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A B S T R A C T

It is known that unsupervised nonlinear learning is sensitive to the selection of hyperparameters, which hinders
its practical use. How to determine the optimal hyperparameter setting that may be dramatically different
across applications is a hard issue. In this paper, we aim to address this issue for multilayer bootstrap networks
(MBN), a recent unsupervised model, in a way as simple as possible. Specifically, we first propose an MBN
ensemble (MBN-E) algorithm which concatenates the sparse outputs of a set of MBN base models with different
network structures into a new representation. Then, we take the new representation produced by MBN-E as a
reference for selecting the optimal MBN base models. Moreover, we propose a fast version of MBN-E (fMBN-E),
which is not only theoretically even faster than a single standard MBN but also does not increase the estimation
error of MBN-E. Empirically, comparing to a number of advanced clustering methods, the proposed methods
reach reasonable performance in their default settings. fMBN-E is empirically hundreds of times faster than
MBN-E without suffering performance degradation. The applications to image segmentation and graph data
mining further demonstrate the advantage of the proposed methods.
1. Introduction

Unsupervised learning and clustering is a fundamental task of ma-
chine learning. It finds wide applications in data mining, text analysis,
etc [1]. Early works, e.g. principal component analysis (PCA) and k-
means clustering, conduct clustering in the original data space. Because
the data in the original space is usually linearly-inseparable and noisy,
later on, research turned to projecting data in the original space into
a probability space where the data is supposed to be uniformly dis-
tributed and linearly separable, such as kernel methods, probabilistic
models, and manifold and subspace learning. However, a proper proba-
bility space is usually found by tuning parameters manually, e.g. kernel
widths [2] or regularization parameters, which is a long term headache
problem.

This paper aims to address this hard issue for multilayer bootstrap
network (MBN) [3], given little prior knowledge of data. Specifically,
MBN learns data representation in an unsupervised manner by multiple
layers of nonlinear transforms. It has a simple formulation, which con-
sists of the components of one-nearest-neighbor optimization, stacking,
and random sampling only. It yields good clustering performance if
the hyperparameters were set properly, such as a proper number of
nonlinear layers and network structures. However, its performance
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varies dramatically with different network structures and data. Here we
show the performance of MBN on COIL20 as an example in 1a . From
the figure, we see that, when the hyperparameter 𝛿 of MBN (𝛿 ∈ (0, 1))
is set to different values, the low-dimensional feature produced by MBN
and its corresponding clustering performance vary dramatically in a
large range. See Section 6 for a detailed theoretical analysis on the
problem.

To address this issue, ensemble clustering, which groups a set of base
clusterings effectively, is possibly a simple solution. It has been applied
successfully to, e.g. feature selection [4] or hyperparameter tuning [5].
The theoretical base for its success is that, for a binary-class problem,
as if the base clusterings of an ensemble clustering are stronger than
random guess, then the ensemble clustering may be stronger than any
of its base clusterings. It combines the base clusterings with a so-
called meta-clustering function, a.k.a consensus function, for enhancing
the stability and accuracy of the base clusterings [6,7]. Meta-clustering
functions can be categorized generally to two classes [7]. The first class
analyzes and optimizes the co-occurrence of objects: how many times
an object belongs to one cluster or how many times two objects belong
to the same cluster. The second class, called the median partition,
pursues the maximal similarity with all partitions in the ensemble
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Fig. 1. Connections between MBN and the proposed algorithms. (a) Motivation of MBN. (b) MBN-E. (c) MBN-SO and MBN-SD. Note that each square in MBN in figure (a) represents
a base clustering, while the black circles connected to the square represent the input/output of the base clustering. The hyperparameter ‘‘𝛿’’ controls the network structure of MBN,
and 𝛿 ∈ (0, 1). The words in red color are two ensemble selection criteria for MBN-SO and MBN-SD respectively. The word ‘‘ACC’’ is short for clustering accuracy. The demo data
is the COIL20 dataset [21].
[8,9]. It is the recent research focus. For example, in [10], the authors
extended random vector functional link networks to an unsupervised
ensemble architecture. The authors in [11] proposed self-taught mech-
anism based on convex combination and centroid graph fusion to learn
an optimal consensus similarity graph for graph partitioning. See [7]
for a review of the fundamentals of clustering ensemble.

Although ensemble clustering is much more stable than its base
clusterings in hyperparameter tuning, some base clusterings may con-
tribute negatively to ensemble learning, which makes the ensemble
clustering suboptimal. Therefore, how to identify the strongest base
clusterings and group them into a new ensemble, via so called ensemble
reweighting and selection, needs further investigation. This topic mainly
focuses on three respects: (i) different types of weights, (ii) algorithms
for calculating the weights, and (iii) cluster validation criteria for
measuring the diversity and quality of the base models. The most
common type of weights is to assign a weight to each base clustering
according to its quality or/and diversity in the ensemble, e.g. the early
work [12] or recent deep learning based methods [13]. A special case
of this type is to constrain the weights of some weak base clusterings
to zero, named clustering selection [14]. However, weak base clusterings
may also contain some high quality clusters, and vise versa. With this
perspective, many reweighting strategies at levels of clusters [15], data
structures, data points [16], and data views [17] were proposed. The
algorithms for calculating the weights can be categorized into two
types [18]. The first type calculates weights by measuring the similarity
between the predicted labels of the clustering ensemble and its base
clusterings [12,14]. The second type treats the weights as variables
of consensus functions which are obtained by advanced optimization
algorithms, e.g. NMF-based optimization in [19] and 𝓁2,1-norm-based
sparse optimization in [20]. See [18] for a recent overview of weighted
clustering ensemble.

In this paper, we aim to apply ensemble clustering, reweighting and
selection to MBN, which produces an off-the-shelf toolbox that can be
easily used without heavy human labor. Although many ensemble se-
lection methods may be applied to MBN successfully, we aim to choose,
to our knowledge, the simplest and most efficient way, following an
expectation that an algorithm obeying the rule of Occam’s Razor may
be suitable to wide applications. The contributions of this paper are
listed as follows:

• We theoretically prove that increasing the depth of MBN
(i.e. number of layers) does not always improve the perfor-
mance, which induces the network structure selection problem of
2

MBN. To address this issue, we propose a simple MBN ensemble
(MBN-E) algorithm. It groups the sparse outputs of a number of
MBN base models with different network structures into a new
representation.

• To reduce the high computational complexity problem of MBN-E,
we propose the fast MBN-E (fMBN-E) by a simple modification
of MBN-E. It accelerates MBN-E by over hundreds of times both
theoretically and empirically. We also theoretically proved that
simplifying MBN-E to fMBN-E does not degrade the performance.

• To further improve the performance of MBN-E, we propose (i)
the MBN ensemble selection with optimization-like criteria (MBN-
SO) for the case when the number of classes is known, and (ii)
the MBN ensemble selection with distribution divergence criteria
(MBN-SD) when the number of classes is unknown. Both of them
select a number of highly-effective MBN base models from MBN-E
to group into a new MBN-E.

• We have run experiments on a number of benchmark datasets
where the optimal network structure of MBN appears in funda-
mentally different ranges. Experimental results show the advan-
tages of the above algorithms, not only over the original MBN
but also over a number of advanced clustering algorithms. To
demonstrate the potentially wide applications of the proposed
algorithms beyond the benchmark datasets, we further applied
them successfully to image segmentation and graph data mining.

The connections between MBN and the proposed algorithms can be
summarized in Fig. 1, where the performance on the COIL20 data is
given as an example.

The rest of the paper is organized as follows. In Section 2, we
present related work. In Section 3, we review MBN. In Sections 4 and
5, we present MBN-E, fMBN-E, MBN-SO, and MBN-SD, respectively.
In Section 6, we analyze the structure selection problem of MBN both
theoretically and empirically, which is the motivation of the proposed
algorithms. In Section 7, we present an extensive experiment on cluster-
ing. In Section 8, we study the nonlinear representation learning ability
empirically on synthetic data. In Section 9, we apply the proposed
methods to image segmentation and graph data mining. Finally, in
Section 10, we conclude the paper.

2. Related work

In this section, we review ensemble selection criteria. Some of the
criteria are applied to the proposed MBN-SO and MBN-SD.
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In ensemble cluster reweighting and selection, the criteria for mea-
suring the diversity and quality of the base clusterings of a clus-
tering ensemble lie in the core. They can be categorized into two
classes—optimization-based criteria and distribution divergence crite-
ria. Optimization-based criteria calculate the normalized mutual infor-
mation [12,14], adjusted rand index [22], clustering accuracies [23],
and their variants [24] between the sets of the predicted labels of the
base clusterings. Distribution divergence criteria is based on the data
distributions [25] related to the base clusterings without resorting to
the predicted labels. They usually calculate some kinds of statistics of
data [26]. Some systematical studies on cluster validation indices [25]
have been carried out as well.

The distribution divergence criteria are mostly explored in do-
main adaptation, instead of clustering ensemble. They define the sim-
ilarity between the source domain and the target domain of a do-
main adaptation problem. The most popular measurement is maximum
mean discrepancy (MMD) [27]. Other measurements include Kullback–
Leibler divergence, total variation distance, second-order (covariance)
statistics, and Hellinger distance. Although the distribution divergence
measurement has been extensively studied in unsupervised domain
adaptation, it seems far from explored in unsupervised ensemble se-
lection.

Motivated by the above work, we evaluate the quality of the base
models by optimization-like criteria [25], for MBN-SO, when the number
of classes is given; we evaluate the quality of the base models by so-
called distribution divergence criteria for MBN-SD, which measure the
learned representations of data directly without predicted labels, when
the number of classes is not given.

3. Preliminaries

This section presents MBN and its theoretical foundation briefly. See
Appendices 1 and 2 of the Supplementary Material for the summary
of important notations and detailed description of MBN as well as its
geometric and theoretical foundations.

As shown in Fig. 1a, MBN contains multiple layers of nonlinear
transforms. Suppose we are to build an 𝑀-layer MBN from bottom-up,
it can be described as follows:

• Step 1, for each layer, MBN trains 𝑉 mutually-independent 𝑘-
centroids base clusterings, where the parameter 𝑘 of all cluster-
ings at the same layer is the same. For each base clustering, it
takes the following three operators successively to generate a new
representation of data:

– Random selection of features: It first randomly selects
some features of the input data, which yields a new rep-
resentation of the data.

– Random sampling of data: It randomly samples 𝑘 data
points from the data with the new representation as the 𝑘
centroids.

– One nearest neighbor optimization: It assigns each input
data to one of the 𝑘 clusters, and outputs a 𝑘-dimensional
one-hot code, indicating which cluster the input data be-
longs to.

The one-hot representations from all base clusterings are concate-
nated as the input of the upper layer.

• Step 2, MBN stacks the cluster ensemble described in Step 1 for 𝑀
times. The parameter 𝑘 at two adjacent layers have the following
relationship:

𝑘𝑚 = 𝛿𝑘𝑚−1 (1)

where 𝑘𝑚 and 𝑘𝑚−1 are the parameter 𝑘 at the 𝑚th and (𝑚− 1)-th
adjacent layers respectively, and 𝛿 ∈ (0, 1) is a hyperparameter
3
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Algorithm 1 MBN-E.
Input: A ℎ-dimensional unlabeled dataset {𝐱𝑖}𝑛𝑖=1, parameter 𝑘𝑜, and number

of MBN base models 𝑍
Output: {𝐲̄𝑖}𝑛𝑖=1
1: for 𝑧 = 1,… , 𝑍 do
2: Randomly generate 𝛿 from the range [0.05, 0.95];
3: {𝐲𝑧,𝑖}𝑛𝑖=1 ← MBN({𝐱𝑖}𝑛𝑖=1, 𝑘𝑜, 𝛿)
4: end for
5: for 𝑖 = 1,… , 𝑛 do
6: 𝐲̄𝑖 ← [𝐲𝑇1,𝑖, 𝐲

𝑇
2,𝑖,… , 𝐲𝑇𝑍,𝑖]

𝑇

7: end for

controlling the network structure of MBN. Because 𝛿 ∈ (0, 1), we
must have

𝑘1 > 𝑘2 > ⋯ > 𝑘𝑚 > ⋯ > 𝑘𝑜 (2)

where 𝑘𝑜 is the parameter 𝑘 at the top layer. Note that, the
number of layers of MBN 𝑀 can be automatically calculated by
solving 𝑟𝑘𝑜 ≥ 𝛿(𝑀−1)𝑘1 ≥ 𝑘𝑜, given 𝑘1, 𝑘𝑜, and 𝛿, where the
hyperparameter 𝑟 is manually determined, and usually set to 1.5
for class balanced problems, and set larger for class imbalanced
problems.1

From the above formulation, we can see that the nonlinear property
f MBN is implemented by the one-hot encoding in the one nearest
eighbor optimization step.

. Multilayer bootstrap network ensemble (MBN-E)

Because MBN is sensitive to 𝛿 (see Section 6 for the detailed de-
cription on this problem), a straightforward thought is to integrate a
umber of MBN base models with different 𝛿 into MBN-E. We present
BN-E in Algorithm 1, which simply concatenates the outputs of a set

f MBN into a new representation of data.
Particularly, in Algorithm 1, we usually conduct PCA preprocessing

o {𝐱𝑖}𝑛𝑖=1 before MBN-E, which not only reduces the computational
omplexity of the bottom layers of the MBN base models but also
e-correlates the input features.

After getting the output {𝐲̄𝑖}𝑛𝑖=1, we sometimes need to reduce
𝐲̄𝑖}𝑛𝑖=1 to a low-dimensional representation {𝐮̄𝑖}𝑛𝑖=1 in an Euclidian
pace by, e.g. PCA, for applications, since that {𝐲̄𝑖}𝑛𝑖=1 is very high
imensional. Likewise, we denote the low-dimensional representation
f the base models {𝐲𝑧,𝑖}𝑛𝑖=1 as {𝐮𝑧,𝑖}𝑛𝑖=1. Note that ideally, it is expected
hat each principal component corresponds to one class in the down-
treaming task. In practice, we need slightly more principal components
o incorporate more useful information.

The computational complexity of MBN-E, which is 𝑍 times higher
han MBN, is too high to be intolerable in practice when 𝑍 ≫ 1:

heorem 1. The computational complexity of MBN-E approximates
o 𝑍((𝛼𝑘𝑉 𝑛) + (𝑘𝑉 𝑛)) empirically, where (𝛼𝑘𝑉 𝑛) and (𝑘𝑉 𝑛) are
he complexity of a single MBN at the bottom layer and the other layers
espectively, and 𝛼 is a constant related to the sparse property of the input
ata.

1 We have to guarantee that at least one data point per class is selected to
e a center of the 𝑘-centroids clusterings at the top layer at a high probability,
o as to make sure that the 𝑘-centroids clusterings are stronger than random
uess, which is the fundamental for the success of ensemble learning. To meet
his requirement, we set 𝑘𝑜 to 1.5𝑐 for class-balanced data, and larger for

lass-imbalanced data.
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Algorithm 2 fMBN-E.
Input: A ℎ-dimensional unlabeled dataset {𝐱𝑖}𝑛𝑖=1, parameter 𝑘𝑜, and number

of MBN base models 𝑍
nitialization: 𝑘1 = ⌊𝑛∕2⌋, number of base clusterings per layer 𝑉 = 400
utput: {𝐲̄𝑖}𝑛𝑖=1

1: /* train a shared bottom layer */
2: {𝐲𝑖}𝑛𝑖=1 ← MBN({𝐱𝑖}𝑛𝑖=1, 𝑘1 − 1, 𝛿 = 0)
3: /* train an ensemble of fast MBN */
4: for 𝑧 = 1,… , 𝑍 do
5: 𝐱𝑧,𝑖 ← 𝐲𝑖, ∀𝑖 = 1,… , 𝑛
6: 𝑚 ← 2
7: Randomly generate 𝛿 from the range [0.05, 0.95]
8: while 𝑘𝑚 ≥ 𝑘𝑜 do
9: for 𝑣 = 1,… , 𝑉 do
0: Calculate pairwise similarity matrix 𝐁 = 𝐗𝑇

𝑧 𝐗𝑧 where 𝐗𝑧 =
[𝐱𝑧,1,… , 𝐱𝑧,𝑛]

1: Randomly select 𝑘𝑚 columns of 𝐁 to form a new matrix 𝐁′, which
is the similarity scores between the input data and the centroids
of the 𝑣-th clustering at the 𝑚-th layer

2: for 𝑖 = 1,… , 𝑛 do
3: Find the largest element of the 𝑖th row of 𝐁, supposed to be the

𝑗th element
4: Derive a one-hot code 𝐬𝑖,𝑣 = [𝑠𝑖,𝑣,1,… , 𝑠𝑖,𝑣,𝑘𝑚 ]

𝑇 where

𝑠𝑖,𝑣,𝑡 =
{

1, if 𝑡 = 𝑗
0, otherwise , ∀𝑡 = 1,… , 𝑘𝑚

5: end for
6: end for
7: 𝐱𝑧,𝑖 ← [𝐬𝑇𝑖,1,… , 𝐬𝑇𝑖,𝑘𝑚 ]

𝑇 , ∀𝑖 = 1,… , 𝑛
8: 𝑘𝑚+1 ← 𝛿𝑘𝑚
9: 𝑚 ← 𝑚 + 1
0: end while
1: 𝐲̄𝑧,𝑖 ← 𝐱̄𝑧,𝑖, ∀𝑖 = 1,… , 𝑛, ∀𝑧 = 1,… , 𝑍
2: end for
3: 𝐲̄𝑖 ← [𝐲𝑇1,𝑖, 𝐲

𝑇
2,𝑖,… , 𝐲𝑇𝑍,𝑖]

𝑇 , ∀𝑖 = 1,… , 𝑛

Fig. 2. Architecture of fMBN-E. Different color represents different MBN base models
ith random 𝛿 values from a range of (0, 1), e.g., 0.33, 0.54, 0.78.

4.1. A fast version of MBN-E (fMBN-E)

fMBN-E is described in Algorithm 2. Its architecture is shown in
Fig. 2. It accelerates MBN-E by over hundreds of times without per-
formance degradation via the following two aspects:

• The first novel aspect: fMBN-E trains a single bottom layer,
instead of training 𝑍 independent bottom layers in MBN-E.

• The second novel aspect: For training each MBN base model,
fMBN-E removes the random feature selection step from MBN.
This modification makes us able to train the MBN base learners
by random resampling of similarity scores, instead of random
resampling of data.
4

g

Algorithm 3 Unsupervised ensemble selection for MBN-E.
Input: Sparse output of MBN-E {𝐲̄𝑖}𝑛𝑖=1 and its low-dimensional representation

{𝐮̄𝑖}𝑛𝑖=1;
Sparse outputs of the MBN base models {{𝐲𝑧,𝑖}𝑛𝑖=1}

𝑍
𝑧=1 and their

low-dimensional representations {{𝐮𝑧,𝑖}𝑛𝑖=1}
𝑍
𝑧=1;

Number of selected base models 𝐵
Number of classes 𝑐 (optional).

Output: { ̄̄𝐲𝑖}𝑛𝑖=1, { ̄̄𝐮𝑖}
𝑛
𝑖=1.

1: if 𝑐 is given then
2: {𝑙𝑖}𝑛𝑖=1 ← clustering({𝐮̄𝑖}𝑛𝑖=1, 𝑐)
3: for 𝑧 = 1 to 𝑍 do
4: 𝜔𝑧 ← 𝑓MBN-SO({𝑙𝑖}𝑛𝑖=1, {𝐮𝑧,𝑖}

𝑛
𝑖=1)

(or 𝜔𝑧 ← 𝑓MBN-SO({𝑙𝑖}𝑛𝑖=1, {𝐲𝑧,𝑖}
𝑛
𝑖=1))

5: end for
6: else
7: for 𝑧 = 1 to 𝑍 do
8: 𝜔𝑧 ← 𝑓MBN-SD({𝐲̄𝑖}𝑛𝑖=1, {𝐲𝑧,𝑖}

𝑛
𝑖=1)

(or 𝜔𝑧 ← 𝑓MBN-SD({𝐮̄𝑖}𝑛𝑖=1, {𝐮𝑧,𝑖}
𝑛
𝑖=1))

9: end for
10: end if
11: Pick 𝐵 sparse representations that correspond to the 𝐵 largest weights of

{𝜔𝑧}𝑍𝑧=1, supposed to be {{𝐱𝑏,𝑖}𝑛𝑖=1}
𝐵
𝑏=1 without loss of generality

12: ̄̄𝐱𝑖 ← [𝐱𝑇1,𝑖,… , 𝐱𝑇𝐵,𝑖]
𝑇 , ∀𝑖 = 1,… , 𝑛

13: { ̄̄𝐲𝑖}𝑛𝑖=1 ← PCA({ ̄̄𝐱𝑖}𝑛𝑖=1)

From the above algorithm, we can easily obtain that:

Theorem 2. The computational complexity of fMBN-E is (𝛼𝑘𝑉 𝑛) +
(𝑍𝑛2).

Comparing Theorems 1 and 2, we see that the computational com-
lexities of the bottom layer and the other layers are reduced by 𝑍

and 𝑘𝑉 ∕𝑛 times respectively. For example, in a typical setting where
𝑘 = 𝑛∕2, 𝑍 = 40, and 𝑉 = 400, the computational complexity of MBN-E
is as high as ((8000𝛼𝑛2)+(8000𝑛2)), while the complexity of fMBN-E is
(200𝛼𝑛2) +(40𝑛2) which may be hundreds of times faster than MBN-
. Particularly, because the complexity of the original MBN model is
(𝛼𝑘𝑉 𝑛)+(𝑘𝑉 𝑛)) [3], we can see that fMBN-E may be even faster than
single MBN described in [3] since that 𝑉 is larger than 𝑍 in practice.
mpirically, fMBN-E may be hundreds of times faster than MBN-E.

Moreover, fMBN-E does not degrade the performance of MBN-
both empirically and theoretical analysis. See Appendices for the

heoretical proofs.

. Ensemble selection for MBN-E

In this section, we first present an unsupervised ensemble selection
ramework for MBN-E in Section 5.1, and then present MBN-SO and
BN-SD in Sections 5.2 and 5.3 respectively.

.1. Framework

The unsupervised ensemble selection framework contains three
teps:

• Step 1: Take the output of MBN-E as a reference representation.
• Step 2: Calculate a score between the reference representation

and the representation of each MBN base model in MBN-E via
a criterion.

• Step 3: Pick the top 𝐵 MBN base models whose scores are the
highest, and concatenate their sparse outputs into a new sparse
representation.

Algorithm 3 describes the detail of the framework: If the number
f classes 𝑐 is given, it adopts MBN-SO to select 𝐵 effective MBN
ase models. Specifically, it first conducts clustering on {𝐲̄𝑖}𝑛𝑖=1, which

𝑛
enerates a set of predicted labels {𝑙𝑖}𝑖=1. Then, it calculates a weight
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𝜔𝑧 for the 𝑧th MBN base model by an optimization-like criterion
𝑓MBN-SO({𝑙𝑖}𝑛𝑖=1, {𝐲𝑧,𝑖}

𝑛
𝑖=1). The larger the weight 𝜔𝑧 is, the more impor-

ant the corresponding MBN base model is.
If 𝑐 is not given, it adopts MBN-SD to select the base models.

pecifically, it first calculates the weight 𝜔𝑧 by evaluating the difference
etween the distributions {𝐱̄𝑖}𝑛𝑖=1 and {𝐱𝑧,𝑖}𝑛𝑖=1 directly via a distribution
ivergence criterion 𝑓MBN-SD(⋅). After obtaining {𝜔𝑧}𝑍𝑧=1, it concatenates

the sparse output of the 𝐵 (𝐵 ≪ 𝑍) MBN base models whose weights
re the 𝐵 largest ones among {𝜔𝑧}𝑍𝑧=1 into a new sparse representation
f data { ̄̄𝐱𝑖}𝑛𝑖=1.

Note that there are a vast number of ensemble selection algorithms
anipulating on {𝜔𝑧}𝑍𝑧=1. Because this is not the focus of this paper,
ere we prefer the simple yet effective one.

.2. MBN-SO: Ensemble selection with optimization-like criteria

MBN-SO follows the comparison conclusion on the optimization-
ike criteria [25], and picks four best criteria, which are the silhouette
idth criterion (SWC), point-biserial (PB), PBM, and variance ratio

riterion (VRC), respectively. Because they are defined in Euclidian
paces, MBN-SO takes the low-dimensional representations {𝐲𝑧,𝑖}𝑍𝑧=1 of
he MBN base models for evaluation. Due to the length limitation of
he paper, we present the VRC criterion as follows, leaving the other
riteria in Appendix 3 of the Supplementary Material.

VRC calculates the ratio of the between-class variance over within-
lass variance:

VRC = 1
ℎ
𝑛 − 𝑐
𝑐 − 1

tr(𝐃)
tr(𝐖)

(3)

where tr(⋅) denotes the trace operator, ℎ is the dimension of the feature,
nd 𝐃 and 𝐖 are the between-class variance and within-class variance
espectively, defined as:

𝐖 =
𝑐
∑

𝑝=1
𝐖𝑝 (4)

𝑝 =
∑

{𝐮𝑖|𝑙𝑖=𝑝}
(𝐮𝑖 − 𝝁𝑝)(𝐮𝑖 − 𝝁𝑝)𝑇 (5)

𝐃 =
𝑐
∑

𝑝=1
𝑛𝑝(𝝁𝑝 − 𝝁̄)(𝝁𝑝 − 𝝁̄)𝑇 (6)

here 𝝁̄ = 1
𝑛
∑𝑛

𝑖=1 𝐮𝑖 is the grand mean of the data, 𝝁𝑝 =
1
𝑛𝑝

∑

{𝐮𝑖|𝑙𝑖=𝑝} 𝐮𝑖
s the center of the 𝑝th cluster centroid. The normalization terms 1∕ℎ

and (𝑛 − 𝑐)∕(𝑐 − 1) make the VRC score irrelevant to ℎ and 𝑐. A large
VRC score implies a good separation ability of the representation.

5.3. MBN-SD: Ensemble selection with distribution divergence criteria

MBN-SD adopts MMD, which is a common distribution divergence
criterion in unsupervised domain adaptation, to evaluate the distri-
bution divergence between the outputs of MBN-E and its MBN base
models.

MMD is originally defined in kernel-induced feature spaces, where
multiple kernels are usually adopted to reach an accurate estima-
tion. Here we simply use the linear kernel based MMD to evaluate
the distribution divergence between {𝐲̄𝑖}𝑛𝑖=1 and {𝐲𝑧,𝑖}𝑛𝑖=1. Since 𝐲̄𝑖 =
𝐲𝑇1,𝑖,… , 𝐲𝑇𝑍,𝑖]

𝑇 , here we define MMD as follows:

MMD = 1
𝑍

1
𝑛(𝑛 − 1)

∑

𝑖≠𝑗
𝐲̄𝑇𝑖 𝐲̄𝑗

+ 1
𝑛(𝑛 − 1)

∑

𝑖≠𝑗
𝐲𝑇𝑧,𝑖𝐲𝑧,𝑗 −

2
𝑍

1
𝑛2

𝑍
∑

𝑢=1

∑

𝑖,𝑗
𝐲𝑇𝑢,𝑖𝐲𝑧,𝑗

(7)

Because the first term of MMD is the same for all MBN base models,
we only calculate the last two terms in practice. The smaller the MMD
5

score is, the more similar the distributions {𝐲̄𝑖}𝑛𝑖=1 and {𝐲𝑧,𝑖}𝑛𝑖=1 are. To
make MMD satisfy Algorithm 3, we transform 𝑣MMD by:

𝜔MMD = 1 −
𝑣MMD − 𝑣min
𝑣max − 𝑣min

(8)

here 𝑣max and 𝑣min are the largest and smallest values of all MMD
cores respectively.

Note that, we have studied many probability distribution divergence
riteria in literature, including the Kullback–Leibler divergence, total
ariance distance, L2-norm distance, Hellinger distance, Wasserstein
istance, Bhattacharyya distance, etc. Unfortunately, they do not work
or MBN-SD. However, it does not mean that MMD is the only choice,
hich needs further investigation in the future.

. Theoretical analysis

It is expected that adding more layers to a multilayer network could
mprove the representation learning ability of the network. However,
his is not always the case empirically, so as to MBN.

In this section, we first review the estimation error of a single
ayer of MBN in Section 6.1, which is important for the analysis of
he weakness of MBN. Then, we give an empirical demo on how
ifferent network structures affect the performance of MBN in Sec-
ion 6.2. Finally, we derive the estimation error of the entire MBN in
ection 6.3 by extending Theorem 3 to the multilayer scenario, which
xplains the empirical phenomenon theoretically and motivates the
ovel algorithms of this paper.

.1. Review: Estimation error of a single layer of MBN

The author in [3] analyzed the estimation error of a single layer of
BN, which explains the empirical success of MBN. We summarize the

nalysis here.
Given an input 𝐱 of MBN at a layer, it is easy to imagine that

ach 𝑘-centroids clustering contributes a nearest neighbor 𝐰𝑣 to 𝐱,
𝑣 = 1,… , 𝑉 , then, the new location of 𝐱 in the input data space,
enoted as 𝐱̂, is given by the 𝑉 nearest neighbors as:

̂ = 1
𝑉

𝑉
∑

𝑣=1
𝐰𝑣 (9)

If 𝐱̂ is an effective estimation of 𝐱, then the locally linear assumption
etween {𝐰𝑣}𝑉𝑣=1 and 𝐱 must hold; otherwise, 𝐱̂ is not an accurate
stimation.

Under the locally linear assumption, the estimation error E(𝐱−𝐱̂) can
e decomposed into the following form using the famous bias–variance
ecomposition of expectation risk [28]:

E((𝐱 − 𝐱̂)2) = (𝐱 − E(𝐱̂))2 + E
(

(𝐱 − E(𝐱̂))2
)

= Bias2(𝐱̂) + Var(𝐱̂) (10)

iven (10), we can derive the following theorem for the estimation
rror of a single layer of MBN:

heorem 3. The estimation error of a single layer of MBN Eensemble and
he estimation error of a single 𝑘-centroids clustering Esingle in the layer have
he following relationship:

ensemble =
( 1
𝑉

+
(

1 − 1
𝑉

)

𝜌
)

Esingle (11)

where 𝜌 is the pairwise positive correlation coefficient between the 𝑘-

centroids clusterings, 0 ≤ 𝜌 ≤ 1 [3].
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.2. Empirical justification of the network structure problem of MBN

A core problem of MBN is that its effectiveness is strongly related
o the network structure which is controlled by parameter 𝛿. Given

parameters 𝑘1 and 𝑘𝑜 in (2) fixed, how fast 𝑘 drops from 𝑘1 to 𝑘𝑜 layer
by layer according to (2), which is determined by 𝛿, should match
the nonlinearity and noise level of data. When 𝛿 approaches to 0,
MBN builds a shallow network with a single nonlinear layer, which is
suitable for linearly separable data. When 𝛿 is enlarged towards 1, MBN
becomes deeper and deeper, which is suitable for highly nonlinear and
non-Gaussian data. If the above regularity is violated, the performance
of MBN may drop sharply.

In Fig. 1a, we can see that, increasing 𝛿 from 0.1 to 0.9 yields
gradually improved performance on COIL20. The gap between the best
performance and poorest performance is as high as 58%. However, in
Fig. 3, we see that (i) the best performance of MBN on the Dermatology
dataset appears at 𝛿 = 0.1, and the performance degrades gradually
along with the increase of 𝛿, which is contrary to the trend on COIL20;
(ii) the best performance on MNIST(5000) appears at 𝛿 = 0.5, which
significantly outperforms the performance when 𝛿 = 0.1 and 𝛿 = 0.9.
Moreover, as will be shown in Table 2 and Fig. 6 in the experiment, the
best 𝛿 for different datasets appears at dramatically different ranges.

Because it is difficult to evaluate the properties of data in unsuper-
vised learning, MBN has to make a compromise by setting 𝛿 = 0.5.
This may lead to far inferior performance from the optimal one, though
𝛿 = 0.5 happens to be the best choice on some data like MNIST. In
this paper, we aim to address this issue by detecting the optimal 𝛿
utomatically.

.3. Theoretical explanation of the network structure problem of MBN

A fundamental element of MBN is the locally linear assumption
efined in (9). The correctness of the assumption is strongly related
o the choice of 𝛿. Suppose the optimal performance of MBN appears
t 𝛿 = 𝛿0. Then, a diagram in Fig. 4 explains the empirical phenomenon
n Section 6.2.

When we set 𝛿 ≪ 𝛿0, the locally linear assumption (9) may be
iolated, which makes MBN fail to learn correct representations. For
xample, in Fig. 4a, given an input data point 𝐱 that is sampled from the

nonlinear data distribution, its representation 𝐱̂ learned by the nearest
centroids 𝐰1, 𝐰2, 𝐰3, and 𝐰4 is even out of the data distribution, which
6

is clearly wrong. This explains the empirical phenomenon that MBN
does not reach the top performance on COIL 20 when 𝛿 ≪ 0.9, and on
MNIST(5000) when 𝛿 ≪ 0.5.

To explain the failure of MBN at 𝛿 ≫ 𝛿0, we first give the following
heorem:

heorem 4. When 𝛿 > 𝛿0, the estimation error of MBN is:

MBN ≥
𝑀
∑

𝑚=1

(

1
𝑉

+
(

1 − 1
𝑉

)

(

𝑎𝑘1
𝑛

)2
𝛿2(𝑚−1)

)

E(single,1) (12)

here 𝑎 ∈ (0, 1] is the ratio of the number of randomly selected features
ver the number of all features in Step 1 of MBN, Esingle,1 is the estimation
rror of a single 𝑘-centroids clustering at the bottom layer, and 𝑀 is the
umber of nonlinear layers of MBN.

roof. First of all, we should emphasize that, when 𝛿 < 𝛿0, the locally
inear assumption for (9) does not hold, which makes Theorem 3 do
ot hold as well. Because the following proof is built on Theorem 3,
heorem 4 is effective only when 𝛿 > 𝛿0.

Because the probability that any two 𝑘-centroids clusterings select
he same element of the same input data point as one of their centroids
s (𝑎𝑘∕𝑛)2, then we can imagine easily that the correlation is

= (𝑎𝑘∕𝑛)2 (13)

e denote the correlation at the 𝑚th layer as 𝜌𝑚. Substituting (1) into
13) derives

𝑚 = (𝑎𝑘𝑚−1∕𝑛)2𝛿2 = ⋯ = (𝑎𝑘1∕𝑛)2𝛿2(𝑚−1) (14)

e denote the estimation error of a single 𝑘-centroids clustering and
n ensemble of clusterings at the 𝑚th layer as E(single,𝑚) and E(ensemble,𝑚)
espectively. Because reducing 𝑘 makes Esingle enlarged, we may assume
hat E(single,𝑚) is lower-bounded by E(single,1). Substituting (14) into (11)
erives:

(ensemble,𝑚) ≥

(

1
𝑉

+
(

1 − 1
𝑉

)

(

𝑎𝑘1
𝑛

)2
𝛿2(𝑚−1)

)

E(single,1) (15)

ecause EMBN accumulates E(ensemble,𝑚) of all layers from bottom-up, we
an derive the overall estimation error of MBN as (12). □

We further derive the following corollary from Theorem 4:

orollary 1. When 𝛿 > 𝛿0 and 𝑉 → ∞, the estimation error of MBN is:

EMBN ≥ 𝐶
𝑀
∑

𝛿2(𝑚−1) (16)

𝑚=1
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Fig. 4. Diagram of the density estimation process of MBN with different 𝛿. The notation 𝛿0 denotes the optimal 𝛿. The black cross 𝐱̂ denotes the coordinate of the learned
representation of an input data 𝐱. The four red points, which are 𝐰1, 𝐰2, 𝐰3 and 𝐰4 respectively, are the nearest centroids of four 𝑘-centroids clusterings to an input data point
𝐱. The blue dotted oval is the area of the locally linear assumption.
Fig. 5. Connection between the estimation error of MBN and 𝛿 when 𝛿 > 𝛿0, where
𝐶 =

(

𝑎𝑘1∕𝑛
)2 E(single,1) is a constant.

where 𝐶 =
(

𝑎𝑘1∕𝑛
)2 E(single,1) is a constant.

Corollary 1 can be visualized in Fig. 5. From the figure, we see that,
when 𝛿 approaches to 1, EMBN is increased exponentially.

Fig. 4c gives an example on how the large estimation error occurs
when 𝛿 ≫ 𝛿0. In this figure, we see that, because the four 𝑘-centroids
clusterings have strong correlation, three out of four nearest centroids
to 𝐱, i.e. 𝐰1, 𝐰2, and 𝐰3, share the same location, which makes MBN
difficult to learn a good representation. The above analysis explains
the phenomenon why the performance of MBN on Dermatology and
MNIST(5000) drops sharply when 𝛿 = 0.9.

As shown in Fig. 4b, only when 𝛿 ≈ 𝛿0, not only the locally
linear assumption holds, but also the 𝑘-centroids clusterings have weak
correlation, which makes MBN learn the best representation for 𝐱.
However, avoiding the sensitivity of MBN to 𝛿 is not straightforward,
which motivates the proposed methods.

7. Experiments on clustering

In this section, we introduce the experimental settings in Sec-
tions 7.1 to 7.3, and compare the proposed methods with a number of
representative methods on several benchmark datasets in Section 7.4.
Then, we demonstrate how fMBN-E accelerates MBN-E without sacrific-
ing accuracy in Section 7.5, and compare the ensemble selection criteria
in Section 7.6. Finally, we present the experimental conclusions of some
important aspects in Section 7.7.

7.1. Datasets

We selected 8 benchmark datasets as summarized in Table 2. For
Extended-Yale B, because the luminance of the images dominates the
7

similarity measurement instead of the faces themselves, we prepro-
cessed Extended-Yale B by the dense scale invariant feature transform
as in [39]. For 20-Newsgroups, we extracted the term frequency-
inverse document frequency (TF-IDF) text feature. PCA preprocessing
was applied to the image datasets, which reduced the original fea-
tures to 100 dimensions. Cosine similarity measurement was used to
measure the similarity between the documents of 20-Newsgroups. All
other datasets used Euclidean distance as the similarity measurement.
Clustering accuracy (ACC) was used as the evaluation metric.

From the table, we see that the operating range of the optimal 𝛿 of
MBN appears at dramatically different positions, which are sufficient to
demonstrate how the proposed methods address the network structure
selection problem, as well as how the proposed methods behave when
comparing with the state-of-the-art referenced methods.

7.2. Parameter settings

The parameter settings of MBN and the proposed methods are
summarized as follows:

• MBN (default) [3]: We used its default setting as in [3].
• MBN-E: It used 40 MBN base models. The base models of MBN-

E used the same parameter setting as MBN except that 𝛿 was
randomly selected from [0.05, 0.95].

• fMBN-E: It is the fast version of MBN-E without performance
degradation. It discards the random feature selection step in the
upper layers of the MBN base models.

• fMBN-Ev2: It is a variant of fMBN-E that discards the random
feature selection step at the bottom layer, and uses the random
resampling of similarity scores instead of the random data resam-
pling to train the bottom layer as its upper layers. It accelerates
the training time of the bottom layer of fMBN-E, with a risk of
performance degradation.

• MBN-SO: The number of selected base models 𝐵 was set to 3.
The MBN-SO with the four optimization-like criteria are denoted
as ‘‘MBN-SO (SWC)’’, ‘‘MBN-SO (PB)’’, ‘‘MBN-SO (PBM)’’, and
‘‘MBN-SO (VRC)’’, respectively.

• MBN-SD: The parameter 𝐵 was set to 10.

Agglomerative hierarchical clustering (AHC) was used for partitioning
data into clusters. Although the MMD criterion in MBN-SD is designed
to handle the case where the number of classes is unknown, we still give
AHC the number of classes during the clustering stage, for a comparable
study on how the distribution divergence criterion differs from the
optimization-like criteria in MBN-SO. All reported results are average
ones over 5 independent runs. The time efficiency was evaluated on
an Intel(R) Xeon(R) Platinum 8160 CPU server with 512 GB memory,
where the CPU has 48 physical cores. All experiments were run with
48 parallel workers of MATLAB.
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Table 1
ACC comparison between the proposed methods and the state-of-the-art referenced methods.
The results of the referenced methods on the datasets marked with ‘‘∗’’ are copied from the
top algorithms on the website ‘‘https://paperswithcode.com/’’. The number in bold denotes
the best performance [29–38].

Dermatology New-Thyroid UMIST* Extended-Yale B*
kmeans 0.261 0.860 0.408 0.311
Rank1 0.313 (DREC [29]) 0.863 (Borda [30]) 0.769 (DASC) 0.992 (DMSC)
Rank2 0.307 (LinkClueE [31]) 0.859 (LinkClueE [31]) 0.750 (DSC-Net-L2) 0.973 (DSC-Net-L2)
Rank3 0.306 (HGPA [6]) 0.853 (ECPCS_MC [32]) 0.732 (J-DSSC)) 0.924 (J-DSSC))
Rank4 0.299 (CSPA [6]) 0.851 (MCLA [6]) 0.728 (DSC-Net-L1) 0.917 (A-DSSC)
Rank5 0.297 (ECPCS_HC [32]) 0.845 (Vote [33]) 0.725 (A-DSSC) 0.776 (SSC-OMP)
MBN (default) 0.855 0.881 0.544 0.934
MBN-E 0.866 0.860 0.670 0.973
MBN-SO (VRC) 0.714 0.771 0.767 0.941
MBN-SD 0.947 0.941 0.547 0.909
MBN† 0.971 0.964 0.770 0.969

COIL20* COIL100* 20-Newsgroups MNIST*
kmeans 0.679 0.511 0.416 0.527
Rank1 1.000 (JULE) 0.911 (JULE) 0.600 (LTM [34]) 0.979 (N2D)
Rank2 0.858 (AGDL) 0.824 (A-DSSC) 0.523 (DFPA [35]) 0.969 (DDC-DA)
Rank3 0.858 (GDL) 0.796 (J-DSSC) 0.490 (LDA [36]) 0.965 (PSSC)
Rank4 0.793 (DBC) 0.775 (DBC) 0.447 (AnchorFree [37]) 0.964 (GDL)
Rank5 N/A 0.731 (GDL) 0.435 (LapPLSI [38]) 0.939 (SR-K-means)
MBN (default) 0.795 0.683 0.623 0.964
MBN-E 0.929 0.832 0.584 0.964
MBN-SO (VRC) 0.995 0.908 0.623 0.964
MBN-SD 0.973 0.803 0.611 0.963
MBN† 0.994 0.901 0.623 0.965
Table 2
Description of data sets. The term ‘‘optimal 𝛿’’ denotes where the optimal performance of MBN
appears by searching 𝛿 from a range of (0, 1).

Name # samples # dimensions # classes Attribute Optimal 𝛿

Dermatology 366 34 6 Biomedical (0, 0.2)
New-Thyroid 255 5 3 Biomedical (0, 0.35)
UMIST 575 1024 20 Faces (0.75, 0.85)
Extended-Yale B 2414 32 256 38 Faces (0.6, 0.75)
COIL20 1440 4096 20 Images (0.8, 0.9)
COIL100 7200 1024 100 Images (0.8, 0.9)
20-Newsgroups 18 846 26 214 20 Text (0.4, 0.5)
MNIST 70 000 768 10 Images (0.35, 0.75)
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7.3. Comparison methods

The comparison strategy is described as follows. For the image
datasets, we copied the ranking lists of the image clustering methods
from https://paperswithcode.com/, which reflects the state-of-the-art
performance on the datasets. Note that because the self-supervised deep
learning based methods listed on the website explore strong hand-
crafted image features, such as the random rotations and random color
changes that are not suitable to other types of data, from augmented
data to obtain implicit supervision information [40], we omit them
from the rank lists to maintain the fairness of the comparison. For the
small-scale Dermatology and New-Thyroid datasets that deep learning
methods usually do not handle with, we compared with 12 repre-
sentative clustering ensemble methods. All these clustering ensemble
methods are meta-clustering functions, which can be used jointly with
any base clusterings, such as k-means or spectral clustering. Here we
took 40 k-means clusterings as the base clusterings for each meta-
clustering function. Like many clustering ensemble methods, e.g. [41],
we selected the number of clusters of each k-means base clustering ran-
domly from a range of [2𝑐, 10𝑐]. For the 20-Newsgroups text corpus, we
compared with 9 text clustering methods, see [42] for the referenced
methods. Besides, k-means clustering are also provided as a baseline.
Because k-means clustering suffers from bad local minima, we ran k-
means clustering on each dataset for 100 times, and pick the one that
has the minimum objective value. All reported results are average ones
over 5 independent runs.

7.4. General results

Table 1 lists the results of the aforementioned comparison methods
and the proposed methods. Because it is too lengthy to list all results,
8

p

here we only list the results of the top 5 referenced methods; for the
proposed MBN-SO variants, we only provide ‘‘MBN-SO (VRC)’’ as a
representative. See Supplementary Material for the results of the other
three variants of MBN-SO. We also list the performance of the MBN
with the optimal 𝛿, denoted as MBN†. Note that because it is unlikely
to select the optimal 𝛿 manually in real-world applications, MBN† only
rovides an upperbound of the proposed methods.

From the table, we see that the proposed methods outperform
‘MBN (default)’’ in general, as what we have targeted to in this
aper. Specifically, MBN-E outperforms ‘‘MBN (default)’’ on UMIST,
xtended Yale B, COIL20, and COIL100 significantly where the optimal
perating range of 𝛿 of MBN is far from the default value 0.5. It is also
omparable to ‘‘MBN (default)’’ on Dermatology and New-Thyroid. As
or MNIST and 20-Newsgroups, even if the default 𝛿 happens to be in
he optimal operating range, MBN-E can still be competitive to ‘‘MBN
default)’’ if the optimal range is wide enough, such as that on MNIST.
BN-SO further improves the performance of MBN-E, and outperforms

‘MBN (default)’’ significantly on most datasets, except the small-scale
ermatology and New-Thyroid. Finally, MBN-SD outperforms ‘‘MBN

default)’’ on Dermatology and New-Thyroid, COIL20, and COIL100
ignificantly, and is comparable to the latter in the remaining four
atasets.

The proposed MBN-SO also approaches to the top performance of
he referenced methods on most datasets. Although it behaves worse
han DMSC on Extended Yale B, it still ranks among the top 5 compar-
son methods. Note that it is interesting to observe that the clustering
nsemble methods do not show significant performance improvement
ver k-means on the small scale Dermatology and New-Thyroid data.
ote also that the performance of text clustering is strongly related

o text features. If bag-of-words is used instead of TF-IDF, then the

erformance of all referenced methods on 20-Newsgroups degrades

https://paperswithcode.com/
https://paperswithcode.com/
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Table 3
ACC comparison between MBN-E, fMBN-E, and fMBN-Ev2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN-E 0.866 0.860 0.670 0.973 0.929 0.832 0.584 0.964
fMBN-E 0.868 0.907 0.659 0.964 0.938 0.837 0.582 0.964
fMBN-Ev2 0.528 0.576 0.653 0.896 0.902 0.828 0.595 0.963
Table 4
Running time (in seconds) of the bottom layers of MBN(default), MBN-E, fMBN-E, and fMBN-Ev2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN(default) 0.53 0.40 0.74 5.62 2.97 78.03 505.82 3347.12

MBN-E 225.08 14.96 118.00 2190.72 834.64 22 148.48 59 997.16 979832.20
fMBN-E 0.63 0.36 3.44 70.96 24.99 679.75 1356.35 5525.12
fMBN-Ev2 0.84 0.74 0.82 2.74 1.17 20.58 278.06 1216.84
Table 5
Running time (in seconds) of the upper layers of MBN(default), MBN-E, fMBN-E, and fMBN-Ev2.

Dermatology New-Thyroid UMIST Extended-Yale B COIL20 COIL100 20-Newsgroups MNIST

MBN(default) 1.07 0.89 1.30 6.70 4.17 53.79 714.58 7852.32

MBN-E 293.85 165.15 508.75 1829.94 1413.17 5617.11 26 002.17 63939.58
fMBN-E 3.02 1.63 3.38 31.85 20.05 206.46 2085.35 9108.11
fMBN-Ev2 1.95 1.34 2.37 21.52 10.17 103.35 1141.76 8638.58
Fig. 6. Weights of the MBN base models produced by different ensemble selection criteria, where SWC, PB, PBM and VRC are optimization-like criteria for MBN-SO, and MMD is
a distribution divergence criterion for MBN-SD. The dotted lines in gray color are the accuracies of MBN with respect to 𝛿, which are references for evaluating the effectiveness
of the weights.
significantly. To improve the performance on text clustering, new text
features that incorporate context information of words may be helpful.

Focusing on our three algorithms, we see that MBN-SO is at least
comparable to MBN-E and MBN-SD on most of the challenging data,
except the two small-scale data where a shallow network of MBN
is able to produce a highly accurate result. Comparing MBN-E and
MBN-SD, we see that MBN-SD outperforms MBN-E on the two small-
scale data, COIL20 and 20-Newsgroups, and is inferior to the latter
on UMIST, Extended Yale B, and COIL100. Although the result of
MBN-SD is not very impressive, it introduces a new class of ensem-
ble selection criteria—distribution divergence criteria—into clustering
ensemble, which may motivate new criteria beyond MMD for further
improving the performance of MBN-SD.

7.5. Comparison between MBN-E and fMBN-E

Table 3 lists the clustering accuracies of MBN-E, fMBN-E, and
fMBN-Ev2. From the table, we see that MBN-E and fMBN-E achieve
similar performance. This phenomenon supports the correctness of
Corollaries 3 and 4. Moreover, fMBN-E behaves better than fMBN-
Ev2, particularly on Dermatology, New-Thyroid, and Extended Yale-B,
which supports the correctness of Corollary 5.
9

Tables 4 and 5 summarize the running time of the comparison
methods. From the tables, we see that fMBN-E is dozens of times faster
than MBN-E on training the bottom layers. Moreover, fMBN-E and
fMBN-Ev2 are even hundreds of times faster than MBN-E on training
the upper layers. Their computational complexities are similar with the
complexity of MBN(default). The phenomenon supports the theoretical
analysis of Theorem 2.

7.6. Comparison between different ensemble selection criteria for MBN-SO
and MBN-SD

To study how different ensemble selection criteria affect the weights
of the MBN base models, we compared the weights with the clustering
accuracy of the MBN base models in a single run in Fig. 6. From the
figure, we see that the weights produced by all ensemble selection
criteria can cleverly reflect the quality of the base models on most
datasets except Dermatology. Particularly, the weights produced by
‘‘VRC’’ seem to be the most accurate among the ensemble selection
criteria. Although the weights produced by ‘‘MMD’’, which is a distribu-
tion divergence criterion, seem not as accurate as the optimization-like
criteria, if we pick a number of MBN base models, then the optimal
MBN base models may be selected as well.
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7.7. Discussions

This subsection reports the main conclusions of some important
aspects, leaving the detailed description of the experiments in Appendix
4 of the Supplementary Material.

(1) Effect of number of selected base models on MBN-SO and MBN-SD:
To study how the number of MBN base models affect the performance
of MBN-SO and MBN-SD, we tuned the hyperparameter 𝐵 from 1 to
10. We find that, for MBN-SO, we can set the hyperparameter 𝐵 to a
mall number for saving the computing resource; however, for MBN-
D, we should set 𝐵 to a large number in order to achieve the optimal
erformance.

(2) Effect of the referenced labels on MBN-SO: MBN-SO needs refer-
enced labels to calculate the weights of the MBN base models, where we
adopt the predicted labels from MBN-E as the reference. After studying
different generation methods of referenced labels, including (i) ran-
domly generated labels, (ii) predicted labels from ‘‘MBN (default)’’,
(iii) predicted labels from MBN-E, and (iv) ground-truth labels, we find
that the accuracy of the referenced labels has significant impact on the
performance, and that the predicted labels generated from MBN-E yield
good performance.

(3) On candidate meta-clustering functions of MBN-E: It is known that
combining the base clusterings via a meta-clustering function is impor-
tant for clustering ensemble technologies. In this paper, we combine the
MBN base models by simply concatenating their sparse output without
referring to an advanced meta-clustering function. In the Supplemen-
tary Material, we have tried 12 representative meta-clustering functions
to fuse the output of the MBN base models. Empirical results show that
simply concatenating the outputs of the MBN base models yields similar
performance to the best meta-clustering functions.

(4) On candidate ensemble selection methods of MBN-SO: MBN-SO
simply selects the MBN base models with the highest weights. In
literature, there are many studies on how to select the base models
given the weights, which may lead to higher performance and lower
computational power than the proposed method. In the Supplementary
Material, we have compared with 8 representative ensemble selection
methods as well as their 5 variants. Empirical results show that simply
picking the top MBN base models is enough to reach the highest
performance, while further exploring the diversity between the base
models via complicated ensemble selection algorithms is unnecessary.

8. Experiments on unsupervised representation learning

The success of the proposed methods lies in that they project a
nonlinear and nonuniform distribution into a linearly separable and
uniform distribution, so that a very simple linear classifier can yield
a high classification accuracy.

To support the above claim, in this section, we conducted a con-
trollable experiment on a nonlinear and nonuniform ‘‘two-moon’’ data
as shown in the ‘‘original data’’ of Fig. 7. We compared the proposed
methods with four well known unsupervised nonlinear learning algo-
rithms, i.e. isometric mapping (Isomap) [43], locally linear embedding
(LLE) [44], spectral clustering [2], and t-distributed stochastic neighbor
embedding (t-SNE) [45].

Fig. 7 shows the two dimensional embedding features learned by
the comparison methods. From the figure, we see that the density of
the two classes produced by the proposed methods is similar, while
the comparison methods fail to do so. Moreover, MBN-SO(VRC) and
MBN-SD yield more compact representations than MBN(default) and
fMBN-E.

Fig. 8 shows the clustering results on the produced embedding
features. From the figure, we see that MBN-SO(VRC) produces the best
clustering result, followed by fMBN-E.

9. Applications

In this section, we apply the proposed algorithms to image segmen-
10

tation and graph data mining.
Table 6
Description of the GEMSEC-facebook datasets.

Number of nodes Density Transitivity

Politicians 5,908 0.0024 0.3011
Companies 14,113 0.0005 0.1532
Athletes 13,866 0.0009 0.1292
News sites 27,917 0.0005 0.1140
Public figures 11,565 0.0010 0.1666
Artists 50,515 0.0006 0.1140
Government 7,057 0.0036 0.2238
TV shows 3,892 0.0023 0.5906

9.1. Application to image segmentation

Image segmentation partitions an image into multiple image seg-
ments, so as to simplify the analysis of the image. It is a process of
assigning a label to every pixel of an image such that the pixels with
the same label share certain characteristics. It is a core task of image
signal processing. It can be either unsupervised or supervised. Unsu-
pervised image segmentation, which is usually used as a preprocessing
of supervised segmentation, is formulated as a clustering problem on
pixels such that the pixels with similar colors and nearby locations are
grouped into the same cluster.

We randomly selected several images from the 2017 Val images of
the COCO datasets2 for evaluation. We reduced the length and width
of each image to about 1/7 of their original sizes, and further trans-
formed the color space from RGB to CIELAB. Finally, for each pixel,
we concatenated its three-dimensional colors and its two-dimensional
coordinates as the feature. We compared with the classic mean-shift
clustering and k-means clustering. The bandwidth of mean-shift was
set to 0.2. The clustering number of both k-means clustering and the
proposed methods was set to 8. We applied k-means clustering to the
output of the proposed methods.

Two examples of the comparison results are shown in Fig. 9, while
more examples are listed in Appendix 5 of the Supplementary Materials.
From the figure, we see that the proposed methods not only maintain
sufficient details of the images than mean-shift, but also yield smoother
and more accurate results than k-means. As for the proposed methods,
MBN-SO behaves similarly to fMBN-E.

9.2. Application to graph data mining

All of the aforementioned experiments were conducted on the data
whose features are given explicitly. However, the data points in many
real-world applications do not have explicit features, e.g. graph data
where only the connections between the data points are given. Here
we give an example on how to apply the proposed methods to graph
data.

Community detection is a method for finding groups within complex
systems that are represented on a graph. It is a core task of network
science, and finds its applications in network security, recommendation
systems, etc. As collected in https://snap.stanford.edu/data/, the data
in community detection are various sparse graphs. Here we used the
undirected GEMSEC-facebook data in the collection for evaluation.

The statistics of the GEMSEC-facebook data is summarized in
Table 6. For each link between a node 𝑖 and a node 𝑗, we set the
lements 𝑏𝑖,𝑗 and 𝑏𝑗,𝑖 of the graph 𝐁 to the weight of the link. Because
he pairwise similarity between the nodes has already been given as
, the output of each 𝑘-centroids clustering at the bottom layer of

fMBN-E is simply a random sample of the columns of 𝐁. Because the
round-truth number of communities is unknown, we used modularity
s the evaluation metric as that in [46]. Because the modularity can
e calculated in an unsupervised manner by comparing 𝐁 with the

2 https://cocodataset.org

https://snap.stanford.edu/data/
https://cocodataset.org
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Fig. 7. Visualizations of the two-dimensional embedding features learned by the comparison methods on the two-moon synthetic data.
Fig. 8. Clustering results on the produced embedding features of the comparison methods.
prediction result, we are able to search for the optimal modularity
results as [46]. Specifically, we searched the parameter 𝑘𝑜 of fMBN-E
from {15, 30, 45, 60} respectively. For each 𝑘𝑜, we grouped the nodes
to 2 to 50 communities, and picked the optimal result in terms of
the modularity. We applied k-means clustering to the output of the
11
proposed methods. Following [46], we reported the average results
over 5 independent runs. Table 7 lists the comparison results with
four well-known community detection algorithms [47–50]. From the
average ranking over the 8 community detection tasks, we see that
the proposed fMBN-E ranks the second, which is slightly worse than
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Fig. 9. Results of the image segmentation methods on 2 randomly selected examples from the 2017 Val images of the COCO datasets.
Table 7
Modularity of the community detection algorithms on the GEMSEC-facebook datasets. Note that, because our experimental settings on the
datasets are exactly the same with those in [46](Table 3), we directly copied the results of the referenced methods [47–50] from [46](Table
3) for a fair comparison.

Politicians Companies Athletes News sites Public figures Artists Government TV shows Ranking

Overlap factorization [47] 0.810 0.553 0.601 0.471 0.551 0.474 0.608 0.786 4.57
(±0.008) (±0.010) (±0.020) (±0.016) (±0.01) (±0.018) (±0.024) (±0.008)

Walktrap [48] 0.841 0.639 0.670 0.514 0.628 0.554 0.675 0.790 2.00
(±0.023) (±0.016) (±0.021) (±0.023) (±0.023) (±0.026) (±0.043) (±0.036)

Fast greedy [49] 0.819 0.665 0.605 0.531 0.630 0.464 0.615 0.835 2.86
(±0.008) (±0.014) (±0.026) (±0.020) (±0.011) (±0.023) (±0.046) (±0.006)

Label propagation [50] 0.826 0.647 0.647 0.243 0.612 0.393 0.659 0.839 3.29
(±0.009) (±0.075) (±0.094) (±0.159) (±0.027) (±0.018) (±0.041) (±0.004)

fMBN-E 0.830 0.549 0.657 0.518 0.580 0.502 0.681 0.809 2.29
(±0.004) (±0.011) (±0.002) (±0.014) (±0.015) (±0.003) (±0.009) (±0.005)
the walktrap algorithm [48]. Note that because MBN-SD yields almost
identical performance with fMBN-E, we omit its result here.

10. Conclusions

In this paper, we proposed simple and tuning-free unsupervised
learning methods based on MBN by ensemble learning and selection.
Specifically, we first proposed MBN-E which simply concatenates the
sparse output of a number of MBN base models with different 𝛿 to a
meta-representation. Then, we proposed MBN-SO and MBN-SD which
use the output of MBN-E to select the base models whose output distri-
butions have the highest discriminability. Because training an ensemble
of MBN is expensive, we proposed fMBN-E, which first discards the
random feature selection step of MBN and then replaces the step of
random data resampling by the random resampling of similarity scores.
We proved theoretically that this simplification does not degrade the
estimation accuracy of MBN-E. Finally, the above methods contribute
an efficient off-the-shelf clustering toolbox. Experimental comparison
results on a wide variety of benchmark datasets show that the proposed
methods reach good performance in data clustering, image segmenta-
tion, and graph data mining. Further analysis show the effectiveness of
each proposed method.

The main advantages of the proposed methods may be as follows.
(i) As non-neural-network methods in the deep learning era, they yield
good performance that is comparable to advanced neural network
methods with the default setting in the investigated cases, which fasci-
nates their practical use. (ii) They are mathematically simple, efficient,
and support parallel computing naturally. (iii) Their advanced perfor-
mance can be proved theoretically from classic frequentist statistics,
e.g. the bias–variance decomposition of expectation risk, which may
enrich the unsupervised ensemble learning theory.

One weakness is that the performance improvement of the proposed
methods in the self-supervised learning scenario is limited compared
to the neural-network-based methods, where self-supervised learn-
ing means that one can extract supervised labels implicitly from the
sample-level inner structures of some kinds of data, e.g. images, by
random transformations. This phenomenon is mainly caused by that
the proposed methods cannot handle supervised information of data
effectively, which limits them to conventional unsupervised learning
12
setting where the data samples are regarded simply as feature vectors.
Fortunately, we have observed some positive phenomenon when using
augmented data instead of the original data. How to handle very large-
scale augmented data efficiently still needs to be investigated, given
that the current methods use data resampling to learn the neighboring
relationship between data points which is computationally expensive.

In the future, we will also investigate how to add supervised in-
formation of data into the model training of the proposed methods,
and then generalize the proposed methods to supervised learning,
semi-supervised learning, self-supervised learning, etc.
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Fig. A.10. Relationship between the estimation error Eensemble∕Esingle, correlation
coefficient 𝜌, and number of 𝑘-centroids clusterings per layer 𝑉 .

Appendix A. On the first novel aspect of fMBN-E

Based on Theorem 3, we can draw the connections between
Eensemble∕Esingle, 𝜌, and 𝑉 in Fig. A.10, and further derive the following
corollary from (11).

Corollary 2. The estimation errors of the bottom layers of fMBN-E
EfMBN−E and MBN EMBN−E have the following connection:

EfMBN−E
EMBN−E

=

(

1
𝑉 +

(

1 − 1
𝑉

)

𝜌
)

Esingle
(

1
𝑍𝑉 +

(

1 − 1
𝑍𝑉

)

𝜌
)

Esingle

=
𝑍 + (𝑍𝑉 −𝑍)𝜌
1 + (𝑍𝑉 − 1)𝜌

(A.1)

From Corollary 2, we can further derive the following corollary:

orollary 3. When 𝑉 is large enough, the estimation error of the bottom
ayer of fMBN-E is similar to that of 𝑍 independent bottom layers of MBN-E:

fMBN−E ≈ EMBN−E (A.2)

roof. According to Corollary 2, we see that, when 𝑉 and 𝑍 are both
arge enough, EfMBN−E∕EMBN−E is determined by 𝜌. For the first case
hen 𝜌 → 0, EfMBN−E ≈ 𝑍EMBN−E; for the second case when 𝜌 ≫ 0,
fMBN−E ≈ EMBN−E. In the following, we show that the second case is

rue.
It is easy to know that enlarging 𝑘 reduces Esingle. From (13), we

lso observe that, when 𝑘 is enlarged, 𝜌 is enlarged as well. According
to Theorem 3, for the bottom layer of MBN, empirically, setting 𝑘 to

proper number balances Esingle and 𝜌, which produces the minimum
ensemble. Here we take the common setting 𝑘 = 𝑛∕2 and 𝑎 = 0.5 as an

example. In this setting, we may have 𝜌 ≈ 0.0625, which supports that
EfMBN−E ≈ EMBN−E. Corollary 3 is proved. □

Corollary 3 motivates us to train a single bottom layer as fMBN-E,
nstead of training 𝑍 independent bottom layers as MBN-E.

ppendix B. On the second novel aspect of fMBN-E

This subsection explains why fMBN-E is able to discard the random
eature selection step of MBN when training the upper layers.
13
Corollary 4. The random feature selection step has limited effect on the
upper layers of the MBN base models of fMBN-E.

Proof. For the upper layers of fMBN-E, the parameter 𝑘 is usually
far smaller than 𝑛, e.g. 𝑘 = 𝑛∕23 at the third layer from bottom-up.
According to (13) if we remove the random feature selection step by
setting 𝑎 = 1, we may have 𝜌 ≈ 1∕26. From Fig. A.10, we see that
Eensemble is far smaller than Esingle when 𝜌 ≈ 1∕26. Therefore, we do
not need the random feature selection step to further pursue a marginal
reduction of Eensemble. □

Corollary 4 motivates us to remove the random feature selection
step at the upper layers of fMBN-E, which provides the opportunity to
reduce the computational complexity significantly.

Following a similar explanation with the proof of Corollary 4, we
can obtain:

Corollary 5. The random feature selection step reduces the estimation
error of the bottom layer of fMBN-E significantly.

Corollary 5 motivates us to retain the random feature selection step
at the bottom layer of fMBN-E.
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