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fMBN-E: Efficient Unsupervised Network
Structure Ensemble and Selection for Clustering

Xiao-Lei Zhang, Senior Member, IEEE

Abstract—It is known that unsupervised nonlinear dimen-
sionality reduction and clustering is sensitive to the selection
of hyperparameters, particularly for deep learning based
methods, which hinder its practical use. How to select a
proper network structure that may be dramatically different
in different applications is a hard issue for deep models,
given little prior knowledge of data. In this paper, we explore
ensemble learning and selection techniques for automatically
determining the optimal network structure of a deep model,
named multilayer bootstrap networks (MBN). Specifically, we
first propose an MBN ensemble (MBN-E) algorithm which
concatenates the sparse outputs of a set of MBN base models
with different network structures into a new representation.
Because training an ensemble of MBN is expensive, we
propose a fast version of MBN-E (fMBN-E), which replaces
the step of random data resampling in MBN-E by the random
resampling of similarity scores. Theoretically, fMBN-E is
even faster than a single standard MBN. Then, we take
the new representation produced by MBN-E as a reference
for selecting the optimal MBN base models. Two kinds of
ensemble selection criteria, named optimization-like selection
criteria and distribution divergence criteria, are applied.
Importantly, MBN-E and its ensemble selection techniques
maintain the simple formulation of MBN that is based on
one-nearest-neighbor learning, and reach the state-of-the-art
performance without manual hyperparameter tuning. fMBN-
E is empirically even hundreds of times faster than MBN-E
without suffering performance degradation. The source code
is available at http://www.xiaolei-zhang.net/mbn-e.htm.

Index Terms—Ensemble selection, cluster ensemble, multi-
layer bootstrap networks, unsupervised learning

I. INTRODUCTION

UNSUPERVISED learning and clustering is a funda-
mental task of machine learning. It finds wide applica-

tions in data mining, community detection, human-machine
interaction, biology, etc. One of its long term headache
problem is hyperparameter tuning. Since the early works on
principal component analysis (PCA) and k-means cluster-
ing, a vast number of methods have been developed. Some
algorithms conduct clustering in the original data space
directly without parameter tuning, such as agglomerative
clustering. However, their performance is usually unsatis-
fied, since the data in the original space is usually linearly-
inseparable and noisy. Later on, research turned to project-
ing data in the original space into a probability space where
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the data is supposed to be uniformly distributed and linearly
separable, such as manifold learning, kernel methods, and
probabilistic models. However, a proper probability space
is usually found by tuning parameters manually, e.g. kernel
widths or regularization parameters. Although some work
has tried to find the optimal parameters automatically, the
learned representation, which is produced from a single
layer nonlinear transform, is not abstract enough to describe
the semantic classes of data.

To learn highly abstract representations, deep neural
network based data clustering has received much atten-
tion recently. The first work [1] extracts abstract rep-
resentations from the bottleneck layer of a deep belief
network. However, the output of the deep belief network
aims to reconstruct its input data without considering the
clustering task. To make the deep representations suitable
for clustering, some work adds additional terms, such as
constraints [2], clustering-like loss functions and models
[3], [4], or novel network structures [5], to the network
training. Some work learns deep representations and refines
cluster assignments iteratively [6]–[9]. Recently, a new kind
of deep learning based clustering, named self-supervised
clustering optimizes cleverly designed objective functions
of some pretext tasks, such as image completion, image
colorization, or clustering, in which supervised pseudo la-
bels are automatically obtained from the input data without
manual annotations. It can be generally categorized into
predictive self-supervised clustering [10]–[12], generative
self-supervised clustering [13]–[17], and contrastive self-
supervised clustering [18]–[22], respectively [23], [24].
Although the methods achieve superior performance over
conventional clustering methods, many of them apply
handcrafted priors to the benchmark data case by case,
such as strong prior knowledge of data, (e.g. multi-modal
information [25]), data augmentation with clear intrinsic
data structures (e.g. [26]), or hyperparameter tuning with
the ground-truth labels (e.g. [27]).

As we know, a long term goal of unsupervised learning
and clustering is to design algorithms that are tuning-
free and with little human labor, like k-means clustering.
However, the aforementioned methods need to be tuned
more or less. If the hyperparameters were not properly set,
then the performance may drop significantly. Although auto
machine learning tries to find the optimal hyperparameters
without human labors, it is mainly designed for supervised
learning. As for unsupervised deep learning and clustering,
the topic seems far from explored yet.

This paper aims to find the optimal hyperparameter
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setting of unsupervised deep models automatically. Because
the search space of auto machine learning is large for a
common deep neural network, we pick multilayer bootstrap
network (MBN) [28] as a research object. MBN is an
ideal object, since that it is a deep model sensitive to
only a single hyperparameter which is used to control
the network structure of MBN. We address the network
structure selection problem of MBN by ensemble learning
and ensemble selection, which in turn derives a tuning-free
unsupervised deep learning algorithm. As shown in Fig. 1,
the contribution of this paper is summarized as follows:

• MBN ensemble (MBN-E) is proposed. It groups the
sparse outputs of a number of MBN base models with
different hyperparameter settings into a new represen-
tation.

• A fast version of MBN-E (fMBN-E) is proposed.
It first discards the random feature selection step of
MBN, and then changes the step of random data
resampling into the random resampling of similarity
scores. It accelerates MBN-E by over hundreds of
times both theoretically and empirically. We have
proved that the acceleration does not sacrifice accu-
racy.

• MBN ensemble selection with optimization-like crite-
ria (MBN-SO) is proposed. It first predicts the labels of
data by conducting clustering on the output represen-
tation of MBN-E, and then measures the discriminant
ability of the output representation of each base model
by the optimization-like criteria given the predicted
labels. Finally, it selects the base models with highly
discriminant outputs as a new ensemble.

• MBN ensemble selection with distribution divergence
criteria (MBN-SD) is proposed. It measures the dis-
tribution divergence between the outputs of MBN-E
and its base models by maximum mean discrepancy
(MMD), and then selects the base models whose
outputs are similar to the MBN-E output. To our
knowledge, this is the first time that unsupervised
ensemble selection is conducted on data distributions
directly without clustering labels.

Note that, because the optimization-like criteria require
predicted labels to evaluate the discriminant ability of a data
distribution, we consider using MBN-SO for the scenario
where the number of classes is known as a prior. Because
the distribution divergence criteria evaluate divergence of
data distributions directly, we use MBN-SD mainly for the
scenario where the number of classes is unknown.

We have run experiments on a number of benchmark
datasets where the optimal hyperparameter of MBN appears
at fundamentally different ranges. Experimental results
show that MBN-E significantly outperforms MBN with the
default setting and approaches to MBN with the optimal
setting. fMBN-E achieves similar performance with MBN-
E, and is over dozens of times faster than MBN-E. MBN-
SO and MBN-SD further improves the performance of
MBN-E.

The rest of the paper is organized as follows. In Section

I-A, we present the related work that contributes to the nov-
elty of the proposed methods, including cluster ensemble,
ensemble selection, and unsupervised domain adaptation.
In Section II, we introduce MBN as a preliminary, In
Sections III to IV, we present MBN-E, fMBN-E, MBN-
SO, and MBN-SD, respectively. In Section V, we present an
extensive experiments. Finally, in Section VI, we conclude
the paper.

A. Related work

1) Clustering ensemble: Ensemble learning, such as
bagging, boosting, and their variations, has demonstrated
its effectiveness on many learning problems. Unsupervised
ensemble learning inherits the fundamental theories and
methods of classifier ensemble. The mostly studied unsu-
pervised ensemble learning is clustering ensemble. It aims
to combine multiple base clusterings with a so-called meta-
clustering function, a.k.a consensus function, for enhancing
the stability and accuracy of the base clusterings [29], [30].
Meta-clustering functions can be categorized generally to
two classes [30]. The first class analyzes the co-occurrence
of objects: how many times an object belongs to one cluster
or how many times two objects belong to the same cluster.
The second class, called the median partition, pursues
the maximal similarity with all partitions in the ensemble
[31]. Recently, some unsupervised deep ensemble learning
methods have been proposed. For example, [32] takes deep
neural networks act like a meta-clustering function. [33]
decomposes each layer of a deep neural network into an
ensemble of encoders or decoders and mask operations.
To our knowledge, unsupervised deep ensemble learning
is not prevalent, due to maybe that neural networks need
supervised signals to maximize their discriminant ability.
See [30], [34], [35] for the reviews of clustering ensemble.

2) Clustering ensemble reweighting and selection: Be-
cause not all base clusterings contribute equivalently to
a cluster ensemble, it is needed to conduct ensemble
reweighting and selection, which mainly focuses on three
respects: (i) different types of weights, (ii) algorithms for
determining the weights, and (iii) cluster validation criteria
for measuring the diversity and quality of the base models.

The most common type of weights is to assign a weight
to each base clustering according to its quality or/and
diversity in the ensemble, e.g. [36]. A special case of
this type is to constrain the weights of some weak base
clusterings to zero, named clustering selection [37], [38].
However, weak base clusterings may also contain some
high quality clusters, and vise versa. With this perspective,
many reweighting strategies at levels of clusters [39], [40],
data structures [41], and data points [42] were proposed.

The algorithms for determining the weights can be
categorized into two types [44]. The first type calculates
weights by measuring the similarity between the predicted
labels of the clustering ensemble and its base clusterings
[36], [37]. The second type treats the weights as variables
of consensus functions which are obtained by advanced
optimization algorithms, e.g. [45].
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Fig. 1. On the network structure selection problem of MBN. Each square of MBN in figure (a) represents a base clustering, while the black circles
connected to the square represent the input/output of the base clustering. The hyperparameter “δ” controls the network structure of MBN. The words
in red color are two ensemble selection criteria for MBN-SO and MBN-SD respectively. The word “ACC” is short for clustering accuracy. The demo
data is the COIL20 dataset [43].

The criteria for measuring the diversity and quality of the
base models can be categorized into two classes. The first
class of measurements calculates the normalized mutual
information [36], [37], adjusted rand index [46], clustering
accuracies [47], and their variants [48] between the sets of
the predicted labels. The second class of validation criteria
is based on data distributions [49], [50]. They usually
calculate some kinds of statistics of data [41], [51]. Some
systematical studies on cluster validation indices [49], [50]
have been carried out as well.

3) Unsupervised domain adaptation: Domain adaptation
is the ability of applying an algorithm trained in one or
more “source domains” to a different but related “target
domain”. Unsupervised domain adaptation is a subtask
of domain adaptation where the target domain does not
have labels. The algorithms can be categorized into three
branches [52], which are sample-based, feature-based, and
inference-based approaches. No matter how the approaches
vary, the distribution divergence measurement between the
source domains and the target domain always lies in the
core of unsupervised domain adaptation. The most pop-
ular measurement is MMD [53]. Other measurements in-
clude Kullback-Leibler divergence, total variation distance,
second-order (covariance) statistics, and Hellinger distance.
Although the distribution divergence measurement has been
extensively studied in unsupervised domain adaptation, it
seems far from explored in unsupervised ensemble selec-
tion.

II. PRELIMINARY

A. An introduction to MBN

This paper takes MBN as a research object. It is a simple
deep model. As shown in Fig. 1a, suppose we are to build

an M -layer MBN from bottom-up, it can be described as
follows:
• Step 1, for each layer, MBN trains V mutually-

independent k-centroids base clustering. For each base
clustering, it takes the following three operators suc-
cessively to generate a new representation of data:

– Random selection of features: It first randomly
selects some features of the input data, which
yields a new representation of the data.

– Random sampling of data: It randomly samples
k data points from the data with the new repre-
sentation as the k centroids.

– One nearest neighbor optimization: It assigns
each input data to one of the k clusters, and
outputs a k-dimensional one-hot code, indicating
which cluster the input data belongs to.

The one-hot representations from all base clusterings
are concatenated as the input of the upper layer.

• Step 2, MBN stacks the cluster ensemble described in
Step 1 for M times. The parameter k at two adjacent
layers have the following connection:

km = δkm−1 (1)

where km and km−1 are the parameter k at the m-
th and (m − 1)-th adjacent layers respectively, and
δ ∈ (0, 1) is a hyperparameter controlling the network
structure of MBN.

The principle for the success of MBN is as follows [28]:

Theorem 1. MBN builds as many as O(ko2V ) agglomer-
ative hierarchical trees on the original data space, where
ko is the parameter k at the top layer. The child nodes of
a tree are gradually merged into father nodes from bottom
up, which equals to the process of discarding small local
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variances and noise gradually. The root nodes of the trees
construct the abstract representation of data.

To understand Theorem 1, we first imagine that a single
k-centroids base clustering partitions the input space to
k disconnected fractions. Thereafter, V base clusterings
partition the input space to O(k2V ) fractions at the max-
imum. Given parameters k1 > k2 >, . . . , > ko, it is easy
to see that O(k12V ) > O(k22V ) >, . . . , > O(ko2V ). As
a result, between any two adjacent layers, there must be
O(km−12V ) − O(km2V ) nodes at the (m − 1)-th layer
absorbed into other nodes, which builds tree structures. The
effectiveness of the trees is guaranteed by that each base
clustering is a weak learner that discards noise and small
variances of the input as if k is large enough.

B. On the network structure selection problem of MBN

Like many deep models, MBN is sensitive to its network
structure. Specifically, given the parameters at the bottom
layer k1 and at the top layer ko fixed, how fast the agglom-
erative trees grow up from k1 to ko, which is determined by
δ in (1), should match the nonlinearity and noise level of
data. For example, as shown in Fig. 1a, when δ approaches
to 0, MBN builds a shallow network with a single nonlinear
layer, which is suitable for linearly separable data and
hence performs poorly on the COIL20 data. When δ is
enlarged towards 1, MBN becomes deeper and deeper,
which is suitable for nonlinear and non-Gaussian data.
Some contrary examples to COIL20 can also be observed
in [28, Fig. 10]. Because it is difficult to evaluate the
properties of data in unsupervised learning, MBN has to
make a compromise by setting δ = 0.5. This may lead to
far inferior performance from the optimal one.

III. MULTILAYER BOOTSTRAP NETWORK ENSEMBLE

In this section, we first introduce MBN-E in Section
III-A, then present an efficient algorithm for MBN-E,
named fMBN-E, in Section III-B and finally discuss why
fMBN-E can accelerate MBN-E without sacrificing estima-
tion accuracy in Section III-C.

A. MBN-E

MBN-E is an ensemble of MBN base models who have
different δ. We present MBN-E in detail as follows:
• Step 1: Train an ensemble of MBN base learners.

MBN-E trains Z MBN base models (Z � 1). For
each MBN base model, we randomly sample its
hyperparameter δ from the range (0, 1). Then, we
train the MBN model layer by layer from bottom up,
with the parameter km = δkm−1. The entire training
process stops when km reaches a predefined value ko
(ko � k1).

• Step 2: Construct an output layer.
After training an ensemble of MBNs, MBN-E concate-
nates the sparse outputs of the MBN base models as a
new representation of the data. If we denote the output
of the z-th MBN base model as {xz,i}ni=1, ∀z =

PCA preprocessed feature

Shared bottom hidden layer

MBN1 
(δ=0.33)

MBN2 
(δ=0.54)

MBN3 
(δ=0.78)

Concatenation of the output of all MBNs

Fig. 2. Architecture of fMBN-E. Different color represents different
MBN base models with random δ values.

1, . . . , Z, then the output representation of MBN-E is
x̄i = [xT

1,i, . . . ,x
T
z,i, . . . ,x

T
Z,i]

T ,∀i = 1, . . . , n, where
n is the number of data points.

Because {x̄i}ni=1 is very high dimensional, we some-
times need to reduce {x̄i}ni=1 to a low-dimensional repre-
sentation {ȳi}ni=1 in an Euclidian space by, e.g. PCA, for
applications. Likewise, we denote the low-dimensional rep-
resentation of {xz,i}ni=1 as {yz,i}ni=1. We usually conduct
PCA preprocessing before MBN-E, which not only reduces
the computational complexity of the bottom layers of the
MBN base models but also de-correlates the input features.

From [28], we can derive the following theorem:

Theorem 2. The computational complexity of MBN-E ap-
proximates to Z(O(dskV n)+O(kV n)) empirically, where
O(dskV n) and O(kV n) are the complexity of a single
MBN model at the bottom layer and the other layers
respectively, d is the dimension of the original input data,
and s is the sparsity of the data.

The complexity is too high when Z � 1 and k ∝ n,
which is mainly caused by the calculation of the distance
between the input data and the k centroids.

B. fMBN-E

To reduce the computational complexity of MBN-E,
fMBN-E has a new architecture shown in Fig. 2. It is
described as follows:
• Step 1: Share the bottom layer.

fMBN-E trains a single bottom layer as Section II-A
does.

• Step 2: Train an ensemble of MBN base learners
by random resampling of similarity scores.
fMBN-E builds Z MBN base models that use the
output from Step 1 as their inputs. For each layer
of a MBN base model, suppose its input data is
U = [u1, . . . ,un] where ui is the i-th input data point
of the layer. fMBN-E first calculates the similarity
matrix of the input data by S = UTU. Then, for
each k-centroids clustering, fMBN-E randomly selects
k columns of S into a new matrix S′, which is the
similarity scores between the input data and the ran-
domly sampled centroids of the k-centroids clustering.
Finally, the one-hot representation of the input data ui
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is obtained by activating the position that corresponds
to the largest value of the i-th row of S′.

• Step 3: Construct an output layer.
This step is the same as MBN-E.

From the above algorithm, we can easily obtain that:

Theorem 3. The computational complexity of fMBN-E is
O(dskV n) +O(Zn2).

Comparing Theorems 2 and 3, we see that the com-
putational complexities of the bottom layer and the other
layers are reduced by Z and kV/n times respectively. For
example, in a typical setting where k = n/2, Z = 40,
and V = 400, the computational complexity of MBN-
E is as high as (O(8000dsn2) + O(8000n2)), while the
complexity of fMBN-E is O(200dsn2) + O(40n2) which
may be hundreds of times faster than MBN-E. Particularly,
because the complexity of the original MBN model is
(O(dskV n) + O(kV n)) [28], we can see that fMBN-E
may be even faster than the original MBN since that V is
larger than Z in practice.

C. Analysis

Here we study theoretically how fMBN-E reduces the
computational complexity of MBN-E without suffering
significant performance degradation. First of all, we review
the following theorem:

Theorem 4. The estimation error of a single layer of
MBN Eensemble and the estimation error of a single k-
centroids clustering Esingle in the layer have the following
relationship:

Eensemble =

(
1

V
+

(
1− 1

V

)
ρ

)
Esingle (2)

where ρ is the pairwise positive correlation coefficient
between the k-centroids clusterings, 0 ≤ ρ ≤ 1 [28].

According to the theorem, we can draw the connections
between Eensemble/Esingle, ρ, and V in Fig. 3, and further
derive the following corollary.

Corollary 1. The estimation errors of the bottom layers
of fMBN-E EfMBN-E and MBN EMBN-E have the following
connection:

EfMBN-E

EMBN-E
=

(
1
V +

(
1− 1

V

)
ρ
)
Esingle(

1
ZV +

(
1− 1

ZV

)
ρ
)
Esingle

=
Z + (ZV − Z)ρ

1 + (ZV − 1)ρ
(3)

Remark 1. When V is large enough, the estimation error
of the bottom layer of fMBN-E is similar to that of Z
independent bottom layers of MBN-E:

EfMBN-E ≈ EMBN-E (4)

Proof: According to Corollary 1, we see that, when V
and N are both large enough, EfMBN-E/EMBN-E is determined
by ρ. For the first case when ρ → 0, EfMBN-E ≈ ZEMBN-E;
for the second case when ρ� 0, EfMBN-E ≈ EMBN-E. In the
following, we show that the second case is true.
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Fig. 3. Relationship between the estimation error Eensemble/Esingle,
correlation coefficient ρ, and number of k-centroids clusterings per layer
V .

From Theorem 4, we see that the estimation error
Eensemble is proportional to two contradict factors Esingle
and ρ. One one side, when enlarging k towards n, Esingle
becomes small, so as to Eensemble. On the other side, any
two k-centroids clusterings may share a number of common
centroids in probability of (k/n)2. It is easy to imagine that
ρ ∝ (k/n)2. Therefore, when enlarging k, ρ is enlarged, so
as to Eensemble.

For the bottom layer of a single MBN, empirically,
setting k to a large number balances Esingle and ρ, which
produces the minimum Eensemble. Here we take the common
setting k = n/2 as an example. In this setting, we
may have ρ ≈ 0.25 for instance, which supports that
EfMBN-E ≈ EMBN-E. Remark 1 is proved.

Remark 1 motivates us to merge the bottom layers of
MBN-E to a single bottom layer.

Remark 2. The random feature selection step reduces the
estimation error of the bottom layer of fMBN-E signifi-
cantly.

Proof: From Theorem 4 and Fig. 3, we see clearly
that, when ρ is fixed and V is large enough, the estimation
error of the bottom layer of fMBN-E, i.e. EfMBN-E, is upper-
bounded by ρEsingle.

Following the proof of Remark 1, we see that ρ at
the bottom layer of fMBN-E is far larger than 0, e.g.
ρ ≈ 0.25. From Fig. 3, we see that Eensemble does not reduce
the estimation error much over Esingle when ρ ≈ 0.25.
Therefore, we need to further reduce ρ by decorrelating
the k-centroids clusterings via the random feature selection
step, which should be able to reduce EfMBN-E significantly.

Remark 2 motivates us to retain the random feature
selection step at the bottom layer of fMBN-E.

Remark 3. The random feature selection step has limited
effect on the upper layers of the MBN base models of fMBN-
E.
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Proof: For the upper layers of fMBN-E, following the
proof of Remark 1, because the nonlinearity and noise has
been gradually reduced by the lower layers, setting k to a
small number, e.g. k = n/23, is able to achieve a good
Esingle. In this setting, we may have ρ ≈ 1/26 for instance.
From Fig. 3, we see that Eensemble is far smaller than Esingle
when ρ ≈ 1/26. Therefore, we do not need the random
feature selection step to further pursue a marginal reduction
of Eensemble.

Remark 3 motivates us to remove the random feature se-
lection step at the upper layers of fMBN-E, which provides
the opportunity to reduce the computational complexity
significantly.

IV. UNSUPERVISED NETWORK STRUCTURE SELECTION

In this section, we first present an unsupervised ensemble
selection framework for MBN-E in Section IV-A, and then
present MBN-SO and MBN-SD in Sections IV-B and IV-C
respectively.

A. Framework

Algorithm 1 presents the unsupervised ensemble selec-
tion framework for MBN-E. If the number of classes c
is given, it first conducts clustering on {ȳi}ni=1, which
generates a set of predicted labels {li}ni=1. Then, it cal-
culates a weight wz for the z-th MBN base model by an
optimization-like criterion fMBN-SO({li}ni=1, {yz,i}ni=1). If
c is not given, it calculates the weight wz by evaluating
the difference of the distributions {x̄i}ni=1 and {xz,i}ni=1

directly via a distribution divergence criterion fMBN-SD(·).
After obtaining {wz}Zz=1, it concatenates the sparse output
of the B (B � Z) MBN base models whose weights
are the B largest ones among {wz}Zz=1 into a new sparse
representation of data {¯̄xi}ni=1.

Note that there are a vast number of ensemble selection
algorithms manipulating on {wz}Zz=1. Because this is not
the focus of this paper, here we prefer the simple yet
effective one.

B. MBN-SO: Ensemble selection with optimization-like cri-
teria

When the number of classes c is given, we use the
optimization-like criteria to generate the weights of the
base models. We follow the comparison conclusion on the
optimization-like criteria [49], and pick the 4 best criteria,
which are the silhouette width criterion (SWC), point-
biserial (PB), PBM, and variance ratio criterion (VRC),
respectively. Because they are defined in Euclidian spaces,
we take the low-dimensional representations {yz,i}Zz=1 of
the MBN base models for evaluation. We omit the subscript
z for simplicity in this subsection. The criteria are described
as follows:

Algorithm 1 Unsupervised ensemble selection for MBN-E.
Input: Sparse output of MBN-E {x̄i}ni=1 and its low-

dimensional representation {ȳi}ni=1;
Sparse outputs of the MBN base models
{{xz,i}ni=1}Zz=1 and their low-dimensional
representations {{yz,i}ni=1}Zz=1;
Number of selected base models B
Number of classes c (optional).

Output: {¯̄xi}ni=1, {¯̄yi}ni=1.
1: if c is given then
2: {li}ni=1 ← clustering({ȳi}ni=1, c)
3: for z = 1 to Z do
4: wz ← fMBN-SO({li}ni=1, {yz,i}ni=1)

(or wz ← fMBN-SO({li}ni=1, {xz,i}ni=1))
5: end for
6: else
7: for z = 1 to Z do
8: wz ← fMBN-SD({x̄i}ni=1, {xz,i}ni=1)

(or wz ← fMBN-SD({ȳi}ni=1, {yz,i}ni=1))
9: end for

10: end if
11: Pick B sparse representations that correspond to the B

largest weights, supposed to be {{xb,i}ni=1}Bb=1 without
loss of generality

12: ¯̄xi ← [xT
1,i, . . . ,x

T
B,i]

T

13: ¯̄yi ← PCA(x̄i)

1) Silhouette width criterion: SWC calculates the ratio
of the geometric compactness and separation of clusters.
Suppose the i-th data point yi belongs to a cluster p ∈
{1, . . . , c}. Let the average distance of yi to all other
data points in cluster p be denoted by ai. Let the average
distance of yi to all data points in another cluster q (q 6= p)
be denoted as gq,i. Let bi be the minimum gq,i over all
q = 1, . . . , c, q 6= p. Then, the silhouette of yi is defined
as:

si =
bi − ai

max{ai, bi}
(5)

In case that cluster p consists of only yi, then si = 0.
The SWC score is the average of si over all data points:

wSWC =
1

n

n∑
i=1

si (6)

The higher the SWC score is, the better the discriminant
ability of a representation is.

2) Point-biserial: PB calculates correlation between a
distance matrix and a binary matrix that encodes the
pairwise memberships of data points to clusters. It first
calculates the average within-class distance dw and the
average between-class distance db, which can be formulated
as:

dw=
1

n

n∑
i=1

ai (7)

db=
1

n

n∑
i=1

∑
{q|q=1,...,c,q 6=p}

nq
n− np

gq,i (8)
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where np is the number of data points of cluster p where yi

belongs to, and nq is the number of data points in cluster
q where q = 1, . . . , c and q 6= p. Then, it is defined as:

wPB =
(db − dw)

√
wdbd/t2

sd
(9)

where sd is the standard deviation of the pairwise distances
of all data points, wd =

∑c
p=1 np(np−1)/2 is the number

of within-class distances, bd =
∑c

p=1 np(n− np)/2 is the
number of between-class distances, and t = n(n − 1)/2
is the total number of pairwise distances. The higher
the PB score is, the better the discriminant ability of a
representation is.

3) PBM: PBM is defined over between-class distances
and within-class distances:

wPBM =

(
1

k

E1

EK
DK

)2

(10)

where E1 denotes the average distance between the data
points and the grand mean of the data, EK denotes the av-
erage within-class distances, and DK denotes the maximum
distance between cluster centroids:

E1=
1

n

n∑
i=1

‖yi − µ̄‖ (11)

EK=
1

n

c∑
p=1

∑
{yi|li=p}

‖yi − µp‖ (12)

DK= max
p,q=1,...,c

‖µp − µq‖ (13)

where µ̄ = 1
n

∑n
i=1 yi is the grand mean of the data, µp =

1
np

∑
{yi|li=p} yi is the center of the p-th cluster centroid.

A large PBM score implies a good separation ability of the
representation.

4) Variance ratio criterion: VRC calculates the ratio of
the between-class variance over within-class variance:

wVRC =
1

h

n− c
c− 1

tr(B)

tr(W)
(14)

where tr(·) denotes the trace operator, h is the dimension
of the feature, and B and W are the between-class variance
and within-class variance respectively, defined as:

W=

c∑
p=1

Wp (15)

Wp=
∑

{yi|li=p}

(yi − µp)(yi − µp)T (16)

B=

c∑
p=1

np(µp − µ̄)(µp − µ̄)T (17)

The normalization terms 1/h and (n − c)/(c − 1) make
the VRC score irrelevant to h and c. A large VRC score
implies a good separation ability of the representation.

C. MBN-SD: Ensemble selection with distribution diver-
gence criteria

When the number of classes c is unknown, we prefer
MMD, which is a common distribution divergence crite-
rion in unsupervised domain adaptation, for evaluating the
distribution divergence between the outputs of MBN-E and
its MBN base models.

We have also studied many probability distribution diver-
gence criteria in literature, including the Kullback-Leibler
(KL) divergence, total variance distance, L2-norm distance,
Hellinger distance, Wasserstein distance, Bhattacharyya
distance, etc. Unfortunately, they do not work for MBN-
SD.

1) Maximum mean discrepancy: MMD is originally
defined in kernel-induced feature spaces, where multiple
kernels are usually adopted to reach an accurate estimation.
Here we simply use the linear kernel based MMD to
evaluate the distribution divergence between {x̄i}ni=1 and
{xz,i}ni=1. Since x̄i = [xT

1,i, . . . ,x
T
Z,i]

T , here we define
MMD as follows:

vMMD =
1

Z

1

n(n− 1)

∑
i6=j

x̄T
i x̄j

+
1

n(n− 1)

∑
i 6=j

xT
z,ixz,j −

2

Z

1

n2

Z∑
u=1

∑
i,j

xT
u,ixz,j

(18)

Because the first term of MMD is the same for all MBN
base models, we only calculate the last two terms in
practice. The smaller the MMD score is, the more similar
the distributions {x̄i}ni=1 and {xz,i}ni=1 are. To make MMD
satisfy Algorithm 1, we transform vMMD by:

wMMD = 1− vMMD − vmin

vmax − vmin

(19)

where vmax and vmin are the largest and smallest values of
all MMD scores respectively.

V. EXPERIMENTS

In this section, we first compare the proposed meth-
ods with a number of representative methods on several
benchmark datasets in Section V-D, then demonstrate how
fMBN-E accelerates MBN-E without sacrificing accuracy
in Section V-E, and finally study the effect of the number of
the selected base models in Section V-F, as well as how the
generation method of the referenced labels affect MBN-SO
in Section V-G.

A. Datasets

We selected 8 benchmark datasets as summarized in
Table I. For Extended-Yale B, because the luminance of
the images dominates the similarity measurement instead of
the faces themselves, we preprocessed Extended-Yale B by
the dense scale invariant feature transform as in [54]. For
20-Newsgroups, we extracted the term frequency-inverse
document frequency text feature. PCA preprocessing was
applied to the image datasets, which reduced the original
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TABLE I
DESCRIPTION OF DATA SETS. THE TERM “OPTIMAL δ” DENOTES

WHERE THE OPTIMAL PERFORMANCE OF MBN APPEARS BY
SEARCHING δ FROM A RANGE OF (0, 1).

Name # samples # dimensions # classes Attribute Optimal δ

Dermatology 366 34 6 Biomedical (0, 0.2)

New-Thyroid 255 5 3 Biomedical (0, 0.35)

UMIST 575 1024 20 Faces (0.75, 0.85)

Extended-Yale B 2414 32256 38 Faces (0.6, 0.75)

COIL20 1440 4096 20 Images (0.8, 0.9)

COIL100 7200 1024 100 Images (0.8, 0.9)

20-Newsgroups 18846 26214 20 Text (0.4, 0.5)

MNIST 70000 768 10 Images (0.35, 0.75)

features to 100 dimensions. Cosine similarity measurement
was used to measure the similarity between the documents
of 20-Newsgroups. All other datasets used Euclidean dis-
tance as the similarity measurement. Clustering accuracy
(ACC) was used as the evaluation metric.

From the table, we see that the operating range of
the optimal δ of MBN appears at dramatically different
positions, which are sufficient to demonstrate how the
proposed methods address the network structure selection
problem, as well as how the proposed methods behave when
comparing with the state-of-the-art referenced methods.

B. Parameter settings

The parameter settings of MBN and the proposed meth-
ods are summarized as follows:
• MBN (default) [28]: We used its default setting as in

[28].
• MBN-E: It used 40 MBN base models. The base

models of MBN-E used the same parameter setting
as MBN except that δ was randomly selected from
[0.05, 0.95].

• fMBN-E: It is the fast version of MBN-E without per-
formance degradation. It discards the random feature
selection step in the upper layers of the MBN base
models.

• fMBN-Ev2: It is a variant of fMBN-E that discards
the random feature selection step at the bottom layer,
and uses the random resampling of similarity scores
instead of the random data resampling to train the
bottom layer as its upper layers. It accelerates the
training time of the bottom layer of fMBN-E, with
a risk of performance degradation.

• MBN-SO: The number of selected base models B was
set to 3. The MBO-SO with the four optimization-like
criteria are denoted as “MBN-SO (SWC)”, “MBN-SO
(PB)”, “MBN-SO (PBM)”, and “MBN-SO (VRC)”,
respectively.

• MBN-SD: The parameter B was set to 10.
Agglomerative hierarchical clustering (AHC) was used for
partitioning data into clusters. Although the MMD criterion
in MBN-SD is designed to handle the case where the
number of classes is unknown, we still give AHC the
number of classes during the clustering stage, for a com-
parable study on how the distribution divergence criterion

differs from the optimization-like criteria in MBN-SO. All
reported results are average ones over 5 independent runs.
The time efficiency was evaluated on an Intel(R) Xeon(R)
Platinum 8160 CPU server with 512 GB memory, where
the CPU has 48 physical cores. All experiments were run
with 48 parallel workers of MATLAB.

C. Comparison methods

The comparison strategy is described as follows. For
the image datasets, we copied the ranking lists of the im-
age clustering methods from https://paperswithcode.com/,
which reflects the state-of-the-art performance on the
datasets. Note that because self-supervised deep learning
based methods actually explore strong handcrafted features
from augmented data, we omit them from the experi-
ments to maintain the fairness of the comparison. For
the small-scale Dermatology and New-Thyroid datasets
that deep learning methods usually do not handle with,
we compared with 12 representative clustering ensemble
methods, see Supplementary Material for the referenced
methods. All these clustering ensemble methods are meta-
clustering functions, which can be used jointly with any
base clusterings, such as k-means or spectral clustering.
Here we took 40 k-means clusterings as the base clusterings
for each meta-clustering function. Like many clustering
ensemble methods, e.g. [71], we selected the number of
clusters of each k-means base clustering randomly from a
range of [2c, 10c]. For the 20-Newsgroups text corpus, we
compared with 9 text clustering methods, see [72] for the
referenced methods. Besides, k-means clustering are also
provided as a baseline. Because k-means clustering suffers
from bad local minima, we ran k-means clustering on each
dataset for 100 times, and pick one that has the minimum
objective value. All reported results are average ones over
5 independent runs.

D. General results

Table II lists the results of the aforementioned com-
parison methods and the proposed methods. Because it
is too lengthy to list all results, here we only list the
results of the top 5 referenced methods; for the proposed
MBN-SO variants, we only provide “MBN-SO (VRC)” as a
representative. See Supplementary Material for the results
of the other three variants of MBN-SO. We also list the
performance of the MBN with the optimal δ, denoted as
MBN†. Note that because it is unlikely to select the optimal
δ manually in real-world applications, MBN† only provides
an upperbound of the proposed methods.

From the table, we see that the proposed methods out-
perform “MBN (default)” in general, as what we have
targeted to in this paper. Specifically, MBN-E outperforms
“MBN (default)” on UMIST, Extended Yale B, COIL20,
and COIL100 significantly where the optimal operating
range of δ of MBN is far from the default value 0.5. It is
also comparable to “MBN (default)” on Dermatology and
New-Thyroid. As for MNIST and 20-Newsgroups, even if
the default δ happens to be in the optimal operating range,
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TABLE II
ACC COMPARISON BETWEEN THE PROPOSED METHODS AND THE STATE-OF-THE-ART REFERENCED METHODS. THE RESULTS OF THE

REFERENCED METHODS ON THE DATASETS MARKED WITH “∗” ARE COPIED FROM THEIR ORIGINAL PUBLICATIONS OR THE “PAPERS WITH CODE”
WEBSITE. THE NUMBER IN BOLD DENOTES THE BEST PERFORMANCE.

Dermatology New-Thyroid UMIST* Extended-Yale B*

kmeans 0.261 0.860 0.408 0.311
Rank1 0.313 (DREC [55]) 0.863 (Borda [56]) 0.769 (DASC [57]) 0.992 (DMSC [25])
Rank2 0.307 (LinkClueE [58]) 0.859 (LinkClueE [58]) 0.750 (DSC-Net-L2 [5]) 0.973 (DSC-Net-L2 [5])
Rank3 0.306 (HGPA [29]) 0.853 (ECPCS_MC [59]) 0.732 (J-DSSC [27])) 0.924 (J-DSSC [27]))
Rank4 0.299 (CSPA [29]) 0.851 (MCLA [29]) 0.728 (DSC-Net-L1 [5]) 0.917 (A-DSSC [27])
Rank5 0.297 (ECPCS_HC [59]) 0.845 (Vote [60]) 0.725 (A-DSSC [27])) 0.776 (SSC-OMP [61])
MBN (default) 0.855 0.881 0.544 0.934
MBN-E 0.866 0.860 0.670 0.973
MBN-SO (VRC) 0.714 0.771 0.767 0.941
MBN-SD 0.947 0.941 0.547 0.909

MBN† 0.971 0.964 0.770 0.969

COIL20* COIL100* 20-Newsgroups MNIST*

kmeans 0.679 0.511 0.416 0.527
Rank1 1.000 (JULE [9]) 0.911 (JULE [9]) 0.600 (LTM [62]) 0.979 (N2D [63])
Rank2 0.858 (AGDL [64]) 0.824 (A-DSSC [27]) 0.523 (DFPA [65]) 0.969 (DDC-DA [26])
Rank3 0.858 (GDL [64]) 0.796 (J-DSSC [27])) 0.490 (LDA [66]) 0.965 (PSSC [67])
Rank4 0.793 (DBC [8]) 0.775 (DBC [8]) 0.447 (AnchorFree [68]) 0.964 (GDL [64])
Rank5 N/A 0.731 (GDL [64]) 0.435 (LapPLSI [69]) 0.939 (SR-K-means [70])
MBN (default) 0.795 0.683 0.623 0.964
MBN-E 0.929 0.832 0.584 0.964
MBN-SO (VRC) 0.995 0.908 0.623 0.964
MBN-SD 0.973 0.803 0.611 0.963

MBN† 0.994 0.901 0.623 0.965

MBN-E can still be competitive to “MBN (default)” if the
optimal range is wide enough, such as that on MNIST.
MBN-SO further improves the performance of MBN-E,
and outperforms “MBN (default)” significantly on most
datasets, except the small-scale Dermatology and New-
Thyroid. Finally, MBN-SD outperforms “MBN (default)”
on Dermatology and New-Thyroid, COIL20, and COIL100
significantly, and is comparable to the latter in the remain-
ing four datasets.

The proposed MBN-SO also approaches to the top
performance of the referenced methods on most datasets.
Although it behaves worse than DMSC on Extended Yale
B, it still ranks among the top 5 comparison methods. Here
we need to emphasize one merit of MBN-SO: it is imple-
mented in a simple mathematical form and behaves robustly
across datasets without carefully selected architectures or
hyperparameters, which fascinates its practical use. Note
that it is interesting to observe that the clustering ensemble
methods do not show significant performance improvement
over k-means on the small scale Dermatology and New-
Thyroid data. Note also that although deep learning has
dominated image clustering, it is not very prevalent in
text clustering. From the table as well as the summary on
text clustering in https://paperswithcode.com/, we see that
the deep model DFPA [65] is inferior to the conventional
probabilistic method LTM [62].

Focusing on our three algorithms, we see that MBN-SO
is at least comparable to MBN-E and MBN-SD on most of

the challenging data, except the two small-scale data where
a shallow network of MBN is able to produce a highly
accurate result. Comparing MBN-E and MBN-SD, we see
that MBN-SD outperforms MBN-E on the two small-scale
data, COIL20 and 20-Newsgroups, and is inferior to the
latter on UMIST, Extended Yale B, and COIL100. Although
the result of MBN-SD is not very impressive, it introduces
a new class of ensemble selection criteria—distribution
divergence criteria— into clustering ensemble, which may
motivate new criteria beyond MMD for further improving
the performance of MBN-SD.

E. Comparison between MBN-E and fMBN-E

Table III lists the clustering accuracies of MBN-E,
fMBN-E, and fMBN-Ev2. From the table, we see that
MBN-E and fMBN-E achieve similar performance. This
phenomenon supports the correctness of Remarks 1 and
3. Moreover, fMBN-E behaves better than fMBN-Ev2,
particularly on Dermatology, New-Thyroid, and Extended
Yale-B, which supports the correctness of Remark 2.

Tables IV and V summarize the running time of the
comparison methods. From the tables, we see that fMBN-
E is dozens of times faster than MBN-E on training the
bottom layers. Moreover, fMBN-E and fMBN-Ev2 are even
hundreds of times faster than MBN-E on training the upper
layers. The phenomenon supports the theoretical analysis of
Theorem 3.
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TABLE III
ACC COMPARISON BETWEEN MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 0.866 0.860 0.670 0.973 0.929 0.832 0.584 0.964
fMBN-E 0.868 0.907 0.659 0.964 0.938 0.837 0.582 0.964
fMBN-Ev2 0.528 0.576 0.653 0.896 0.902 0.828 0.595 0.963

TABLE IV
RUNNING TIME (IN SECONDS) OF THE BOTTOM LAYERS OF MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 225.08 14.96 118.00 2190.72 834.64 22148.48 59997.16 979832.20
fMBN-E 0.63 0.36 3.44 70.96 24.99 679.75 1356.35 5525.12
fMBN-Ev2 0.84 0.74 0.82 2.74 1.17 20.58 278.06 1216.84

TABLE V
RUNNING TIME (IN SECONDS) OF THE UPPER LAYERS OF MBN-E, FMBN-E, AND FMBN-EV2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 293.85 165.15 508.75 1829.94 1413.17 5617.11 26002.17 63939.58
fMBN-E 3.02 1.63 3.38 31.85 20.05 206.46 2085.35 9108.11
fMBN-Ev2 1.95 1.34 2.37 21.52 10.17 103.35 1141.76 8638.58
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Fig. 4. Weights of the MBN base models of MBN-SO and MBN-SD.

F. Effect of the ensemble selection algorithms on perfor-
mance

This subsection studies how the proposed MBN-SO and
MBN-SD affect the performance. Fig. 4 show the weights
of the MBN base models of all ensemble selection methods
in a single run. From the figure, we see that the weights
produced by all variants of MBN-SO can cleverly reflect
the quality of the base models on most datasets except
Dermatology. Particularly, the weights produced by “MBN-
SO (VRC)” seem to be the most accurate among the
variants of MBN-SO. Although the weights produced by
MBN-SD seem not as accurate as MBN-SO, if we pick a
number of MBN base models, then the optimal MBN base
models may be selected as well.

Based on the above observation, we study how many
MBN base models, i.e. the hyperparameter B, should be
selected. Specifically, we search B through {1, 2, 3, 5, 10}
respectively. From the result in Fig. 5, we see that the

MBN-SO variants are not sensitive to the number of the
base models on most datasets except Dermatology and
New-Thyroid. Therefore, we can set the hyperparameter B
of MBN-SO to a small number for saving the computing
resource. On the other side, the performance of MBN-SD
is generally improved when B is increased, which suggests
that we should set B to a large number in order to achieve
the optimal performance of MBN-SD.

G. Effect of the referenced labels of MBN-SO on perfor-
mance

The optimization-like criteria of MBN-SO need refer-
enced labels to calculate the weights of the MBN base
models, where we adopt the predicted labels from MBN-
E as the reference. Here we study whether MBN-SO is
sensitive to the referenced labels by generating the labels
in different ways, which are (i) randomly generated labels,
(ii) predicted labels from “MBN (default)”, (iii) predicted
labels from MBN-E, and (iv) ground-truth labels.
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Fig. 5. Effect of the number of the selected base models of MBN-SO and MBN-SD on performance.
SWC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST

Random
3.375 0.68306 0.646512 0.723478 0.94594 0.96059 0.900556 0.220418 0.960486

MBN (default)
2.625 0.862705 0.938372 0.571304 0.95464 0.852951 0.752546 0.617585 0.964971

MBN-E
2.500 0.853825 0.859302 0.766957 0.968103 0.957118 0.857407 0.601507 0.964486

Ground-truth
1.500 0.969262 0.946512 0.792609 0.966135 0.991493 0.906296 0.596625 0.964657

PB Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.750 0.786885 0.677907 0.573043 0.935584 0.856597 0.878843 0.344954 0.964
MBN (default)

2.500 0.856557 0.933721 0.63087 0.969138 0.86875 0.832731 0.618593 0.963043
MBN-E
2.500 0.851093 0.880233 0.766957 0.960336 0.955903 0.883565 0.59116 0.964171

Ground-truth
1.250 0.952869 0.946512 0.786522 0.967067 0.991319 0.906944 0.60416 0.964286

PBM Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.756148 0.552326 0.736522 0.910833 0.986111 0.889954 0.161732 0.962543
MBN (default)

2.500 0.840847 0.793023 0.718696 0.968206 0.931424 0.810833 0.60607 0.963743
MBN-E
2.750 0.852459 0.630233 0.766957 0.961371 0.989931 0.86588 0.602356 0.962386

Ground-truth
1.375 0.950137 0.745349 0.768261 0.963857 0.991319 0.905694 0.612544 0.963671

VRC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.875 0.74112 0.594186 0.688696 0.853148 0.794271 0.762407 0.379497 0.956929
MBN (default)

2.250 0.827869 0.889535 0.746957 0.941798 0.994965 0.893796 0.62374 0.963957
MBN-E
2.125 0.714481 0.77093 0.766957 0.940969 0.995139 0.907546 0.622572 0.964043

Ground-truth
1.750 0.815574 0.947674 0.754348 0.95319 0.995139 0.90662 0.595405 0.964729
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(a) SWC

SWC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.68306 0.646512 0.723478 0.94594 0.96059 0.900556 0.220418 0.960486
MBN (default)

2.625 0.862705 0.938372 0.571304 0.95464 0.852951 0.752546 0.617585 0.964971
MBN-E
2.500 0.853825 0.859302 0.766957 0.968103 0.957118 0.857407 0.601507 0.964486

Ground-truth
1.500 0.969262 0.946512 0.792609 0.966135 0.991493 0.906296 0.596625 0.964657

PB Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.750 0.786885 0.677907 0.573043 0.935584 0.856597 0.878843 0.344954 0.964
MBN (default)

2.500 0.856557 0.933721 0.63087 0.969138 0.86875 0.832731 0.618593 0.963043
MBN-E
2.500 0.851093 0.880233 0.766957 0.960336 0.955903 0.883565 0.59116 0.964171

Ground-truth
1.250 0.952869 0.946512 0.786522 0.967067 0.991319 0.906944 0.60416 0.964286

PBM Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.756148 0.552326 0.736522 0.910833 0.986111 0.889954 0.161732 0.962543
MBN (default)

2.500 0.840847 0.793023 0.718696 0.968206 0.931424 0.810833 0.60607 0.963743
MBN-E
2.750 0.852459 0.630233 0.766957 0.961371 0.989931 0.86588 0.602356 0.962386

Ground-truth
1.375 0.950137 0.745349 0.768261 0.963857 0.991319 0.905694 0.612544 0.963671

VRC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.875 0.74112 0.594186 0.688696 0.853148 0.794271 0.762407 0.379497 0.956929
MBN (default)

2.250 0.827869 0.889535 0.746957 0.941798 0.994965 0.893796 0.62374 0.963957
MBN-E
2.125 0.714481 0.77093 0.766957 0.940969 0.995139 0.907546 0.622572 0.964043

Ground-truth
1.750 0.815574 0.947674 0.754348 0.95319 0.995139 0.90662 0.595405 0.964729
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(b) PB

SWC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.68306 0.646512 0.723478 0.94594 0.96059 0.900556 0.220418 0.960486
MBN (default)

2.625 0.862705 0.938372 0.571304 0.95464 0.852951 0.752546 0.617585 0.964971
MBN-E
2.500 0.853825 0.859302 0.766957 0.968103 0.957118 0.857407 0.601507 0.964486

Ground-truth
1.500 0.969262 0.946512 0.792609 0.966135 0.991493 0.906296 0.596625 0.964657

PB Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.750 0.786885 0.677907 0.573043 0.935584 0.856597 0.878843 0.344954 0.964
MBN (default)

2.500 0.856557 0.933721 0.63087 0.969138 0.86875 0.832731 0.618593 0.963043
MBN-E
2.500 0.851093 0.880233 0.766957 0.960336 0.955903 0.883565 0.59116 0.964171

Ground-truth
1.250 0.952869 0.946512 0.786522 0.967067 0.991319 0.906944 0.60416 0.964286

PBM Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.756148 0.552326 0.736522 0.910833 0.986111 0.889954 0.161732 0.962543
MBN (default)

2.500 0.840847 0.793023 0.718696 0.968206 0.931424 0.810833 0.60607 0.963743
MBN-E
2.750 0.852459 0.630233 0.766957 0.961371 0.989931 0.86588 0.602356 0.962386

Ground-truth
1.375 0.950137 0.745349 0.768261 0.963857 0.991319 0.905694 0.612544 0.963671

VRC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.875 0.74112 0.594186 0.688696 0.853148 0.794271 0.762407 0.379497 0.956929
MBN (default)

2.250 0.827869 0.889535 0.746957 0.941798 0.994965 0.893796 0.62374 0.963957
MBN-E
2.125 0.714481 0.77093 0.766957 0.940969 0.995139 0.907546 0.622572 0.964043

Ground-truth
1.750 0.815574 0.947674 0.754348 0.95319 0.995139 0.90662 0.595405 0.964729
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(c) PBM

SWC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.68306 0.646512 0.723478 0.94594 0.96059 0.900556 0.220418 0.960486
MBN (default)

2.625 0.862705 0.938372 0.571304 0.95464 0.852951 0.752546 0.617585 0.964971
MBN-E
2.500 0.853825 0.859302 0.766957 0.968103 0.957118 0.857407 0.601507 0.964486

Ground-truth
1.500 0.969262 0.946512 0.792609 0.966135 0.991493 0.906296 0.596625 0.964657

PB Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.750 0.786885 0.677907 0.573043 0.935584 0.856597 0.878843 0.344954 0.964
MBN (default)

2.500 0.856557 0.933721 0.63087 0.969138 0.86875 0.832731 0.618593 0.963043
MBN-E
2.500 0.851093 0.880233 0.766957 0.960336 0.955903 0.883565 0.59116 0.964171

Ground-truth
1.250 0.952869 0.946512 0.786522 0.967067 0.991319 0.906944 0.60416 0.964286

PBM Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.375 0.756148 0.552326 0.736522 0.910833 0.986111 0.889954 0.161732 0.962543
MBN (default)

2.500 0.840847 0.793023 0.718696 0.968206 0.931424 0.810833 0.60607 0.963743
MBN-E
2.750 0.852459 0.630233 0.766957 0.961371 0.989931 0.86588 0.602356 0.962386

Ground-truth
1.375 0.950137 0.745349 0.768261 0.963857 0.991319 0.905694 0.612544 0.963671

VRC Dermatolo New-ThyroUMIST Extended-YCOIL20 COIL100 20-Newsg MNIST
Random

3.875 0.74112 0.594186 0.688696 0.853148 0.794271 0.762407 0.379497 0.956929
MBN (default)

2.250 0.827869 0.889535 0.746957 0.941798 0.994965 0.893796 0.62374 0.963957
MBN-E
2.125 0.714481 0.77093 0.766957 0.940969 0.995139 0.907546 0.622572 0.964043

Ground-truth
1.750 0.815574 0.947674 0.754348 0.95319 0.995139 0.90662 0.595405 0.964729
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Fig. 6. Effect of the referenced labels on the performance of the MBN-SO variants. The four sub-figures show the results with the selection criteria
of (a) SWC, (b) PB, (c) PBM, and (d) VRC, respectively. The numbers in the caption of each sub-figure are the ranks of the comparison methods.

Fig. 6 shows the comparison results of different
referenced-label generation methods. From the figure, we
observe the following interesting phenomena. First, using
the predicted labels from either “MBN (default)” and
MBN-E is equivalently good in terms of the ranking list.
Moreover, the methods of using the predicted labels from
both MBN-E and “MBN (default)” perform generally very
close to the method with the ground-truth labels in terms of
ACC, even though the predicted labels themselves do not
have a high accuracy, e.g. on UMIST and 20-Newsgroups.
In other words, MBN-SO is insensitive to the accuracy of
the referenced labels.

Do the above phenomena mean that the referenced labels
are unimportant? Of cause no! A higher accuracy of the
predicted labels do lead to better performance. If we take
a look at the absolute ACC on each dataset in detail, we
find that using the predicted labels from MBN-E seems a
better choice than using the predicted labels from “MBN
(default)”. Moreover, the method of using the ground-truth
labels ranks No. 1 in all four ensemble selection criteria,
while the method of using the randomly generated labels
always performs the poorest.

Fig. 7 further draws the effect of the referenced labels
on the weight calculation of the MBN base models on
UMIST and 20-Newsgroups, where the predicted labels
from MBN-E and “MBN (default)” are far less accurate
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Fig. 7. Effect of different referenced-label generation methods on the
weights of the base models of “MBN-SO (VRC)”.

than the ground-truth labels. It further manifests the correct-
ness of the aforementioned conclusion. Specifically, from
the figure, we see that, although the predicted labels are
inaccurate, the weight curves of MBN-E are quite close to
those produced by the ground-truth labels, which supports
the empirical correctness of using MBN-E to generate
the referenced labels for MBN-SO. Although the weight
curves of “MBN (default)” are slightly different from those
produced by the ground-truth labels, it is still able to
select the top MBN base models. At last, we see that
the weight curves produced by the randomly generated
labels are irregular. Comparing Fig. 7 with Fig. 6, we can
further explain the phenomena why the performance with
the randomly generated labels seems not so bad is because
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that a number of randomly selected MBN base models are
able to produce a reasonable result.

H. Discussions

1) On candidate meta-clustering functions of MBN-E:
It is known that combining the base clusterings via a meta-
clustering function is important for clustering ensemble
technologies. In this paper, we combine the MBN base
models by simply concatenating their sparse output without
referring to an advanced meta-clustering function. In the
Supplementary Material, we have tried 12 representative
meta-clustering functions to fuse the output of the MBN
base models, empirical results show that simply concate-
nating the outputs of the MBN base models yields similar
performance to the best meta-clustering functions.

2) On candidate ensemble selection methods of MBN-
SO: MBN-SO simply selects the MBN base models with
the highest weights. In literature, there are many studies on
how to select the base models given the weights, which may
lead to higher performance and lower computational power
than the proposed method. In the Supplementary Material,
we have compared with 8 representative ensemble selection
methods as well as their 5 variants. Empirical results show
that simply picking the top MBN base models is enough
to reach the highest performance, while further exploring
the diversity between the base models via complicated
ensemble selection algorithms is unnecessary.

VI. CONCLUSIONS

In this paper, we have solved the network structure
selection problem of MBN by ensemble learning and se-
lection. Specifically, we have first proposed MBN-E, which
concatenates the sparse output of a number of MBN base
models with different δ to a meta-representation. Then,
we take the meta-representation as a guidance to select
the optimal base models. Because training an ensemble of
MBN is expensive, we propose a fast version of MBN-E
(fMBN-E), which first discards the random feature selection
step of MBN and then replaces the step of random data
resampling by the random resampling of similarity scores.
We have introduced two unsupervised ensemble selection
methods. The first one, named MBN-SO, uses the clustering
result of MBN-E to select the base models whose output
distributions have the highest discriminability in terms of
the optimization-like criteria. The second method, named
MBN-SD, uses the meta-representation of MBN-E directly
for selecting the optimal base models in terms of distribu-
tion divergence criteria.

Experimental comparison results on a wide variety of
benchmark datasets show that the proposed methods signifi-
cantly outperform the MBN model with the default network
structure; fMBN-E is empirically hundreds of times faster
than MBN-E without suffering performance degradation;
MBN-SO is able to detect the optimal MBN base model,
and reaches comparable performance to the state-of-the-
art clustering methods; although MBN-SD is less effective
than MBN-SO, it is the first work of unsupervised ensemble

selection based on the distribution divergence criteria. Fur-
ther studies also show that the proposed methods reach top
performance via only a simple mathematical formulation,
comparing to a number of meta-clustering functions and
clustering ensemble selection functions.
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