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Abstract
Voice activity detection (VAD) is an important frontend of
many speech processing systems. In this paper, we describe
a new VAD algorithm based on boosted deep neural networks
(bDNNs). The proposed algorithm first generates multiple base
predictions for a single frame from only one DNN and then ag-
gregates the base predictions for a better prediction of the frame.
Moreover, we employ a new acoustic feature, multi-resolution
cochleagram (MRCG), that concatenates the cochleagram fea-
tures at multiple spectrotemporal resolutions and shows supe-
rior speech separation results over many acoustic features. Ex-
perimental results show that bDNN-based VAD with the MRCG
feature outperforms state-of-the-art VADs by a considerable
margin.
Index Terms: Boosting, cochleagram, deep neural network,
MRCG, voice activity detection

1. Introduction
Voice activity detection (VAD) is an important preprocessor
of many speech systems, such as speech communication and
speech recognition [1]. Perhaps the most challenging prob-
lem of VAD is to make it perform in low signal-to-noise ra-
tio (SNR) environments. Early research focused on acoustic
features, including energy in the time domain, pitch detection,
zero-crossing rate, and many spectral energy based features [2].
Later on, effort shifted to statistical signal processing. These
techniques first make assumptions on the distributions of speech
and background noise (usually in the spectral domain) respec-
tively, and then design statistical algorithms to dynamically es-
timate the model parameters, making them flexible in dealing
with nonstationary noises. Typical models include the Gaus-
sian distribution [3], Laplace distribution, Gamma distribution,
or their combinations [4]. But statistical model based methods
have limitations. First, model assumptions may not fully cap-
ture data distributions since the models usually have too few pa-
rameters. Second, with relatively few parameters, they may not
be flexible enough in fusing multiple acoustic features. Third,
they estimate parameters from limited observations, which may
not fully utilize rich information embodied in speech corpora.

Recently, supervised learning methods are becoming more
popular, as they have the potential to overcome the limitations
of statistical model based methods. Typical models for VAD
include support vector machine [5], conditional random field
[6], sparse coding [7], spectral clustering [8], Gaussian models

[9–12], Gaussian mixture model [8], recursive neural network
[13], and deep neural network (DNN) [14, 15].

In this paper, we investigate supervised learning for VAD
at low SNRs. The main contributions of this paper are summa-
rized as follows: (i) We propose a new deep model for VAD,
named boosted deep neural network (bDNN). (ii) We employ a
new acoustic feature for VAD, named multi-resolution cochlea-
gram (MRCG) [16]. (iii) The boosting idea in bDNN and the
multi-resolution scheme in MRCG, we believe, can be applied
to other speech processing tasks, such as speech separation and
speech recognition. Empirical results on the AURORA4 cor-
pus [17] show that the bDNN-based VAD with the MRCG fea-
ture outperforms 5 comparison methods by a considerable mar-
gin, including the supervised DNN-based VAD [14].

2. Boosted DNN
In this section, we present the bDNN algorithm for the VAD
problem. bDNN was motivated by ensemble learning, an im-
portant branch of machine learning [18]. Ensemble learning
learns a strong classifier by grouping the predictions of multi-
ple weak classifiers. The key idea behind bDNN is to generate
multiple different base predictions for a single frame, so that
when the base predictions are aggregated, the final prediction is
boosted to be better than any of the base predictions. It contains
two phases—training and test.

Training Phase. Suppose we have a manually-labeled
training speech corpus that consists of V utterances, denoted
as X × Y = {{(xk, yk)}Kv

k=1}
V
v=1, where Kv is number of

frames of the vth utterance, xk ∈ Rd is the kth frame of the vth
utterance, and yk ∈ {−1, 1} is the label of xk. If xk is a noisy
speech frame, then yk = 1; if xk is a noise-only frame, then
yk = −1. Without loss of generality, we further represent the
corpus by X × Y = {(xm, ym)}Mm=1 where M =

∑T
t=1Kt,

which means we concatenate all utterances to a long one.
We aim to train a DNN model for VAD, which consists

of two steps. The first step expands each speech frame x′m =
[xT

m−W ,xT
m−W+1, . . . ,xm, . . . ,x

T
m+W−1,x

T
m+W ]T and

y′m = [ym−W , ym−W+1, . . . , ym, . . . , ym+W−1, ym+W ]T ,
where W is a user defined half-window size. The second step
uses the new training corpus {(x′m,y′m)}Mm=1 to train a DNN
model that has (2W +1)d input units and 2W +1 output units.

Test Phase. Suppose we have an unlabeled test speech
corpus {xn}Nn=1 and a trained DNN model. We aim
to predict the label of frame xn, which consists of three
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steps. The first step reformulates xn to a large observa-
tion x′n as same as in the training phase, so as to get
a new test corpus {x′n}Nn=1. The second step gets the
(2W + 1)-dimensional prediction of x′n from DNN, denoted as

y′n =
[
y
(−W )
n−W , y

(−W+1)
n−W+1 , . . . , y

(0)
n , . . . , y

(W−1)
n+W−1, y

(W )
n+W

]T
.

The third step aggregates the results, which is to predict the soft
decision of xn, denoted as ŷn:

ŷn =
y
(−W )
n + . . .+ y

(−1)
n + y

(0)
n + y

(1)
n + . . .+ y

(W )
n

2W + 1
(1)

Finally, we make a hard decision on ŷn by

ȳn =

{
1 if ŷ ≥ η
−1 otherwise

(2)

where η ∈ [−1, 1] is the decision threshold tuned on the de-
velopment set according to some predefined performance mea-
surement.

When the training corpus and the size of the half-window
W are both large, one can pick a subset of the channels within
the window instead of all channels, based on our observation
that the window size has a larger impact on the performance
than the total number of channels within the window. In this
paper, we pick the channels indexed by {−W,−W +u,−W +
2u, . . . ,−1 − u,−1, 0, 1, 1 + u, . . . ,W − 2u,W − u,W},
where u is a user defined integer parameter.

For the DNN model, different from [14], we use the recti-
fied linear unit for hidden layers, sigmoid function for the out-
put layer, and a dropout strategy to specify the DNN model [19].
These regularization strategies aim to overcome the overfitting
problem of DNN. In addition, we employ the adaptive stochas-
tic gradient descent [20] and a momentum term [21] to train
the DNN. These training schemes accelerate traditional gradi-
ent descent training and facilitate large-scale parallel comput-
ing. Note that no pretraining is used in our DNN training.

3. MRCG Feature
In this section, we introduce the MRCG feature which was
first proposed in [16]. This feature has shown its advantage
over many acoustic features in a speech separation problem.
The key idea of MRCG is to incorporate the local information
and global information (a.k.a, contextual information) together
through multi-resolution extraction.

As illustrated in Fig. 1a, MRCG is a concatenation of 4
cochleagram features with different window sizes and differ-
ent frame lengths. The first and fourth cochleagram features
are generated from two 64-channel gammatone filterbanks with
frame lengths set to 20 ms and 200 ms respectively. The sec-
ond and third cochleagram features are calculated by smoothing
each time-frequency unit of the first cochleagram feature with
two square windows that are centered on the unit and have the
sizes of 11 × 11 and 23 × 23. Because the windows on the
first and last few channels (or frames) of the two cochleagram
features may overflow, we cut off the overflowed parts of the
windows. Note that the multi-resolution strategy is a common
technique but not limited to the cochleagram feature [22, 23].

After calculating the 256-dimensional MRCG feature, we
further calculate its Deltas and double Deltas, and then com-
bine all three into a 768-dimensional feature (Fig. 1b). A Delta
feature is calculated by

∆xn =
(xn+1 − xn−1) + 2(xn+2 − xn−2)

10
(3)
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Figure 1: The MRCG feature. (a) Diagram of the process of
extracting a 256-dimensional MRCG feature. “(2W + 1) ×
(2W+1) square window” means that the value of a given time-
frequency unit is replaced by the average value of its neighbor-
ing units that fall into the window centered at the given unit and
extending in the axes of time and frequency. (b) Expanding
MRCG to a 768-dimensional feature that consists of the orig-
inal MRCG feature, its Delta feature and Delta-Delta feature.
(c) Calculation of the 64-dimensional cochleagram features in
detail.

where xk is the kth unit of MRCG in a given channel. The
double-Delta feature is also calculated by applying equation (3)
to the Delta feature. This calculation method is the same as that
from MFCC to its Delta and double-Delta features.

The calculation of the 64-dimensional cochleagram feature
in Fig. 1a is detailed in Fig. 1c. We first filter input noisy speech
by the 64-channel gammatone filterbank, then calculate the en-
ergy of each time-frequency unit by

∑K
k=1 s

2
c,k given the frame

length K, and finally rescale the energy by log10(·), where sc,k
represents the k-th sample of a given frame in the c-th chan-
nel [24].

4. Experiments
4.1. Experimental Settings

We used the clean speech corpus of AURORA4 [17]. The clean
speech corpus consists of 7,138 training utterances and 330 test
utterances. The sampling rate is 16 kHz. We randomly selected
300 and 30 utterances from the training utterances as our train-
ing set and development set respectively, and used all 330 test
utterances for test. We chose three noises from the NOISEX-92
noise corpus—“babble”, “factory”, and “volvo”—to mix with
the clean speech corpus at three SNR levels: −5, 0, and 5 dB.
As a result, we constructed 9 noisy speech corpora for evalua-
tion. Note that for each noisy corpora, the additive noises for
training, development, and test were cut from different intervals
of a given noise. The manual labels of each noisy speech corpus
were the results of Sohn’s VAD [3] applied to the corresponding
clean speech corpus.

The area-under-ROC-curve (AUC) was used as the evalua-
tion metric. Because over 70% frames are speech, we did not
use the detection accuracy as the evaluation metric, so as to pre-
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Table 1: AUC (%) comparison between the comparison VADs and proposed bDNN-based VAD. The number in bold indicates the best
results.

Noise SNR Sohn Ramirez05 Ying SVM Zhang13 bDNN

Babble
−5 dB 70.69 75.90 64.63 81.05 82.84 89.05

0 dB 77.67 83.05 70.72 86.06 88.33 91.70
5 dB 84.53 87.85 78.70 90.49 91.61 93.60

Factory
−5 dB 58.17 58.37 62.56 78.63 81.81 87.42

0 dB 64.56 67.21 68.79 86.05 88.39 91.67
5 dB 72.92 76.82 75.83 89.10 91.72 93.37

Volvo
−5 dB 84.43 89.63 92.51 93.91 94.58 94.71

0 dB 88.25 90.44 93.42 93.43 94.80 95.04
5 dB 90.89 90.99 94.13 94.12 95.02 95.19

0 100 200 300 400 500
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1
Clean speech

0 100 200 300 400 500
-1

0

1
Noisy speech (babble, SNR = -5 dB)

0 100 200 300 400 500
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Frame indexFrame index

Figure 2: Illustration of the proposed and comparison methods
in the babble noise environment with SNR = −5 dB. The soft
outputs have been normalized so as to be shown clearly in the
range [0, 1]. The straight lines are the optimal decision thresh-
olds (on the entire test corpus) in terms of HIT−FA, and the
notched lines show the hard decisions on the soft outputs.

vent reporting misleading results caused by class imbalance.
We compared the bDNN-based VAD with the following 5

VADs—Sohn VAD [3], Ramirez05 VAD [25], Ying VAD [10],
Zhang13 VAD [14], and SVM-based VAD that uses the same
acoustic feature as in [14].

The parameter setting of the boostDNN-based VAD was as
follows. The recent advanced DNN model [20, 21] was used.
The numbers of hidden units were set to 800 and 200 for the first
and second hidden layer respectively. The number of epoches
was set to 130. The batch size was set to 512, the scaling fac-
tor for the adaptive stochastic gradient descent [20] was set to
0.0015, and the learning rate decreased linearly from 0.08 to
0.001. The momentum [21] of the first 5 epoches was set to 0.5,
and the momentum of other epoches was adjusted to 0.9. The
dropout rate of the hidden units was set to 0.2. The half-window
size W was set to 19, and the parameter u of the window was
set to 9, i.e. only 7 channels within the window were selected.

Table 2: AUC (%) analysis on the advantages of the bDNN
model and MRCG feature. “COMB” represents a serial com-
bination of 11 acoustic features in [14]. The source code of
all DNN models in this table is different from the DNN model
in [14] (i.e., the DNN model of Zhang13 VAD in Table 1).

Noise SNR
DNN+ DNN+ bDNN bDNN

COMB MRCG +COMB +MRCG

Babble
−5 dB 82.76 85.44 87.36 89.05

0 dB 88.78 89.97 91.35 91.70

5 dB 92.07 92.87 93.36 93.60

Factory
−5 dB 81.77 83.77 85.68 87.42

0 dB 88.97 90.32 90.20 91.67

5 dB 92.16 92.66 92.83 93.37

4.2. Results

Table 1 lists the AUC results of all 6 VAD methods. Figure 2
illustrates the soft outputs of our proposed and Zhang13 VADs
for the babble noise at −5 dB SNR. From the table and figure,
we observe that (i) the proposed method overall outperforms
all 5 others methods when the background is very noisy; (ii)
the proposed method clearly ranks the best for the two more
difficult noises of babble and factory; for the volvo noise, its
performance is nearly identical to that of Zhang13 VAD.

To separate the contributions of bDNN and MRCG to this
significant improvement for babble and factory noises, we ran
4 experiments using either DNN or bDNN as the model with
either the combination (COMB) of 11 acoustic features in
Zhang13 VAD [14] or MRCG as the input feature, where the
model “DNN” used the same DNN source code as that of bDNN
but setW = 0. Table 2 lists the AUC comparison between these
4 combinations. From the table, we observe that (i) MRCG per-
forms better than COMB, and bDNN better than DNN; (ii) both
MRCG and bDNN contribute to the overall performance im-
provement.

To investigate how the window size of bDNN affects the
performance, We evaluated the bDNN-based VAD with dif-
ferent windows whose parameters (W,u) were selected from
{(3, 1), (5, 2), (9, 4), (13, 6), (19, 9)} in babble and factory
noises at −5 dB SNR. The results in Fig. 3 show that the
ROC curve is improved steadily when the window size is gradu-
ally enlarged. Note that although different windows were used,
only 7 channels within each window were selected, that is, the
bDNNs maintained the same computational complexity.

1536



b t d DNN ith i d bDNN

0 8

0.82

0.84

0.86

0.88

0.9

A
U

C

unboosted DNN with window bDNN

0.8

(3,1) (5,2) (9,4) (13,6) (19,9)

(W, u)

0.84

0.86

0.88

0.9

A
U

C

unboosted DNN with window bDNN

0.8

0.82

(3,1) (5,2) (9,4) (13,6) (19,9)

(W, u)

a

b

Figure 3: AUC analysis of the advantage of the boosted algo-
rithm in bDNN-based VAD over the unboosted counterpart that
uses the same input x′n as bDNN but uses the original output
yn as the training target instead of y′n. (a) Comparison in the
babble noise environment with SNR = −5 dB. (b) Comparison
in the factory noise environment with SNR = −5 dB. Note that
(W,u) are two parameters of the window of bDNN.

To investigate how the boosted method is better than the un-
boosted one, we compared bDNN with a DNN model that used
the same input as bDNN (i.e., x′n) but aimed to predict the label
of only the central frame of the input (i.e., yn) in two difficult
environments. Results show that (i) bDNN significantly outper-
forms the unboosted DNN, and its superiority becomes more
and more apparent when the window is gradually enlarged; (ii)
the unboosted DNN can also benefit from the contextual infor-
mation when comparing Fig. 3 with the corresponding results
of the “DNN+MRCG” method in Table 2, but this performance
gain is limited, particularly when W is large. Note that the
boosted method had the same computational complexity with
the unboosted one.

To show how the multi-resolution method affects the perfor-
mance, we ran bDNN with MRCG and its 4 components respec-
tively. Figure 4 gives the ROC curve comparison between the
MRCG feature and its four components in the two difficult noise
environments with parameters (W,u) set to (0, 0) and (19, 9),
where W = 0 means that bDNN reduces to DNN. From the
figure, we observe that (i) MRCG is at least as good as the best
one of its 4 components in all cases, which demonstrates the
effectiveness of the multi-resolution technique; (ii) CG2 yields
a better ROC curve than the other 3 components; (iii) the gaps
between the ROC curves are reduced when W is enlarged.

5. Concluding Remarks
In this paper, we have proposed a supervised VAD method,
named bDNN-based VAD, which employs a newly introduced
acoustic feature—MRCG. Specifically, bDNN first produces
multiple base predictions for a single frame by boosting the con-
textual information (encoded in neighboring frames) and then
aggregates the base predictions for a stronger one. MRCG con-
sists of cochleagram features at multiple spectrotemporal res-
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Figure 4: ROC curve analysis on the advantage of the MRCG
feature over its CG components. CG1 is short for the original
cochleagram feature with a frame length of 20 ms (Fig. 1).
CG2 is short for the feature of the CG1 smoothed by a 11 ×
11 sliding window. CG3 is short for the feature of the CG1
smoothed by a 23 × 23 sliding window. CG4 is short for the
original cochleagram feature with a frame length of 200 ms.
The variable W represents the half-window size of the window
of bDNN.

olutions. Experimental results have shown that the proposed
method outperforms the state-of-the-art VADs by a consider-
able margin at low SNRs. Our further analysis shows that
the contextual information encoded by MRCG and bDNN both
contribute to the improvement. Moreover, the window size of
bDNN affects the performance significantly, and the boosted
algorithm is significantly better than the unboosted version in
which a DNN receives the input from a large window. Our in-
vestigation demonstrates that MRCG, originally proposed for
speech separation, is effective for VAD as well. We believe that
the boosting and multi-resolution ideas are not limited to DNN
and cochleagram.
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