmax
p

wT
p φ(x). (41)
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Now, we do an n-slack to 1-slack reduction for each class
of objective (39) separately, which results in the following
equivalent problem:

min
Y∈B2

{
min
w,ξ≥0

1

2

P∑
p=1

‖wp‖2 + C

P∑
p=1

ξp

s.t.
1

n

n∑
i=1

gi,pȳi,p −
1

n

n∑
i=1

gi,p

P∑
p=1

wT
p φ(xi) ≤ ξp

∀gp ∈ {1,−1}n ∀p =, . . . , P

}
(42)

where ξ = [ξ1, . . . , ξP ]
T . The equivalence of problems (39)

and (42) is supported by the following theorem.
Theorem 6: Any solution (W,Y) of problem (39) is also

a solution of problem (42) and vice versa, with
∑P

p=1 ξp =

(1/n)
∑P

p=1

∑n
i=1(ξi,p + ξ∗i,p).

Proof: The proof is similar with the proof of Theorem 1.
�

As we did in SVR-MMC and SVR-MKC, we also solve
SVR-M3C in the dual of the problem in the brackets of (42),
which results in the following problem:

min
Y∈B2

max
α∈AP

EΣ(Y;α) � min
Y∈B2

max
{αp∈A}Pp=1

P∑
p=1

Ep(¯̄yp;αp)

(43)
where αp = {αi,p}2

n

i=1 is the dual variable vector of the pth

class, α = [αT
1 , . . . ,α

T
P ]

T , AP = A×, . . . ,×A, EΣ(Y;α)
Δ
=∑P

p=1 Ep(¯̄yp;αp), and Ep(¯̄yp;αp) is defined as

Ep(¯̄yp;αp) = αT
p G

T
p
¯̄yp −

1

2
αT

p G
T
p KGpαp. (44)

We can also get W as

wp =
2n∑
k=1

αk,p

(
1

n

n∑
i=1

gk,i,pφ(xi)

)
, p = 1, . . . , P. (45)

B. Convex Relaxation

As the SVR-MMC did in Section IV-B, problem (43) can be
written as

max
α∈AP

{
max

θ
−θ s.t. θ ≥ −EΣ(Yk;α) ∀Yk ∈ B2

}
. (46)

Solving the subproblem in the brace of (46) in its dual, we
can reformulate problem (46) as the following problem:

max
α∈AP

min
Y′∈B3

EΣ(Y
′;α) = min

Y′∈B3

max
α∈AP

EΣ(Y
′;α) (47)

where B3 = {Y′|Y′ =
∑

k:Yk∈B2
μkYk,μ ∈ M} is the con-

vex hull of B2. Until now, we have constructed a convex hull on
all feasible label matrices of the M3C problem.

C. Solving the Convex Optimization Problem

The convex optimization problem (47) is solved in a similar
way with the algorithm presented in Section IV-C.

1) Layer 1: Solving Problem (47) via CPA: Like the SVR-
MMC, the CPA is utilized to solve the convex optimization
problem (47), which iterates the following two steps.

The first step is to solve the following cutting-plane
subproblem via ELM with all historical ELM solutions:

min
μ∈M|Ω|

max
α∈AP

EΣ

⎛
⎝ |Ω|∑

k=1

μkYk;α

⎞
⎠ . (48)

The second step is to calculate the most violated Y of the
CPA.

Theorem 7: Given solution (μ,α) of the cutting-plane sub-
problem (48), the most violated Y can be obtained by solving
the following problem:

min
Y∈B2

P∑
p=1

αT
p G

T
p
¯̄yp. (49)

Proof: The proof of Theorem 7 is provided in
Appendix D. �

We further propose Algorithm 6 to solve problem (49). The
correctness of Algorithm 6 is supported by Theorem 8.

Theorem 8: Output Y of Algorithm 6 is the solution of
problem (49), which can be obtained in time O(Pn logPn).

Proof: The proof of Theorem 8 is provided in
Appendix E. �

2) Layer 2: Solving the Cutting-Plane Subproblem (48) via
GELM: The GELM first inherits historical ELM solutions as
SVR-MMC did in Section IV-C2 and then iterates the following
two steps until convergence.

a) Given μ, we solve the “multiclass” SVR problem, i.e.,

max
α∈AP

EΣ

⎛
⎝ |Ω|∑

k=1

μkYk;α

⎞
⎠ . (50)

Its solution will be presented in Layer 3 of this subsection.
b) Given α, we update μ by the projection function pre-

sented in Section III-C1.
3) Layer 3: Solving the Multiclass SVR Problem (51) via

CPSP Algorithm: Because μk (so as to Yk) of problem (50)
is known, problem (50) is in fact a sum of P -independent SVR
problems, i.e.,

P∑
p=1

max
αp∈A

Ep

⎛
⎝ |Ω|∑

k=1

μk ¯̄yk,p;αp

⎞
⎠ . (51)

We solve each SVR problem in (51) independently by the
SKSVR function (Algorithm 2) and combine their solutions.

D. Overview of the Algorithm

The SVR-M3C algorithm is a multiclass extension of the
SVR-MMC algorithm. It is summarized in Algorithm 5.
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There are two significant differences between SVR-MMC
(Algorithm 1) and SVR-M3C (Algorithm 5). The first differ-
ence is that SVR-MMC gets the most violated label vector
y from set B0, whereas SVR-M3C gets the most violated
label matrix Y from set B2 that are more complicated than
B0. The second difference is that SVR-MMC solves just one
SKSVR problem in a single ELM iteration, whereas SVR-M3C
solves one SKSVR problem per class in a single ELM iteration.
However, both of the algorithms have the same order of time
and storage complexities.

Algorithm 5 SVR-M3C.

Input: Data set x̄ = {xi}ni=1, regularization constant C,
cutting-plane solution precision η, ELM solution precision τ ,
CPSP solution precision ε, parameter l that controls the class
imbalance, and the number of clusters P
Initialization: Arbitrary initial constraint label matrix
Y1 (Y1 ∈ B2), cutting-plane working constraint set
Ω ← {Y1}, |Ω| ← 1, μ1 ← 1, and the historical ELM
solution set J ← ∅, j ← 0.
Output: ŷ.

1: repeat
2: repeat
3: j ← j + 1

4: Y∗ ←
∑|Ω|

k=1 μ
j
kYk

5: for p = 1, . . . , P do
6: (αj

p,G
j
p,β

j
p, K̂

j
p) ← SKSVR(x̄; ¯̄y∗

p;C; ε)
7: end for
8: J ← J ∪ (μj , {αj

p,G
j
p,β

j
p, K̂

j
p}Pp=1)

9: (μj+1,θj+1) ← projection(J ;Ω)
10: until ‖μj − μj+1‖2 ≤ τ
11: Solving the following optimization problem by

Algorithm 6:
Y|Ω|+1 ← minY∈B2

∑P
p=1 α

j
p
T
Gj

p
T ¯̄yp

12: Ω ← Ω ∪Y|Ω|+1

13: for jj = 1, . . . , j do
14: μjj ← [μjjT , 0]T

15: end for
16: for p = 1, . . . , P do
17: ξ′p ← −

∑P
p=1 α

j
p
T
Gj

p
T ¯̄y|Ω|+1,p, and

ξp ← −
∑P

p=1 α
j
p
T
Gj

p
T ¯̄y∗

p

18: end for
19: |Ω| ← |Ω|+ 1

20: until
∑P

p=1 ξ
′
p ≤

∑P
p=1 ξp + η or Ω is unchanged

21: for i = 1, . . . , n do
22: ŷi ← argmaxp(

∑
t α

j
t,pβ

j
t,pKp(bt,p,xi))

23: end for

Algorithm 6 Calculating the most violated Y.

Input: {αT
p G

T
p }Pp=1 and constant l for the class balance.

Initialization: Let c=[αT
1 G

T
1 , . . . ,α

T
PG

T
P ]

T , set the ini-
tial values of all elements of Y to −1/(P−1), let z=
[¯̄yT

1 , . . . , ¯̄y
T
P ]

T , and let the mask vector m = 0(nP )×1, initial

objective value O ← −nP/(P − 1), initial class balance de-
gree dp ← −n/(P − 1), where p = 1, . . . , P .
Output: Y.

1: Sort c in the ascend order, denoted as c′. Align z in the
same sequence with the sorted c, denoted as z′.

2: for i = 1, . . . , nP do
3: if mi == 0 then
4: a ← 0
5: Find the corresponding element of z′i in the original Y.

Suppose z′i locates in the jth row (sample) and the
pth column (class) of the original Y.

6: if dp < −l/(P − 1) then
7: a ← 1
8: else if −l/(P − 1) ≤ dp ≤ l then
9: if O + c′i(1 + 1/(P − 1)) < O then
10: a ← 1
11: end if
12: end if
13: if a == 1 then
14: ȳj,p ← 1
15: O ← O + c′i(1 + 1/(P − 1))
16: dp ← dp + (1 + 1/(P − 1))
17: Find P corresponding elements of ȳj in z′.

Suppose these elements locates in the j1, . . . , jP
row of z′; then, set mjt = 1 where t = 1, . . . , P ,
so as to tell the procedure that these elements should
not be handled again.

18: end if
19: end if
20: end for

VII. DISCUSSION: WHY DO WE USE THE REGRESSION

APPROACH?

The most important reason of utilizing the regression ap-
proach is to prevent solving an integer matrix programming
problem. Here, we only analyze the binary-class case. The same
phenomenon can be observed in the multiclass case as well.

As we know, the time complexity of an algorithm is deter-
mined by its most computationally expensive part. If we take
the standard SVM as the core of the MMC (6), we would get a
new MMC objective defined as

min
y∈B0

{
min
w,ξ≥0

1

2
‖w‖2 + C

n

n∑
i=1

ξi

s.t. yiw
Tφ(xi) ≥ 1− ξi ∀i = 1, . . . , n

}
. (52)

If we rewrite the problem in the brackets of (52) in its dual,
problem (52) is equivalent to the following problem:

min
M∈Y0

{
max
α

αT1− 1

2
αT (K ◦M)α

s.t. 0 ≤ αi ≤
C

n
∀i = 1, . . . , n

}
(53)

where operator ◦ denotes the element-wise product and set Y0

is defined as Y0 = {M|M = yyT , ∀y ∈ B0}. It is obvious that
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problem (53) is a binary integer matrix programming problem.
Generally, solving the problem is NP-complete.

Although Xu et al. [16] relaxed the integer matrix to a matrix
with continuous values, the relaxed problem is reformulated as
an SDP problem with O(n2) parameters that is solved in time
O(n3) or higher. However, if we use the SVR as the core, the
parameter number will be lowered to O(n).

Although Li et al. [41] solves the problem by utilizing
the fact that M = yyT , they encounter a problem that the
expressions of the samples in the kernel-induced feature space
should be explicitly gotten by first calculating and storing the
kernel matrix K with O(n2) time and storage complexities,
respectively, and then decomposing the kernel matrix [35], [37]
with an additional time of at least O(n2) [38], [39]. This is also
impractical for large-scale problems. However, if the SVR is
utilized, the kernel decomposition can be avoided.

Summarizing the aforementioned, we should try to avoid
operating on M in the study of MMC. The SVR provides us this
feasibility. In fact, although the SVR was originally proposed to
estimate linear regression problems, it can be used to construct
both binary class classifiers and multiclass classifiers [80], [85].

VIII. THEORETICAL ANALYSIS

In this section, we will analyze the computational and storage
complexities of Algorithms 1, 3, and 5.

A. Computational Complexity

Algorithms 1, 3, and 5 contain two loops, i.e., the outer
cutting-plane loop and the inner ELM loop. Suppose each
algorithm will need an average of Tc outer cutting-plane
iterations to converge to a global optimum. Suppose each
cutting-plane subproblem will need an average of Te inner
ELM iterations. In each ELM iteration, the algorithms need to
call the SKSVR function (Algorithm 2) or the MKSVR function
(Algorithm 4). Suppose the SKSVR function or the MKSVR
function needs an average of Ts iterations to converge. Suppose
the estimate_basis function in SKSVR and MKSVR needs an
average of r iterations to converge. We can get the following
theorem.

Theorem 9: When the data set is large scale, Algo-
rithms 1, 3, and 5 have linearthmic time complexities
of O(TcTeTsrsn+ Tcn log n), O(QTcTeTsrsn+ Tcn log n),
and O(PTcTeTsrsn+ TcPn logPn), respectively, where s is
the sparsity of the data set.

Proof: We first analyze the complexity of the SVR-MMC
(Algorithm 1) in the first paragraph. Next, we analyze the
time complexities of the SVR-MKC (Algorithm 3) and the
SVR-M3C (Algorithm 5) in the second paragraph. The follow-
ing proof is under the assumption that the data set is large scale.

For Layer 3 or the SKSVR function, the number of the basis
vectors is irrelevant to the data set size n and usually far smaller
than n [84], so as to the number of the unknown parameters.
It means that the time complexity of the SKSVR function is
mainly determined by the estimate_basis function. Because
each call of the SKSVR function will call the estimate_basis
function Ts times, we can conclude from Section IV-D2 that the

time complexity of the SKSVR function is about O(Tsrsn). For
Layer 2, a single cutting-plane iteration needs Te ELM
iterations and calculate the most violated y once. Each ELM
iteration needs to call SKSVR once and update μ by calling
the projection function. Because the projection function is
irrelevant to n, its time complexity can be omitted. From
Theorem 1, calculating the most violated y needs O(n log n)
time. Therefore, a cutting-plane iteration needs about
O(TeTsrsn+ n log n) time. For Layer 1, the SVR-MMC
needs Tc outer cutting-plane iterations. As a conclusion, the
time complexity of the SVR-MMC is about O(TcTeTsrsn+
Tcn log n).

Because the most significant difference in time complexity
between the SVR-MMC and the SVR-MKC is that the time
complexity of the MKSVR function is Q times as high as that
of the SKSVR. Hence, the time complexity of the SVR-MKC
is about O(QTcTeTsrsn+ Tcn log n). Analogously, the most
significant difference between the SVR-MMC and the
SVR-M3C is that the SVR-M3C calls the SKSVR functions
P times in a single ELM iteration, whereas the SVR-MKC
only calls the SKSVR once. Also, calculating the most vio-
lated Y (Algorithm 6) consumes O(Pn logPn). Therefore,
the time complexity of the SVR-M3C is O(PTcTeTsrsn+
TcPn logPn). �

B. Storage Complexity

We first analyze the storage complexity of the SVR-MMC
(Algorithm 1) in the first paragraph. Next, we analyze the
storage complexities of the SVR-MKC (Algorithm 3) and the
SVR-M3C (Algorithm 5) in the second paragraph.

First of all, we need to store the whole data set, which re-
quires an O(snd) space. For each outer cutting-plane iteration,
we need to store a new violated constraint y, which requires an
O(n) space. For each inner ELM iteration, we need to store
a new vector Gα, which also requires an O(n) space. For
each call of the SKSVR function, we need to store the most
violated constraint set, which occupies another O(Tsn) space.
Because there are few basis vectors, the space for the basis
vectors and the (sparse) base kernel matrix can be omitted.
Therefore, the storage complexity of the SVR-MMC is about
O(snd+ (Tc + TcTe + Ts)n), which is linear with n.

For the SVR-MKC, because the space for the basis vectors
can be omitted, the SVR-MKC (Algorithm 3) has the same
storage complexity as the SVR-MKC. For the SVR-M3C,
we need to store a new violated constraint Y in each outer
cutting-plane iteration, which requires an O(Pn) space. We
also need to store P new vectors {Gpαp}Pp=1 in each inner
ELM iteration, which requires another O(Pn) space. Hence,
the storage complexity of the SVR-M3C (Algorithm 5) is about
O(snd+ (PTc + PTcTe + Ts)n).

Summarizing the aforementioned, the storage complexities
of the three proposed algorithms are all linear with the data set
size.

IX. EXPERIMENTAL ANALYSIS

In this section, we will evaluate our SVR-MMC, SVR-MKC,
and SVR-M3C algorithms on effectiveness and efficiency
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TABLE I
DESCRIPTIONS OF THE DATA SETS. “n” IS THE DATA SET SIZE, “d” IS THE DIMENSION, AND “s” IS THE SPARSITY

empirically. Specifically, we will first compare the three algo-
rithms with several clustering methods on various real-world
data sets. Then, we will illustrate the scaling behaviors of
the SVR-MMC and SVR-MKC algorithms. At last, we will
apply the SVR-MKC algorithm to the VAD [86], [87]. All
experiments are conducted with MATLAB 7.12 on a 2.4-GHz
Intel Core 2 Duo personal computer running Windows XP with
6-GB main memory.

A. Data Sets

The experiments are performed on 35 data sets. The de-
tailed information of the data sets are listed in Table I.
Except the data sets from the MNIST handwritten digit
database,4 data set from 20− newsgroup text database5 and

4http://yann.lecun.com/exdb/mnist.
5http://people.csail.mit.edu/jrennie/20Newsgroups.

our ShortMessage text data set from China Mobile company,
all other data sets are broadly selected from the UCI machine
learning repository.6

In respect of the binary-class problems, because there
are multiple classes in the Satellite, Letter, Abalone,
Waveform, and Covtype data sets, we use their first two
classes only (1 versus 2, A versus B, 1 versus 2, 1 versus 2, and
1 versus 2, respectively). For the MNIST data set, we follow
[25] and [41], and focus on the digital pairs that are difficult
to differentiate, i.e., 1 versus 7, 2 versus 7, 3 versus 8, and 8
versus 9.

In respect of the multiclass problems, we conduct experi-
ments on the first seven classes of Libras. For the OptDigits
and PenDigits data sets, we partition the digits that are
easily confused with each other to the same group. For

6All UCI data sets are downloaded from http://archive.ics.uci.edu/ml.
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20− newsgroup, we follow [27] and choose topic rec,
which contains autos, motorcycles, baseball, and hockey.

B. Experimental Settings

For the SVR-MMC algorithm, the cutting-plane solution
precision η is set to 0.01, the ELM solution precision τ is
set to 0.0005, and the CPSP solution precision of the SKSVR
function ε is set to 0.001. Parameter l is searched through
{0, 0.03n, 0.1n, 0.2n, 0.3n, 0.5n, 0.7n}. In this paper, the lin-
ear, polynomial, and RBF kernels are used for performance
analysis. The SVR-MMC algorithms with the linear, polyno-
mial, and RBF kernels are denoted as SVR-MMCl, SVR−
MMCp, and SVR-MMCr, respectively. For SVR-MMCl, pa-
rameter C is searched from the exponential grid 2[12:1:27].
For SVR-MMCp, parameter C is searched from 2[−2:1:9]; the
kernel parameter p of the polynomial kernel is searched through
{2, 3, 4}. For SVR-MMCr, parameter C is also searched
from 2[−2:1:9]; the RBF kernel width σ is searched through
{0.25γ, 0.5γ, γ, 2γ, 4γ}, where γ is the average Euclidean
distance between the samples.

For the SVR-MKC algorithm, parameter C is searched
from 2[−2:1:9]. The linear, polynomial, and RBF kernels are
used as three base kernels. The parameters of the base ker-
nels are searched in the same way as the SVR-MMCs.
All other parameters are set to the same values as the
SVR-MMC.

For the SVR-M3C algorithm, the cutting-plane solution pre-
cision η is set to 0.1. The linear and RBF kernels are used for
performance analysis. The kernel parameters are searched in
the same way as the SVR-MMCs. All other parameters are set
to the same values as the SVR-MMC.

To examine the effectiveness of the proposed three algo-
rithms, we compare them with our types of data-clustering
methods.

1) Classic clustering methods:
• K-means (KM) [4]. We run it 40 times and report

the average results.7

• Normalized cut (NC) [9].
2) Recently reported MMC methods:8

• IterSVR [24], [25].9 We run it 20 times and report
the average experimental results.

• CPMMC [26], [27].10

• LG-MMC [41].11 The maximum cutting-plane iter-
ation number is set to 20 when n < 10 000 and to
30 when n ≥ 10 000 according to the experimental

7The implementation code is in the VOICEBOX developed by Cambridge
University for speech processing. It can be downloaded from http://www.ee.ic.
ac.uk/hp/staff/dmb/voicebox/doc/voicebox/kmeans.html.

8Because the MMC proposed in [16], the GMMC proposed in [21], and the
M3C proposed in [22] are based on SDP and can be only run with at most
hundreds of samples, we will not compare with them.

9The implementation code can be downloaded from http://www3.ntu.edu.sg/
home/IvorTsang/itMMC_code.zip.

10The implementation code can be downloaded from http://sites.google.com/
site/binzhao02.

11The implementation code can be downloaded from http://cs.nju.edu.cn/
zhouzh/zhouzh.files/publication/annex/LGMMC_v2.rar.

conclusions of Li et al. When the data sets are large
scale, the linear kernel is used.

3) CPMKC [40]. We implemented the algorithm by modi-
fying the CPMMC [26], [27] code. The SOCP problem
of the CPMKC is solved by the fmincon} function in
MATLAB. The kernel selection scheme is the same
as [40]. Parameters C and l are searched in the same
way as the CPMMC algorithm. According to [40], the
KPCA [35] is used as the interface to the nonlinear
base kernels.12 Since the authors of [40] did not mention
the parameter selection schemes of the base kernels, the
parameters of the base kernels are searched in the same
way as our SVR-MKC algorithm.

4) CPM3C [49]. We implemented the algorithm by modify-
ing the CPMMC code. All parameters are searched in the
same way as the CPMMC algorithm.

For each data set, we run the algorithms once and report the
best achievable performances. The samples are normalized into
the range of [0, 1] in dimension [88]. All computation times
are recorded except that consumed on normalizing the data set.
Note that, for the KM and the IterSVR, the averages of the best
performances are reported, and all experiments are exactly run
with the authors’ experimental settings.

C. Evaluation Results

We do the evaluations on binary-class problems and multi-
class problems separately.

1) Results on Binary-Class Problems: The clustering accu-
racies of the SVR-MMC, the SVR-MKC, and other referenced
methods are listed in Table II. From the table, we can clearly
see that the SVR-MMCs and the SVR-MKC are superior to the
referenced clustering algorithms. From the table, we can also
know that the SVR-MKC algorithm can automatically select
the suitable kernels for the robustness of the SVR-MMC.

The CPU time comparison of our algorithms and the refer-
enced methods are reported in Table III. From the table, we
can observe the following: 1) the SVR-MMC, SVR-MKC, KM,
and CPMMC algorithms are relatively fast; 2) the CPU time of
NC, IterMMC, LG-MMC, and CPMKC on KPCA dramatically
grows with n; 3) although the CPU time of CPMKC on clus-
tering does not show an explicit relation with n, it is obviously
slower than the proposed SVR-MKC algorithm. Therefore, the
SVR-MMC and SVR-MKC algorithms are efficient. From the
table, we can also know that, because the SVR-MMCs and
the SVR-MKC are solved globally via GELM, their cutting-
plane iteration numbers are usually small. Finally, we can get
guaranteed clustering accuracies in guaranteed clustering time.
Note that, because the basis vector estimation algorithm for
the polynomial kernel is relatively slow, it should be further
improved in the future.

2) Results on Multiclass Problems: The clustering accura-
cies of the SVR-M3C and the referenced multiclass clustering
methods are listed in Table IV. From the table, we can see that

12The implementation code is in the SVM-KM toolbox http://asi.insa-rouen.
fr/enseignants/~arakotom/toolbox/index.html.
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TABLE II
ACCURACY (IN PERCENT) COMPARISON OF DIFFERENT CLUSTERING METHODS ON BINARY-CLASS PROBLEMS. ROW RANK IS THE AVERAGE RANKS

OF THE METHODS OVER THE FIRST 18 DATA SETS

TABLE III
CPU TIME (IN SECONDS) AND ITERATION NUMBERS (IN THE BRACKETS) OF DIFFERENT CLUSTERING METHODS ON BINARY-CLASS PROBLEMS

the SVR-M3C can achieve higher clustering accuracies than the
referenced clustering algorithms.

The CPU time comparison is also reported in Table V. From
the table, we can also see that the proposed SVR-M3C has a
comparable efficiency with KM and CPM3C, which have linear
time complexities.

D. Study of the Scaling Behavior

Here, we focus on the scaling behavior of the proposed
algorithms on binary-class problems. The scaling behavior of
the proposed algorithms on the multiclass problems is similar
with that on the binary-class problems.
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TABLE IV
ACCURACY (IN PERCENT) COMPARISON OF DIFFERENT CLUSTERING METHODS ON MULTICLASS PROBLEMS

TABLE V
CPU TIME (IN SECONDS) AND ITERATION NUMBERS (IN THE BRACKETS) OF DIFFERENT CLUSTERING METHODS ON MULTICLASS PROBLEMS

The UCI Adult data set is used for this study. We use
the UCI Adult data set13 in a way that is similar to [24].
More precisely, serial subsets of the Adult data set are pre-
defined, ranging in size [1605, 2265, 3185, 4781, 6414, 11 220,
16 100, 22 696, 32 561]. Because the data set is severely imba-
lance, Zhang et al. [24] used the balanced clustering error as
the metric. For consistent comparison with their work [24], we
report the performance of the proposed algorithm in this metric
as well. The balanced clustering error rate ErrB is defined as
ErrB = (Err+ + Err−)/2, where Err+ and Err− are the error
rates of the positive and negative samples in the full set.

Experimental results are shown in Fig. 2. The empirical
time complexities of the various methods are summarized in
Table VI. From the figure and the table, we can conclude
that the KM, CPMMC, SVR-MMC, and SVR-MKC algo-
rithms have linear time complexities, whereas the IterMMC,
LG-MMC, and CPMKC algorithms have time complexities of
at least O(n2). The reason why the empirical time complexities
of the SVR-MMC and SVR-MKC algorithms are linear but not
linearithmic is that, we think, the unit of the real CPU time spent
on the linearithmic time complexity part O(n log n) is shorter
than that spent on the linear time complexity part O(tsn).

13http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

E. Application to VAD

In this subsection, we apply the SVR-MMC and SVR-MKC
algorithms to the VAD [86], [87]. VAD tries to discriminate
speech against the background noise. It is one of the key issues
in practical speech systems. For instance, it is used as the
front-end of large-vocabulary continuous-speech recognition
systems. By eliminating the unvoiced signals, the recognition
rate can be improved. It is used as the front-end of modern
speech communication systems. By filtering out the unvoiced
signals, the band efficiency of the communication can be
increased.

Currently, machine-learning-based VAD methods are hot.
Typically, a machine-learning-based approach can be parti-
tioned into two parts. The first part is to extract acoustic features
from noisy speeches. The second part is to use a binary-class
classifier to discriminate the acoustic features. There are various
acoustic features that are suitable for machine-learning-based
approaches [89]–[97].

In this paper, we focus on classifiers but not acoustic fea-
tures. In respect of classifiers, the machine-learning-based VAD
meets the following three challenges: 1) How to achieve robust
performance in low signal-to-noise ratio (SNR) and nonsta-
tionary noisy environments? 2) How to alleviate the labeling
requirement, since the labeling might be inaccurate in low
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Fig. 2. Balanced error rate (in percent) and CPU time (in seconds) comparisons of the clustering algorithms on the Adult subsets. (a) and (b) are on the
referenced methods. (c) and (d) are on the proposed methods.

TABLE VI
EMPIRICAL TIME COMPLEXITIES OF VARIOUS ALGORITHMS ON THE Adult DATA SET

SNR environments and the costs on manual labeling are very
expensive? 3) How to meet the strong real-time detection
demand, since VAD usually works online?

Recently, the multiple-feature-based data fusion methods
have been tried to beat the first challenge [89], [93], [94],
[96]–[98]. The unsupervised learning methods were tried to
beat the second challenge [96], [99], [100]. An efficient MKL
method was proposed to beat the third challenge [98].

However, these works cannot meet the three requirements
simultaneously. Here, we propose to apply the SVR-MKC to
VAD for all of the aforementioned three challenges. Theo-
retically, aside from the convexity, the SVR-MKC can hold
multiple features, needs no labeling for model training, and
has an O(n log n) training complexity and an O(1) prediction
complexity for the real-time demand. To our knowledge, this is
the first work that beat all of these challenges simultaneously.

To better show the advantages of the SVR-MKC-based VAD,
we follow the experimental settings of [98] and conduct the
following experiments.

Seven noisy test corpora of the AURORA2 [101] are used.
The AURORA2 is an open corpus that has been widely used
in speech recognition and VAD. The SNR level is about 5 dB.
Each test corpus contains 1001 utterances, which are randomly
split into three groups for unsupervised training, developing,
and evaluation, respectively. Each training set and development
set consists of 300 utterances, respectively. Each evaluation set
consists of 401 utterances. We concatenate all short utterances
in each data set into a long one so as to simulate the real-
world application environment of VAD. Eventually, the length
of each long utterance is in a range of (450, 750) s with about

Fig. 3. ROC curve comparison of the SVR-MKC- and MK-SVM-based VADs
in car noise (SNR = 5 dB). “W#” are short for the MO-MP features with
different window lengths. “SK-SVM” is short for the single-kernel SVM.

65% speeches. The observation (sample) is 25 ms long with an
overlap of 15 ms.

The supervised multiple kernel (MK)-SVM [98] is used for
comparison. The multiple-observation maximum probability
(MO-MP) features [96] are used for performance analysis.

The receiver-operating-characteristic (ROC) curve [102] is
considered as a general performance measurement of the VAD.
VAD usually works on a point of the ROC curve, which is
called the operating point. As shown in Fig. 3, the closer to
the upper left corner the ROC curve is, the better the VAD
performs. Because the MO-MP features with different window
lengths yield different ROC curves, they can be seen as different
feature expressions. We use two MO-MP features with window
lengths of 2 and 14 as the inputs of the SVR-MKC and
MK-SVM algorithms.
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TABLE VII
ACCURACY COMPARISON (IN PERCENT) OF THE SVR-MKC- AND MK-SVM-BASED VADs IN SEVEN NOISE SCENARIOS. “W#” IS SHORT FOR THE

MO-MPs WITH DIFFERENT WINDOW LENGTHS. THE VALUES IN BRACKETS ARE STANDARD DEVIATIONS

TABLE VIII
CPU TIME (IN SECONDS) OF THE SVR-MKC-BASED VADs ON PREDICTION. EACH TEST SET IS ABOUT [450, 750] s LONG

In every noise scenario, we run the SVR-MKC ten times and
report the average results. For each independent run, 1000 ob-
servations are randomly extracted from the training set for train-
ing. Then, the classifier that yields the best performance on the
development set is picked up from the grid search of the param-
eters. For the SVR-MKC, parameter C is searched from 2[1:1:5].
Parameter l is searched from [0, 0.025n, 0.05n, 0.075n, 0.1n].
Only one RBF kernel is used for each feature expression. The
RBF kernel width σq is set to 0.5γq , q = 1, . . . , Q, where γq is
the average Euclidean distance of the qth feature expression. At
last, we report the performance of the selected classifier on the
evaluation set. The parameter settings of the MK-SVM are the
same as [98].

Fig. 3 gives an example of the ROC curve comparison
of the SVR-MKC- and MK-SVM-based VADs in the car
noise scenario. From the figure, the SVR-MKC can achieve
a higher accuracy (80.14%) than the SVR-MMCs with the
MO-MP window lengths of 2 (79.10%) and 14 (80.10%).
However, its unfortunate to observe that there is still a clear
gap between the unsupervised methods and their supervised
counterparts. Moreover, the SVR-MKC does not yield a ROC
curve that can cover the ROC curves of the SVR-MMCs, which
is much different from the supervised MK-SVM. Therefore,
the SVR-MKC still has an enough space for improvement.

Table VII lists the performance comparisons of the
SVR-MKC- and MK-SVM-based VADs in the seven noise

scenarios. From the table, we can see the following: 1) The
SVR-MKC is not much worse than the MK-SVM (with perfect
labeling) and can even substitute the MK-SVM in the Street
noise scenario. 2) The SVR-MKC has better accuracies than the
SVR-MMC in most of the noise scenarios.

Table VIII lists the CPU time on prediction. From the table,
we can see that the prediction of a long utterance with an
arrange of [450, 750] s long can be finished within 2 s, which
fully meets the real-time demand of the VAD.

X. CONCLUSION

In this paper, we have proposed a SVR-based MMC algo-
rithm. Specifically, we have first used the SVR as the core of
the MMC problem and have relaxed the SVR-based nonconvex
integer MMC problem as a convex optimization problem. Then,
we have solved the relaxed problem iteratively by CPA. More-
over, we have decomposed each cutting-plane subproblem to
a serial supervised SVR problem by a new GELM algorithm.
At last, we have solved each SVR via the CPSP algorithm.
For real-world applications, we have further extended the
SVR-MMC algorithm to the MKC scenario and the multiclass
clustering scenario. The SVR-MMC and its two extensions,
i.e., SVR-MKC and SVR-M3C, have the following three ad-
vantages. The first one is that they are formulated as con-
vex optimization problems, so that global optimum solutions
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are available. The second one is that they have theoretical lin-
earithmic time complexities and empirically determined linear
time complexities with both linear and nonlinear kernels. The
third one is that, if they are used as unsupervised learning
methods, their prediction time complexities are irrelevant to the
training set size. The experimental results have shown that the
proposed SVR-MMC, SVR-MKC, and SVR-M3C algorithms
can achieve higher clustering accuracies than several state-
of-the-art clustering methods and MMC algorithms. We have
also applied the SVR-MKC to VAD. The experimental results
have shown that the SVR-MKC-based VAD can combine the
advantages of multiple acoustic features together, achieve good
performances that are close to the supervised MK-SVM-based
VAD, and meet the real-time demand of VAD.

APPENDIX A
PROOF OF THEOREM 1

The key point of the proof is to prove that the loss functions
of problems (8) and (7) are equivalent.

Given the current label vector y ∈ B1 ⊆ R
n, the empirical

Laplacian loss of the SVR (7) is

�l =
1

n

n∑
i=1

(ξi + ξ∗i )

=
1

n

n∑
i=1

(
max

(
0, yi −wTφ(xi)

)
+max(0,−yi +wTφ(xi))

)
=

1

n

n∑
i=1

max
(
yi −wTφ(xi),−yi +wTφ(xi)

)
(54)

which can be also rewritten as

�l =
1

n

n∑
i=1

max
ci∈{0,1}

(
(1− ci)

(
yi −wTφ(xi)

)
+ci

(
−yi +wTφ(xi)

))
. (55)

Letting gi = 1− 2ci leads to

�l =
1

n

n∑
i=1

max
gi∈{−1,1}

(
gi
(
yi −wTφ(xi)

))

= max
g∈{−1,1}n

(
1

n

n∑
i=1

gi(yi −wTφ(xi)

)
� ξ. (56)

Theorem 1 is proved.

APPENDIX B
PROOF OF THEOREM 2

According to the CPA theory, the most violated y is the one
that would result in the largest value of −E(y;α) [in (12)] at
the current solution point (μ,α), which is just the following
optimization problem:

max
y∈B0

−E(y;α) = max
y∈B0

−αTGTy +
1

2
αTGTKGα. (57)

Because the second item is irrelevant to the optimization
problem, (57) is equivalent to (16), which can be efficiently
solved in the same way as [41, Proposition 2].

APPENDIX C
PROOF OF THEOREM 3

First of all, we should note that, although the variable vector
μ in (15) only shows |Ω| elements, it is, in fact, a long sparse
vector with only the first |Ω| elements (possibly) not being zeros
and all other elements being zeros. That is to say, the complete
definition of any Mk, k ∈ N, should be defined as

Mk =

{
μ
∣∣∣ {∑k

t=1 μt = 1, μt ≥ 0, if t <= k
μt = 0, otherwise

}
. (58)

Thus, we can have

M1 ⊂ M2 ⊂ . . . ⊂ M|Ω|−1 ⊂ M|Ω| ⊂ . . . ⊂ M. (59)

From (59), we could know that any ELM solution point
(μi

k,α
i
k) ∈ Mk ×A is also a point in M×A, which means

that any past ELM solution point can contribute to the construc-
tion of the cutting-plane model of the ELM algorithm for the
current problem (15), since ELM algorithm also belongs to the
CPA category. Therefore, if we denote the objective value of
the kth cutting-plane subproblem as Jk, the following descen-
dent relation is guaranteed:

J1 ≥ J2 ≥ · · · ≥ J|Ω|−1 ≥ J|Ω| ≥ · · · ≥ J (60)

where J is the global minimum value of the SVR-MMC.
However, if we do not inherit the historical ELM solution

points, we have to construct a new cutting-plane model of the
ELM algorithm in each new cutting-plane subproblem, so that
the model of the ELM in Mk−1 ×A has no relation with that
in Mk ×A, which means that Jk−1 ≥ Jk is not guaranteed.

APPENDIX D
PROOF OF THEOREM 4

The most violated Y is the one that would result in the largest
value of −EΣ(Y;α) [in (46)] at the current solution point
(μ,α), which is just the following optimization problem:

max
Y∈B2

−EΣ(Y;α)

= max
Y∈B2

−
P∑

p=1

αT
p G

T
p
¯̄yp +

1

2

P∑
p=1

αT
p G

T
p KGpαp. (61)

Because the second item is irrelevant to the optimization
problem, (61) is equivalent to (49).

APPENDIX E
PROOF OF THEOREM 8

The solution of problem (49) should satisfy the following two
important constraints:

1) Each row (sample) of Y can only have one “1.” All other
values of the row should be “1/(P − 1).” That is to say,
ȳ ∈ Bȳ.
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2) Each column (class) of Y should satisfy the class balance
constraint. That is to say, −l/(P − 1) ≤ ¯̄yT1 ≤ l.

First, it is obvious that output Y of Algorithm 6 satisfies
the aforementioned two items. Then, we prove that Y is the
optimal solution. According to Algorithm 6, we can obtain
the sorted c, denoted as c′, and the aligned Y, denoted as z′.
Suppose another Y+ differs from Y in just two labels, which
are denoted as ȳi,p and ȳj,q . If we order Y+ to the same vector
as z′, we can align c to another vector c+. c′ and c+ differ
from each other in just two positions that are related to labels
ȳi,p and ȳj,q . Suppose the two elements at the two positions
of c′ are c′a and c′b, where a and b are the two indexes of the
positions. We have c+a = c′b and c+b = c′a. According to the
fact that ȳi,p �= ȳj,q (so as to z′a and z′b) and the procedure
of Algorithm 6, we must have z′a = 1 and z′b = −1/(P −
1). Based on the fact that c′a < c′b, the following inequality
holds:

z′ac
′
a + z′bc

′
b < z′ac

′
b + z′bc

′
a = z′ac

+
a + z′bc

+
b

which means that Y can achieve lower objective value
than Y+.

It is obvious that the sorting of {αT
p G

T
p }Pp=1 is the most

time-consuming part of Algorithm 6, which has an average time
complexity of O(Pn logPn). Theorem 8 is proved.
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