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Abstract—Voice activity detection (VAD) is an important topic
in audio signal processing. Contextual information is important
for improving the performance of VAD at low signal-to-noise
ratios. Here we explore contextual information by machine
learning methods at three levels. At the top level, we employ an
ensemble learning framework, named multi-resolution stacking
(MRS), which is a stack of ensemble classifiers. Each classifier in
a building block inputs the concatenation of the predictions of
its lower building blocks and the expansion of the raw acoustic
feature by a given window (called a resolution). At the middle
level, we describe a base classifier in MRS, named boosted deep
neural network (bDNN). bDNN first generates multiple base pre-
dictions from different contexts of a single frame by only one DNN
and then aggregates the base predictions for a better prediction
of the frame, and it is different from computationally-expensive
boosting methods that train ensembles of classifiers for multiple
base predictions. At the bottom level, we employ the multi-res-
olution cochleagram feature, which incorporates the contextual
information by concatenating the cochleagram features at mul-
tiple spectrotemporal resolutions. Experimental results show that
the MRS-based VAD outperforms other VADs by a considerable
margin. Moreover, when trained on a large amount of noise types
and a wide range of signal-to-noise ratios, the MRS-based VAD
demonstrates surprisingly good generalization performance on
unseen test scenarios, approaching the performance with noise-de-
pendent training.
Index Terms—Cochleagram, deep neural network, ensemble

learning, multi-resolution stacking, noise-independent training,
voice activity detection.

I. INTRODUCTION

V OICE activity detection (VAD) is an important pre-
processor for many audio signal processing systems. For

example, it improves the efficiency of a speech communication
system [1] by detecting and transmitting only speech signals. It
helps a speech enhancement algorithm [2] or a speech recogni-
tion system [3], [4] by filtering out silence and noise segments.
One of the major challenges of VAD is to make it perform in
low signal-to-noise ratio (SNR) environments. Early research
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focused on signal processing based acoustic features, including
energy in the time domain, pitch detection, zero-crossing rate,
and several spectral energy based features such as energy-en-
tropy, spectral correlation, spectral divergence, higher-order
statistics [5]. Recent development includes low-frequency
ultrasound [6] and single frequency filtering [7]. Exploring fea-
tures is important in improving VAD research from the aspect
of acoustic mechanism. However, each acoustic feature reflects
only some characteristics of human voice. Moreover, using
the features independently is not very effective in extremely
difficult scenarios. Hence, fusing the features together as the
input of some data-driven methods may be an effective usage
of the features for improving the overall performance of VAD.
Another important research branch of VAD is statistical

signal processing. These techniques make model assumptions
on the distributions of speech and background noise (usually
in the spectral domain) respectively, and then design statistical
algorithms to dynamically estimate the model parameters.
Typical model assumptions include the Gaussian distribution
[8], [9], Laplace distribution [10], Gamma distribution [11], or
their combinations [11]. The most popular parameter estimation
method is the minimum mean square error estimation [12].
In addition, long-term contextual information is shown to be
useful in improving the performance [13]. Due to the simplicity
of the model assumptions and online updating of the parame-
ters, this kind of methods may generate reasonable results in
various noise scenarios. In many cases, they work better than
energy based methods. But statistical model based methods
have limitations. First, model assumptions may not fully cap-
ture global data distributions, since the models usually have
too few parameters and they estimate parameters on-the-fly
from limited local observations. Second, with relatively few
parameters, they may not be flexible enough in fusing multiple
acoustic features. Moreover, most methods update parameters
during the pure noise phase which may cause them fail when
the noise changes rapidly during the voice phase.
The third popular branch of VAD research is machine

learning methods, which train acoustic models from given noisy
corpora and apply the models to real-world test environments.
They have two main research objectives: one is to improve the
discriminative ability of models when the noise scenarios of
training and test corpora are matching; the other is to improve
the generalization ability (i.e. detection accuracy) of models to
test noise scenarios when the test noise scenarios are unseen
from or mismatching with the training noise scenarios.
Most machine learning methods focus on how to improve the

discriminative ability. We summarize them briefly as follows.
In terms of whether their training corpora are manually labeled,
they can be categorized to unsupervised learning which uses
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unlabeled training corpora, or supervised learning which uses
labeled training corpora. Many unsupervised methods belong
to dimensionality reduction, which first extract noise-robust
low-dimensional features from highly-variant high-dimen-
sional observations and then apply the features to classifiers.
They include principle component analysis [14], non-negative
matrix factorization [15], and spectral decomposition of graph
Laplacian [16]. Some methods use clustering algorithms di-
rectly, such as -means clusterings [17] and Gaussian mixture
models [14]. Unsupervised methods are able to explore multiple
features and train robust models from vast amount of recorded
data, however, when the tasks are too difficult that most speech
signal is drowned in back ground noise, such as babble noise
with an SNR below 0 dB, unsupervised methods are helpless.
Note that, statistical signal processing based VADs can also be
regarded as unsupervised methods, which train models from a
few local observations and accumulated historical information.
Supervised learningmethods take VAD as a binary-class clas-

sification problem—speech or non-speech. The techniques can
be roughly categorized to four classes: probabilistic models,
kernel methods, neural networks, and ensemble methods. Prob-
abilistic models include Gaussian mixture models [18] and con-
ditional random fields [15]. Kernel methods mainly include var-
ious support vector machines (SVM), such as [19], [20]. These
two kinds cannot handle large-scale corpora well, so that they
are difficult to be used in practice since we need large-scale
training corpora to cover rather complicated real-world noisy
environments.
Recently, deep neural networks (DNN) and their extensions

[21]–[26], which have a strong scalability to large-scale cor-
pora, showed good performance in extremely difficult scenarios
and are competitive in real-world applications. Specifically, in
[21], Zhang and Wu proposed to apply standard deep belief
networks to VAD and reported better performance than SVM,
where the networks were pretrained as in [4]. In [25], Zhang
and Wang further proposed to generate multiple different pre-
dictions from a single DNN by boosting contextual information
and reported significant improvement over the standard DNN
in difficult noise scenarios and at low SNR levels. In [22], [23],
the authors applied deep recurrent neural networks to capture
historical contextual information and reported significant im-
provement over Gaussian mixture models and statistical signal
processing methods. However, the performance improvements
of the aforementioned DNN methods were observed when the
DNNs were trained noise-dependently, i.e. the noise scenarios
of training and test are matching. When the DNN-based VADs
were applied to unseen test scenarios, the performance dropped
significantly as shown in [23], [27]. Recently, in [24], [26],
the authors trained DNN and convolutional neural networks to-
gether from large-scale real-world data [28] and demonstrated
impressive two-phase improvements. However, because each
model in [24], [26] was binded to a given channel, we still do
not know exactly how the models will generalize to different
noise scenarios. Due to the restriction of the task setting, the re-
sults do not have a quantitative evaluation on how the models
vary with SNR levels, which need a further investigation.
To summarize, DNN-based VADs with noise dependent

training have demonstrated good performance and have shown
strong potential in practice. In this paper, we further develop

DNN-based VADs by exploring contextual information heavily
in three novel levels. Motivated by recent progress of speech
separation [29], [30], we also investigate quantitatively how
DNN-based VADs can generalize to unseen test noise sce-
narios with the variation of SNR through noise-independent
training. The main contributions of this paper are summarized
as follows:
• Multi-resolution stacking (MRS).MRS is a stack of en-
semble classifiers. Each classifier in a building block takes
the concatenation of the soft output predictions of the lower
building block and the expansion of the original acoustic
feature in a window (called a resolution). The classifiers in
the same building block have different resolutions, which
is the novelty of this framework.

• Boosted deep neural network (bDNN). bDNN is pro-
posed as the base classifier of MRS. It first generates mul-
tiple base predictions on a frame by boosting the contextual
information of the frame, and then aggregates the base pre-
dictions for a stronger one. bDNN generates multiple pre-
dictions from a single DNN, which is its novelty compared
to ensemble DNNs. Preliminary results [25] showed that it
can significantly outperform DNN-based VAD without in-
creasing computational complexity.

• Multi-resolution cochleagram (MRCG) feature.MRCG
[31], which was first proposed for speech separation, is em-
ployed as a new acoustic feature for VAD. It concatenates
multiple cochleagram features calculated at different spec-
tral and temporal resolutions.

• Noise-independent training. We train the proposed
method with a corpus that has a vast amount of noise
scenarios with a wide variation of SNR levels, and test it
in unseen and difficult noise scenarios. We find that the
method can generalize well.

Empirical results on the AURORA2 [32] and AURORA4
corpora [33] show that the MRS-based VAD outperforms a
DNN-based VAD [21] and 5 other comparison methods. More-
over, when the proposed method is trained noise-independently,
its performance on unseen test noise scenarios at various SNR
levels is surprisingly as good as the proposed method with
noise-dependent training. See Supplementary Material1 for
more results and [34] for the long version. This paper differs
from our preliminary work [25] in several major aspects, which
include the use of MRS and noise-independent training in this
paper (but not in [25]) and new parameter settings for bDNN
and MRCG. Consequently, experimental results in this paper
are different from those reported in [25].
The paper is organized as follows. In Section II, we introduce

the MRS framework. In Section III, we present the bDNN
model. In Section IV, we introduce the MRCG feature. In
Section V, we present results with noise-dependent training. In
Section VI, we present results with noise-independent training.
Finally, we conclude in Section VII.

II. MULTI-RESOLUTION STACKING
We formulate VAD as a supervised classification problem.

Specifically, a long speech signal is divided to multiple short-
term overlapped frames, each of which ranges usually from 10

1Available at https://sites.google.com/site/zhangxiaolei321/vad
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to 25 milliseconds. Each frame in the time domain is trans-
formed to an acoustic feature in the spectral domain, denoted
as , where indexes time frame. To construct
a training set of a classification problem, is manually labeled
as or , indicating is a speech or noise frame
respectively. A classifier is trained on and
tested on another set .
It is known that contextual information is important in im-

proving the performance of VAD. One common technique to in-
corporate contextual information is to train models with a fixed
window length that performs the best among several choices of
window lengths.We denote the technique of adding a window to
incorporate neighboring frames the resolution. Here, we argue
that (i) for a certain task, although only one resolution performs
the best, other resolutions may still provide useful information
that may further improve the performance; (ii) although we can
manage to pick the best resolution for a certain task, it is still
inconvenient to do so case by case. We propose a simple frame-
work, named multi-resolution stacking, to solve the two prob-
lems together.
As described in Fig. 1, MRS is a stack of classifier ensembles.

In the training stage of MRS, suppose we are to train building
blocks ( in Fig. 1). The th building block has clas-
sifiers, denoted as , each of which has a predefined
resolution . The th classifier takes vector as
the input:

(1)

and takes as the training target, where are
the soft predictions of produced by the th building
block and is an expansion of given the resolution

:

(2)

After is trained, it produces a soft prediction of
for the upper building block.

The resolution will double the size of training data,
therefore, MRS is hard to handle both a large and a large
training set. To reduce the memory requirement of computing
power, we present a trick: one can pick a subset of frames
within the window instead of all frames. In this paper, we
replace parameter by a new pair of parameters ( )
which chooses the neighboring frames indexed by

and derives the following feature:

(3)

where is a user defined integer parameter. This trick not only
makes all classifiers in a building block have the same memory

Fig. 1. Principle of multi-resolution stacking. The soft predictions of all base
classifiers in a building block are combined in the red line as part of the input of
the base classifiers in the upper building block. The input of a base classifier is
the concatenation of the soft predictions from the lower building block and the
acoustic feature that is extended by a window.

requirement but also does not decrease the performance signif-
icantly in experience.
In the test stage of MRS, we obtain a serial soft predictions

as we did in the training stage from the bottom building block
to the top building block. After getting the output of the th
building block which contains only one classifier as shown in
Fig. 1, we do a hard decision on the output, e.g. , by:

(4)

and take as the final prediction of the test frame , where
is a decision threshold tuned on a development set.

A. Motivation
This paper uses “boosting” as a concept of ensemble learning

[35], somewhat different from its use in AdaBoost [36] and its
variants which recursively add new base classifiers that dis-
criminate misclassified training data points made by previous
base classifiers. The theory of weak learnability [37], which is
a cornerstone of ensemble learning, suggests that an ensemble
of weak learners can group to a strong learner, if (i) the weak
learners are stronger than random guess and (ii) the weak
learners are different from each other in terms of classification
errors. Ensemble learning has four kinds of techniques: ma-
nipulating training data points, features, hyperparameters of
classifiers, and output targets.
MRS integrates the base predictions of a lower building

block into the training process of the upper building block
by manupulating output targets. It is derived as follows. The
simplest stacking technique is majority voting, which averages
the base predictions in the upper building block. However,
an ensemble method needs hundreds of base predictions to
reach an improved final prediction, which is too costly for
computationally-expensive base learners, such as DNN. To
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overcome this problem, we need a stronger upper building
block than majority voting. DNN, which nonlinearly combines
the base predictions, meets our requirement. However, a few
base predictions do not provide enough information for DNN
to reach a reasonable result. To overcome this problem, we
take both the base predictions from the lower building block
and original features as the input of DNN. The original features
ensure that the amount of information will not decrease with
the increase of the number of the building blocks. On the other
hand, the base predictions provide additional information for
performance improvement.
Note that the principles of AdaBoost, which corrects training

errors recursively, is not suitable for VAD. It is known that,
when a data set is noisy, AdaBoost easily overfits [38].

B. Related Work
In noise-robust speech signal processing, using the optimal

resolution is a common technique, such as statistical signal pro-
cessing based VADs [13] and recent machine learning based
VADs. However, the models with suboptimal resolutions may
also provide useful information. Fusing ensemble models is an-
other common technique, such as fusing DNN and convolu-
tional neural networks in [24], [26], but, they do not consider
different resolutions and stacking, and do not take the raw fea-
ture as the input of the consensus model. Stacking ensemble
classifiers has been used in speech separation [39] and recog-
nition [40], but they did not consider different resolutions. To
summarize, stacking ensembles of classifiers in different reso-
lutions are the novelty of the framework.

III. BOOSTED DNN

In this section, we fill MRS by a strong base classi-
fier—boosted DNN. We also introduce our DNN model in
Section III-A and motivation of bDNN in Section III-B.
Deep neural network is a strong classifier that can approach

to the minimum expectation risk—the ideal minimum risk given
the infinite amount of training data—when the input data is large
scale. It has been adopted in recent VAD studies. One common
technique to further improve the prediction accuracy of DNN is
ensemble learning, which trains multiple DNNs that yield dif-
ferent base predictions, such that when the base predictions are
aggregated, the final prediction is boosted to be better than any
of the base predictions. However, it is too expensive to train a set
of DNNs if they do not receive significantly different knowledge
from the input. To alleviate the computational load but benefit
from ensemble learning, we proposed bDNN, which can gen-
erate multiple different base predictions on a single frame by
training only one DNN.
In the training stage of bDNN, we expand each training frame
to by Eq. (1). Different from DNN training, we further

expand to by a squared window:

(5)

The square window is the simplest form to incorporate neigh-
boring labels of . Applying different windows, particularly

those emphasizing the importance of , could further improve
the performance (see Section VII).
Given the new training target , bDNN is a DNN model

trained on a new corpus . It has
input units when bDNN is used in the bottom building block of
MRS, and input units when bDNN is not
in the bottom building block of MRS, where is the dimension
of . It has output units. It optimizes the following
objective by backpropagation training:

(6)

where is the DNN mapping function, is the parameter
of DNN, and denotes the squared loss.
In the test stage of bDNN, we aim to predict the label

of frame , which consists of three steps as shown in
Fig. 2. The first step expands to a large observation

as done in the training phase, so as to get a new test
corpus (Fig. 2(A)). The second step gets the

-dimensional prediction of from the DNN, denoted
as
(Fig. 2(B)). The third step aggregates the results to reach the
soft prediction of , denoted as (Fig. 2(C)):

(7)

Finally, we make a hard decision by

(8)

where is a decision threshold tuned on a development
set.
Note that when we adopt the trick in Section II to alleviate the

memory requirement, Eq. (5) should be modified accordingly as
follows:

(9)

A. DNN Model

We adopt contemporary DNN training methods, and use the
area under the receiver operating characteristic curve (AUC)
as the performance metric for selecting the best DNN model in
the training process, where an efficient calculation of AUC is
provided in Supplementary Material.
The template of deep models is described as follows:

(10)

where denotes the th hidden layer from the
bottom, is a group of nonlinear mapping functions
(or units) at the th layer, is the output layer, and
is the input feature vector. We use the rectified linear unit

as the unit of the hidden layers, sigmoid function



256 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 2, FEBRUARY 2016

Fig. 2. Test phase of bDNN. (A) Expanding to a new feature (included in
the dashed rectangle, denoted as ) given the half-window size . (B) Pre-
dicting labels of to produce a -dimensional vector (included in
the dashed rectangle) by DNN. (C) Aggregating the prediction results by the
given equation from the soft output units drawn in the bold dashed rectangles
of Fig. 1(B).

as the unit of the output layer. Rectified linear unit
can be trained faster than the traditional sigmoid function and
helps DNN learn local patterns better.
We use a dropout strategy [41] to regularize the DNN model.

Dropout randomly deactivates the units in a given layer. Specif-
ically, the hidden units of a layer were dropped randomly with
a given probability, such as 20%. The dropped units output 0
regardless their input. The upper layer takes the randomly cor-
rupted feature as its input, and randomly deactivates its output
units in the same way. Due to such a regularization, bDNN is
able to train a much larger model with a stronger generalization
ability than the standard DNN model in [21].
In addition, we employ the adaptive stochastic gradient de-

scent [42] and a momentum term [43] to train DNN. These
training schemes accelerate traditional gradient descent training
and facilitate parallel computing. We do not use pretraining in
our DNN training. Recent results show that, when a data set is
large enough, the performance of DNN without pretraining is
also good enough.

B. Motivation

Originally, we planed to first train multiple DNNs
and then aggregate the predictions of the

DNNs. Specifically, each DNN learns a mapping function from
an expansion of the input to its manual label , and the ex-
pansions in different DNNs use different sliding windows that
incorporate as part of input. For example, the th DNN
takes
as its input and outputs the base prediction . The ensemble
method gets the final prediction by aggregating the base
predictions .
After observing the fact that

appears as the expanded feature of for training
where , we propose to integrate the out-

puts together and train a new DNN model:

...
... (11)

where is the DNN model of bDNN that has multiple output
units. Then, we aggregate the base predictions for the final pre-
diction as in Eq. (7). The main difference between bDNN and
the aforementioned inefficient method is that the base predic-
tions of bDNN share the same parameters of the hidden
units of a single DNN model, while the base predictions of the
inefficient method are generated independently from multiple
DNN models. bDNN saves the computational load greatly with
some loss of flexibility of model training.

C. Related Work

1) On the Relationship Between Boosted DNN and the
Common Boosting Techniques: For bDNN, the output target
of the th frame, i.e. , is assumed to be generated from

. bDNN generates multiple
base predictions of by extracting part of the input feature.
The method of manipulating the input feature only is different
from bagging [44] and Adaboost [36] which manipulate the
input data set; it is also different from random forests [38]
which manipulates the input data set and features together. We
also tried to generate base predictions from different subsets
of data, but we found that the performance was not as good as
the performance produced from the entire data set due to the
performance decrease of each base classifier.
2) On the Difference Between the bDNN Based VAD and the

DNN Based VAD in [21] : The training targets of bDNN and
the method in [21] are different. bDNN reformulates VAD as a
structural learning problem that learns an encoder that projects
the concatenated frames in a window to a binary code, while the
method in [21] takes VAD as a traditional binary-class classifi-
cation problem that predicts the classes of frames in sequence.
The structural learning of bDNN fully utilizes the contextual in-
formation of the output.
The DNN implementations of bDNN and the method in [21]

are also different in respect of the network structure and training
method. (i) The DNNmodel in [21] does not use a regularization
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method (e.g., dropout). (ii) It uses the sigmoid function as the
hidden unit and softmax function as the output
unit, which is not very effective in learning the local distribution
of data. (iii) It uses pretraining to prevent bad local minima,
which is unnecessary when a training set is large enough.

IV. MRCG FEATURE
In this section, we introduce the MRCG feature which was

first proposed in [31] for speech separation.2 The key idea of
MRCG is to incorporate both local information and global
information through multi-resolution extraction. The local
information is produced by extracting cochleagram features
with a small frame length and a small smoothing window
(i.e., high resolutions). The global information is produced
by extracting cochleagram features with a large frame length
or a large smoothing window (i.e., low resolutions). It has
been shown that cochleagram features with a low resolution,
such as frame length ms, can detect patterns of noisy
speech better than that with only a high resolution, and features
with high resolutions complement those with low resolutions.
Therefore, concatenating them together is better than using
them separately.
As illustrated in Fig. 3(A), MRCG is a concatenation of 4

cochleagram features with different window sizes and different
frame lengths. The first and fourth cochleagram features are
generated from two -channel gammatone filterbanks (
in this paper) with frame lengths set to 20 ms and 200ms respec-
tively. The second and third cochleagram features are calculated
by smoothing each time-frequency unit of the first cochleagram
feature with two squared windows that are centered on the unit
and have the sizes of and . Because the win-
dows on the first and last few channels (or frames) of the two
cochleagram features may overflow, we cut off the overflowed
parts of the windows. Note that the multi-resolution strategy is a
common technique not limited to the cochleagram feature [45],
[46].
After calculating the ( )-dimensional MRCG feature, we

further calculate its Deltas and double Deltas, and then combine
all three into a ( )-dimensional feature (Fig. 3(B)). A Delta
feature is calculated by

(12)

where is the th unit of MRCG in a given channel. The
double-Delta feature is calculated by applying equation (12) to
the Delta feature.
The calculation of the -dimensional cochleagram feature

in Fig. 3(A) is detailed in Fig. 3(C). We first filter input noisy
speech by the 8-channel gammatone filterbank, then calculate
the energy of each time-frequency unit by given
the frame length , and finally rescale the energy by ,
where represents the th sample of a given frame in the th
channel [47].
Note that when MRCG is used for bDNN training, it should

be normalized to zero means and unit standard deviations in di-
mension globally, and the normalization factors should be used

2Code is downloadable from http://web.cse.ohio-state.edu/pnl/software.html

Fig. 3. The MRCG feature. (A) Diagram of the process of extracting a 32-di-
mensional MRCG feature. “ square window” means
that the value of a given time-frequency unit is replaced by the average value
of its neighboring units that fall into the window centered at the given unit and
extending in the axes of time and frequency. (B) Expanding MRCG to a 96-di-
mensional feature that consists of the original MRCG feature, its Delta feature
and Delta-Delta feature. (C) Calculation of the 8-dimensional cochleagram fea-
tures in detail.

to normalize each test frame, where the word “globally” means
that the normalization is conducted on the entire training corpus
but not on each training utterance separately.

A. Related Work

For VAD research, the idea of incorporating both local and
global information into an acoustic feature has been explored
in [48]. There are three differences between MRCG and the
features in [48], named long-term power level difference
(LT-PLD) and short-term PLD (ST-PLD). First, MRCG uses
cochleagram as the basic acoustic feature which is monaural,
whereas LT-PLD and ST-PLD use PLD which is based on two
microphones. Second, the smoothing of a time-frequency unit
of MRCG spreads across the neighboring units along both the
time and frequency axes, while the smoothing of a time-fre-
quency unit of PLD spreads across the neighboring units along
the time axis. Third, the smoothing range of a sub-feature of
MRCG is controlled by a window, while the smoothing range
of PLD is determined by a recursive averaging technique.

V. EVALUATION RESULTS OF NOISE-DEPENDENT MODELS

The term noise-dependent (ND) means that the noise sce-
narios of the training and test sets of machine-learning-based
models are the same in terms of noise types and SNR levels.
In this section, we first report the results of the proposed

methods in Section V-B, then analyze how MRS, bDNN, and
MRCG improve the performance over comparison methods in
Section V-C and Section V-D, and finally analyze the advantage
of MRCG over its components in Section V-E. We also report
further results in Supplementary Material.
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A. Experimental Settings

1) Data Sets: We used the noisy speech corpora of AU-
RORA2 [32] as well as the clean speech corpus of AURORA4
[33] mixed with the NOISEX-92 noise corpus [49] for eval-
uation. AURORA2 contains the pronunciations of digits.
AURORA4 contains the utterances of continuous speech. The
data sets were preprocessed as follows.
The ground-truth labels of each noisy speech corpus in either

AURORA2 or AURORA4 were the results of Sohn VAD [8]
applied to the corresponding clean speech corpus. We have re-
leased a clean test corpus of AURORA2 at https://sites.google.
com/site/zhangxiaolei321/vad where we can see that the auto-
matic labels are accurate. We will further study how this auto-
matic labeling method affects the performance in Section VI-C,
compared to manual labeling. The frame length and frame shift
of the proposed method were described in the MRCG feature.
The frame length and frame shift of all competitive methods
were 25 ms and 10 ms respectively.
We used 7 noisy test sets of AURORA2 [32] at SNR levels

of dB, which had 42 noisy environments
in total. The sampling rate is 8 kHz. We split each test corpus
to three subsets for training, developing, and test, each of which
contains 300, 300, and 401 utterances respectively. All utter-
ances in each set were concatenated to a long conversation for
simulating real working environments of VAD, such as phone
calls.
We used the clean speech corpus of AURORA4 [33]

corrupted by the ‘babble” and “factory” noise in the
NOISEX-92 noise corpus at extremely low SNR levels (i.e.

dB) for a more broaden and harsh comparison
between the proposed method and the competitors and for an
investigation of the effectiveness of the components of the
proposed method. That is to say, we constructed 8 difficult
noisy speech corpora. The sampling rate is 16 kHz. The pre-
processing is as follows. The clean speech corpus consists of
7,138 training utterances and 330 test utterances. We randomly
selected 300 and 30 utterances from the training utterances as
our training set and development set respectively, and used
all 330 test utterances for testing. All utterances in each set
were concatenated to a long conversation. We will also study
how the proposed method behaves on individual utterances in
Section VI-D. Note that for each noisy corpora, the additive
noises for training, development, and test were cut from dif-
ferent intervals of a given noise.
2) Evaluation Metrics: Receiver operating characteristic

(ROC) curve is considered as an overall metric of the VAD
performance rather than the detection accuracy, since the
speech-to-nonspeech ratio is usually imbalanced, and also
since one usually tunes the decision threshold of VAD for
specific applications. Due to the length limitation of the paper,
we cannot draw all ROC curves. Because AUC can measure
ROC curve quantitatively, we took AUC as the main metric.
We also gave the speech hit rate minus false alarm rate (HIT
- FA) at the optimal operating points of the ROC curves in
Supplementary Material. Because over 70% frames are speech,
we did not use detection accuracy as a metric, so as to prevent
reporting misleading results caused by class imbalance.

3) Comparison Methods and Parameter Settings: We com-
pared bDNN- and MRS-based VADs with Zhang13 VAD [21],
and an SVM-based VAD using MRCG as the feature. The pa-
rameters of Zhang13 VAD were the same as in [21].
For bDNN-based VAD, the parameters were as follows. The

numbers of hidden units were set to 512 for the two hidden
layers. The number of epoches was set to 50. The batch size was
set to 512. The scaling factor for the adaptive stochastic gradient
descent was set to 0.0015, and the learning rate decreased lin-
early from 0.08 to 0.001. The momentum of the first 5 epoches
was set to 0.5, and the momentum of other epoches was set to
0.9. The dropout rate of the hidden units was set to 0.2. The
half-window size was set to 19, and the parameter of the
window was set to 9.
For MRS-based VAD, we trained two building blocks (i.e.

parameter ). For the bottom one, we trained 10 bDNNs
with resolution parameter set to [(3,1), (5,2), (9,4),
(13,6), (15,7), (17,8), (19,9), (21,10), (23,11), (25,12)] respec-
tively. The parameter setting of each bDNN was exactly the
same as that of the aforementioned bDNN-based VAD. For
the top building block, we trained 1 bDNN with set to
(19,9). The parameter setting of the bDNN at the top building
block was as follows. The numbers of hidden units were set to
128 for both the first and second hidden layers. The number of
epoches was set to 7.

B. Results with Noise Dependent Training

Table I lists the AUC result of all 4 VAD methods on the
42 noisy environments of AURORA2. Table II lists the result
on the 8 noisy environments of AURORA4. From the tables,
we observe that (i) the proposed method significantly outper-
forms Zhang13 VAD and SVM-based VAD, particularly when
the background is very noisy; (ii) the experimental phenomena
of the proposed method on different noisy scenarios of AU-
RORA2 and AURORA4 are quite consistent, which means its
superiority is not affected by whether the spoken words were
isolated or continuous.
Because MRS contains 11 bDNN models, the training and

test time of the MRS-based VAD is about 11 times that of the
bDNN-based VAD. Due to space limitation, we omit a detailed
complexity analysis.

C. Effects of Boosted DNN and MRS on the Performance

To investigate how bDNN and MRS improve the per-
formance, we ran DNN, bDNN, and MRS on the AU-
RORA4 corpus with MRCG as the input feature, where
the model “DNN” used the same input as bDNN, i.e.

, but used as the target
instead of .
Fig. 4 shows the comparison result with respect to the

window length. From the figure, we observe that (i) bDNN
and MRS significantly outperform DNN, and their superiority
becomes more and more apparent when the window is gradu-
ally enlarged; (ii) MRS is less sensitive to the window length
than bDNN; (iii) DNN can also benefit from the contextual
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TABLE I
AUC (%) COMPARISON BETWEEN THE COMPARISON VADS AND PROPOSED

BDNN- AND MRS-BASED VADS ON THE AURORA2 CORPUS. THE
NUMBERS IN BOLD INDICATE THE BEST RESULTS

TABLE II
AUC (%) COMPARISON BETWEEN THE COMPARISON VADS AND PROPOSED

BDNN-BASED AND MRS-BASED VADS ON THE AURORA4 CORPUS.
THE NUMBERS IN BOLD INDICATE THE BEST RESULTS

Fig. 4. AUC analysis of the advantage of the boosted algorithm in bDNN-based
and MRS-based VADs over the unboosted counterpart that uses the same input

as bDNN and MRS but uses the original output as the training target
instead of . (A) Comparison in the babble noise environment with

dB. (B) Comparison in the factory noise environment with dB.
Note that are two parameters of the window of bDNN.

TABLE III
AUC (%) COMPARISON BETWEEN MRCG AND COMB, WITH EITHER DNN,

BDNN, OR MRS AS THE CLASSIFIER ON THE AURORA 4 CORPUS

information, but this performance gain is limited. Note that
bDNN has the same computational complexity with DNN.

D. Effects of MRCG Feature on the Performance

To evaluate how MRCG affects the performance, we com-
pared it with the combination (COMB) of 10 conventional
acoustic features in Zhang13 VAD [21], on AURORA4 with
either DNN, bDNN, or MRS as the classifier, where the model
“DNN” is described in Section V-C.
Table III lists the comparison result between MRCG and

COMB. From the table, we observe that the 96-dimensional
MRCG is generally better than the 273-dimensional COMB
feature. In our preliminary work [25], we have further enlarged
the dimension of MRCG from 96 to 768. The comparison result
in [25] shows that the 768-dimensional MRCG significantly
outperforms COMB.
In [21], the authors have investigated the advantage of

COMB over its sub-features including MFCC, DFT (with
carefully selected bins suggested by the speech enhancement
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Fig. 5. ROC curve analysis of the MRCG feature versus its components at AURORA4.

standard IS-127), LPC and RASTA-PLP. The result shows
that COMB is better than any of its sub-features. Given the
advantage of MRCG over COMB, MRCG is better than the
conventional features.

E. Advantage of MRCG Feature over Its Components

Fig. 5 shows the ROC curve comparison between the MRCG
feature and its four components in the two difficult environ-
ments with parameters set to (0,0) and (19,9), where

means that the input and output of bDNN do not use
window. From the figure, we observe that (i) MRCG is at least
as good as the best of its 4 components, which shows the ef-
fectiveness of the multi-resolution technique; (ii) CG2 yields a
better ROC curve than the other 3 components. The same phe-
nomena can also be observed when the dimension of MRCG is
enlarged to 768 as shown in [25].

VI. EVALUATION RESULTS OF NOISE-INDEPENDENT MODELS

The term noise-independent (NI) means that once trained, the
machine learning based VADs can achieve reasonable perfor-
mance in various noise scenarios, even though the noise sce-
narios are unseen from the training set. Training goodNImodels
is one of the ultimate goals of machine learning based VADs in
real-world applications and also one of the most difficult tasks
that prohibit machine learning methods from practical use. In
this section, we evaluate the performance of NI models in dif-
ficult and unseen test scenarios. We also report some results in
Supplementary Material.

A. Experimental Settings

We randomly selected 300 clean utterances from AURORA2
and AURORA4 respectively as the clean corpora, which were
also used as the clean corpora in Section V for synthesizing
noisy speech corpora. We used a large-scale sound effect
library3 as our noise corpus, which contains over 20,000 sound

effects. For constructing the noisy training corpus of
AURORA2, we first randomly selected 4000 noise segments
and concatenated them to a long noise wave which is about 35
hours long; then, we randomly picked clean utterances from
the clean corpus of AURORA2 and added them one by one in
time slot to the long noise wave with SNR levels varying in

dB, where repeated selection of the clean utterances was
allowed. Note that when synthesizing each noisy speech
segment in the long noisy speech wave, we fixed the clean
utterance and rescaled the noise segment. For constructing the
noisy test corpora of AURORA2, we used the same test noisy
corpora as in Section V, which contain 28 noisy scenarios with
SNR levels ranging in dB. We constructed the
noisy training corpus of AURORA4 in the same way as that of
AURORA2, and used the same noisy test corpora as in
Section V for evaluating the NI models. From the above
description, it is clear that the test noise scenarios are
unseen in the training corpora.
We trained 1 DNN-, 1 bDNN-, and 1 MRS-based VAD on

the noisy training corpus of AURORA2, and evaluated the 3
NI models on all 28 test corpora. We conducted an experiment
on AURORA4 in the same way as that on AURORA2. The
parameter settings of the DNN, bDNN, and MRS models were
the same as their corresponding NDmodels in Section V, except
that the batch size was set to 4096.
We compared with Sohn VAD [8], Ramirez05 VAD [13], and

Ying VAD [9], which are noise-independent methods based on
statistical signal processing. The parameters of the referenced
methods were well tuned according to the authors.

B. Results with Noise-Independent Training
It was supposed that ND models, which were trained and

tested in the same noise scenarios, might perform better than

3The library was requested from http://www.sound-ideas.com/sound-effects/
series-6000-combo-sound-effects.html
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Fig. 6. Visualization of the output of noise-dependent (ND) MRS model and noise-independent (NI) MRS model in the babble noise environment at various SNR
levels. Each test scenario of ND model is exactly the same as its training scenario. The test scenarios of NI model are unseen from its training corpus.

NI models. In this section, we investigated how much their per-
formance differed. Table IV lists the comparison between the
3 referenced VADs and the NI and ND models of the DNN-,
bDNN-, and MRS-based VADs on AURORA2. Table V lists
the comparison on AURORA4. Fig. 6 shows a visualized com-
parison of the soft output of the NI model and 4 ND models on
AURORA2. From the figure and tables, we observe that (i) the
proposed VADs with the NI training are significantly better than
Sohn VAD, Ramirez05 VAD, and Ying VAD which can be used
in various noise scenarios without offline training; (ii) the per-
formance of the NI models approaches to and even outperforms
the performance of the ND models in most cases of AURORA2
when the SNR is equal or greater than 0 dB and in all cases of
AURORA4; (iii) The NI models perform slightly worse than
the ND models on AURORA2 when the SNR is extremely low,
e.g. dB; (iv) MRS-based VAD with the NI training outper-
forms bDNN-based VAD at extremely low SNR of AURORA2
and AURORA4, and performs similarly with the latter in other
cases.

C. Comparison Between Automatic and Manual Labeling

The ground-truth labels of AURORA2 and AURORA4 were
generated by applying Sohn VAD to clean utterances. This
method seems sensible as the main objective is to evaluate
the robustness of VAD to background noise, and it is com-
monly used for producing ground truths for pitch tracking in
noisy speech (see e.g. [50]). To examine how this automatic
labeling method affects the performance, compared to much
less efficient manual labeling, we randomly selected 10 clean
utterances from AURORA4 and labeled them manually (see
Supplementary Material for detailed illustrations). The 10
utterances are 76.31 seconds long. The difference between the
manual labels and automatic labels is 4.1%.

For each environment of AURORA4, we concatenated the
noisy counterparts of the 10 clean utterances to a long conversa-
tion. We used the noise-independent models in Section VI-B to
evaluate the conversation, and compared with the 5 VADs.
The comparison results for the automatic labels and manual
labels are summarized in Tables VI and VII respectively. From
Table VI, we observe that the results on the 10 utterances are
similar to those on the entire AURORA4 in Table V. Comparing
Table VI and Table VII, we observe that the results given the
automatic labels are broadly consistent with the results given
the manual labels, which supports the validity of the results in
Section VI-B and Section V.
To summarize, the labels generated by Sohn VAD on clean ut-

terances can be reasonably used as ground-truth labels. Note that
forced-alignment speech recognition [51] can be used to auto-
matically generate reasonable VAD labels. Also, the Linguistic
Data Consortium recently released the RATS Speech Activity
Detection corpus that provides manually annotated labels for
degraded speech signals.

D. Results on Short Utterances
All experiments so far were conducted on long conversations

aiming to emulate phone calls. However, in many tasks such as
the Google speech assistant, input utterances are very short. To
study this case, we used the noise-independent models to eval-
uate 10 noisy speech utterances in Section VI-C individually,
where each utterance is uttered by a single speaker and lasts
about 5 to 10 seconds. All other settings were the same as in
Section VI-C.
The comparison results given the automatic labels and

manual labels are summarized in Tables VIII and IX respec-
tively. Comparing Table VIII with Table VI, and Table IX with
Table VII, we find that (i) the results on the individual utterances
are consistent with those on the long conversations; (ii) the
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TABLE IV
AUC (%) COMPARISON BETWEEN THE NOISE-INDEPENDENT (NI) MODELS, NOISE-DEPENDENT (ND) MODELS, AND 3 REFERENCED VADS AT AURORA2. THE

NUMBERS IN BOLD INDICATE THE BEST RESULTS AMONG SOHN VAD, RAMIREZ05 VAD, YING VAD, AND NI MODELS

TABLE V
AUC (%) COMPARISON BETWEEN THE NOISE-INDEPENDENT (NI) MODELS, NOISE-DEPENDENT (ND) MODELS, AND 3 REFERENCED VADS AT AURORA4.

THE NUMBERS IN BOLD INDICATE THE BEST RESULTS AMONG SOHN VAD, RAMIREZ05 VAD, YING VAD, AND NI MODELS

TABLE VI
AUC (%) COMPARISON ON 10 RANDOMLY SELECTED NOISY UTTERANCES
OF AURORA4 THAT ARE AUTOMATICALLY LABELED. THE NUMBERS

IN BOLD INDICATE THE BEST RESULTS

AUC scores of the DNN-, bDNN-, and MRS-based methods
on the individual utterances are slightly better than those on the
long conversations; (iii) the AUC scores of the three referenced
statistical-signal-processing-based methods on the individual
utterances are improved over those on the long conversations.

TABLE VII
AUC (%) COMPARISON ON 10 RANDOMLY SELECTED NOISY UTTERANCES

OF AURORA4 THAT ARE MANUALLY LABELED. THE NUMBERS
IN BOLD INDICATE THE BEST RESULTS

E. Results with Fixed Decision Threshold

All results so far are evaluated in terms of AUC and optimal
HIT-FA with a tunable decision threshold. We further report the
HIT and FA rates of NI models with a fixed decision threshold
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TABLE VIII
AUC (%) COMPARISON ON 10 RANDOMLY SELECTED NOISY UTTERANCES
OF AURORA4 THAT ARE AUTOMATICALLY LABELED AND INDIVIDUALLY

EVALUATED. THE NUMBERS IN BOLD INDICATE THE BEST RESULTS

TABLE IX
AUC (%) COMPARISON ON 10 RANDOMLY SELECTED NOISY UTTERANCES OF
AURORA4 THAT ARE MANUALLY LABELED AND INDIVIDUALLY EVALUATED.

THE NUMBERS IN BOLD INDICATE THE BEST RESULTS

in all conditions in Tables VI and VII of Supplementary
Material. From the tables, we observe that the results with this
fixed threshold are close to the optimal results with a tunable
threshold. Note that the threshold may be tuned for different
applications to obtain better results.

VII. CONCLUDING REMARKS

In this paper, we have proposed a supervised VAD
method, named MRS-based VAD, using a new base clas-
sifier—bDNN—and a newly introduced acoustic fea-
ture—MRCG. The proposed method explores contextual
information heavily in three levels. At the top level, MRS is
a stack of ensemble classifiers. The classifiers in a building
block explore context in different resolutions and output dif-
ferent predictions which are further integrated in their upper
building block. At the middle level, bDNN is a strong DNN
classifier that first produces multiple base predictions on a
single frame by boosting the contextual information encoded
in a given resolution and then aggregates the base predictions
for a stronger one. At the bottom level, MRCG consists of
cochleagram features at multiple spectrotemporal resolutions.
Experimental results on AURORA2 and AURORA4 have
shown that when the noise scenarios of training and test are
matching, the proposed method outperforms the referenced
VADs by a considerable margin, particularly at low SNRs. Our
further analysis shows that (i) both bDNN and MRS contribute
to the improvement; (ii) the 96-dimensional MRCG feature is
comparable to the 273-dimensional COMB feature. Moreover,
when trained with a large number of noise scenarios and a wide
range of SNR levels, the proposed method performs as good as
the method with noise-dependent training, which is a promising

sign for the practical use of machine-learning-based VADs in
real-world environments.
The following topics are worth further investigation in the

future. (i) The framework of MRS is not limited to ensemble
learning.Wemay train all DNNs inMRS jointly. (ii) The perfor-
mance of bDNN may be further improved by using other types
of windows that incorporate neighboring labels into the training
target. (iii) As manual annotation for VAD is an expensive task,
how to produce accurate ground-truth VAD labels automatically
is an important topic.
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