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ABSTRACT
Deep learning based speech enhancement methods face two prob-
lems. First, their performance is strongly affected by the distance
between the speech source and the microphones. Second, unlike
conventional methods, deep-learning-based multichannel methods
do not show significant performance improvement over their single-
channel counterpart. To address the above problem, we propose
deep ad-hoc beamforming—the first deep-learning-based multichan-
nel speech enhancement method in an ad-hoc microphone array. It
serves for scenarios where the microphones are placed randomly in
a room and work collaboratively. It aims to pick up speech signals
with equally good quality in a range where the array covers. Its
core idea is to reweight the estimated speech signals when conduct-
ing beamforming, where the weights produced by a neural network
are an estimation of the signal-to-noise ratios at the microphone ar-
ray. We conducted an experiment in a scenario where the location
of the speech source is far-field, random, and blind to the micro-
phones. Results show that our method outperforms representative
deep-learning-based speech enhancement methods by a large mar-
gin.

Index Terms— Ad-hoc microphone array, deep learning, dis-
tributed microphone array, MVDR, speech enhancement.

1. INTRODUCTION

Deep neural network (DNN) based speech enhancement has shown
its strong discriminative power in adverse acoustic environments.
Current DNN-based techniques employ either a single microphone
or a conventional multichannel array to pick up speech signals [1].
This paper focuses on the latter. DNN-based multichannel speech
enhancement is a fast developing field that can be currently cate-
gorized to two research branches. The first branch extracts spatial
features as the input of a DNN-based single-channel enhancement
method [2]. The second branch, which we denote bravely as deep
beamforming, estimates a monaural time-frequency (T-F) mask us-
ing a single-channel DNN so that the spatial covariance matrices of
speech and noise can be derived for beamforming [3, 4].

Although deep beamforming and its application to robust speech
recognition has been extensively studied since its first appearance
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Moving

Fig. 1. Illustration of an ad-hoc microphone array.

in 2016 [3–14], including the aspects of acoustic features [10, 15],
model training [11–14], mask estimations [5], post-processing [16],
etc, its performance improvement over the DNN-based single-
channel techniques is relatively limited, compared to the impressive
performance improvement of the single-channel techniques over
conventional statistical signal processing methods [17, 18]. This
phenomenon may be caused by that deep beamforming is funda-
mentally still linear speech enhancement methods; and the spatial
information gathered by a conventional microphone array is lim-
ited, compared to the strong discriminative power of DNN which is
trained from large-scale historical data. Besides, both single-channel
and multichannel techniques suffer performance drops when the dis-
tance between the speaker and the microphones increases. Finally,
people have to carry the microphones and speak closely.

On the other side, the research on ad-hoc microphone arrays is
an emerging direction [19–27]. As illustrated in Fig. 1, an ad-hoc
microphone array is a set of randomly distributed microphones. The
microphones collaborate with each other. Compared to traditional
microphone arrays, an ad-hoc microphone array has the following
two potentials. First, it has a chance to enhance a speaker’s voice
with equally good quality in a range where the array covers. Sec-
ond, its performance is not limited to the physical size of application
devices, e.g. cell-phones, gooseneck microphones, or smart speaker
boxes. However, current research on ad-hoc microphone arrays is
still at the very beginning. For example, some work has focused
on the channel selection problem in an ideal scenario where perfect
noise estimation and voice activity detection is available [20,26]. Al-
though some work has tried to jointly conduct noise estimation and
channel selection, it has to make many assumptions and carry out
advanced mathematical formulations [21, 23].

In this paper, we propose deep ad-hoc beamforming (DAB)—
the first DNN-based multichannel speech enhancement method for
ad-hoc microphone arrays. DAB is a supervised method. It revises
the signal model of the DNN-based minimum variance distortionless



response (MVDR) beamforming [3, 4] by reweighting the channels
according to the quality of the received signals, where the weights of
the channels are produced from a channel-reweighting model trained
by supervised off-line learning. Experimental results show that DAB
significantly outperforms the DNN-based single-channel enhance-
ment and DNN-based MVDR beamforming in scenarios where a
speaker moves randomly in a room.

2. PROBLEM FORMULATION

Suppose that there is only one target speaker. The physical model
for the received signals by a standard microphone array of N micro-
phones is assumed to be

y(t, f) = c(f)s(t, f) + n(t, f) (1)

where s(t, f) is the short-time Fourier transform (STFT) value of
the target clean speech at time t and frequency f , c(f) is the acous-
tic transfer function from the speaker to the array which is an M -
dimensional complex number, and y(t, f) and n(t, f) are the re-
ceived noisy speech and noise respectively. If we denote x(t, f) =
c(f)s(t, f), then (1) can be rewritten as

y(t, f) = x(t, f) + n(t, f). (2)

An MVDR beamformer finds a linear estimator wopt(f) to filter
y(t, f) by the following equation:

ŝ(t, f) = wH
opt(f)y(t, f). (3)

where ŝ(t, f) is an estimate of s(t, f), and (·)H denotes the con-
jugate transpose. Although the DNN-based MVDR beamforming
[3,4] does not need to know the pattern of the array, the way of view-
ing all microphones equally important may not be the best. Because
the distances between the speaker and the microphones in an ad-
hoc microphone array vary in a large range as shown in Fig. 1, the
quality of the received signals may vary dramatically accordingly.
From [3, 4], we know that, if the DNN-based time-frequency (T-F)
masking is not accurate enough which is a situation that the ad-hoc
microphone array meets, then wopt(f) can be problematic. Hence,
the signal model for ad-hoc microphone arrays should be rectified.

3. DEEP AD-HOC BEAMFORMING

The core idea of DAB is to filter y(t, f) by a channel-reweighting
vector p = [p1, . . . , pM ]T before the MVDR beamforming, such
that the channels that output low quality speech signals can be de-
pressed. A system overview is shown in Fig. 2.

3.1. System overview

The signal model considered in this paper is

yp(t, f) = p⊙ y(t, f) = p⊙ x(t, f) + p⊙ n(t, f) (4)

where ⊙ is the dot-product operator and p is the output of a channel-
reweighting model g(·) (denoted as DNN2 in Fig. 2), see Section
3.3 for the details about g(·). We denote the covariance matrices
of y(t, f), x(t, f), and n(t, f) over time as Φyy(f), Φxx(f), and
Φnn(f), respectively. Assuming that x(t, f) and n(t, f) are un-
correlated, then we have Φyy(f) = Φxx(f) + Φnn(f), so as to
P ⊙ Φyy(f) = P ⊙ Φxx(f) + P ⊙ Φnn(f), where P = ppT .
We further denote

Φp,vv(f) = P⊙Φyy(f), ∀v ∈ {y,x,n}. (5)
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Fig. 2. Deep ad-hoc beamforming.

Following [3, 4], we derive wopt(f) and ŝ(t, f) as

wopt(f) =
Φ̂

−1

p,nn(f)ĉ(f)

ĉH(f)Φ̂
−1

p,nn(f)ĉ(f)
(6)

ŝ(t, f) = wH
opt(f)yp(t, f) (7)

where Φ̂p,nn(f) is an estimate of Φp,nn(f):

Φ̂p,nn(f) =
1∑

t η(t, f)

∑
t

η(t, f)yp(t, f)y
H
p (t, f) (8)

and ĉ(f) is an estimate of c(f), which is the first principal compo-
nent of an estimated covariance matrix Φ̂p,xx(f):

Φ̂p,xx(f) =
1∑

t ξ(t, f)

∑
t

ξ(t, f)yp(t, f)y
H
p (t, f) (9)

with η(t, f) and ξ(t, f) defined as the product of individual esti-
mated T-F masks:

η(t, f) =

N∏
i=1

(1− m̂i(t, f)), ξ(t, f) =

N∏
i=1

m̂i(t, f)(10)

where m̂i(t, f) is an estimate of the ideal T-F mask produced by
a regression model h(·) (denoted as DNN1 in Fig. 2) at the i-th
channel. See Section 3.2 for the details about h(·).

3.2. Single-channel T-F masking

Suppose the STFT feature is F -dimensional. We denote

m̂i(t) = [m̂i(t, 1), . . . , m̂i(t, F )]T (11)

ỹi(t) = [|y|i(t, 1), . . . , |y|i(t, F )]T (12)

where |y|i(t, f) is the amplitude spectrogram of y(t, f) at the i-th
channel. m̂i(t) is produced by DNN2 via

m̂i(t) = h(ỹi(t)) (13)

In the training stage of h(·), we construct a corpus X1 contain-
ing the amplitude spectrograms of single-channel noisy speech and
its corresponding noise and clean speech components, which are de-
noted as |y|(t, f), |s|(t, f), and |n|(t, f) respectively. h(·) takes the
ideal ratio mask (IRM) as the training target:

IRM(t, f) =
|s|2(t, f)

|s|2(t, f) + |n|2(t, f) , ∀f = 1, . . . , F (14)



3.3. Channel-reweighting

Given a test utterance of U frames, we first merge all noisy frames
and the estimated clean speech respectively by average pooling:

¯̃yi =
1

U

U∑
t=1

ỹi(t), ¯̂si =
1

U

U∑
t=1

ŝi(t), ∀i = 1, . . . ,M (15)

where ŝi(t) = m̂i(t)⊙ ỹi(t), and then concatenate ¯̃yi and ¯̂si as the
input of g(·):

pi = g

([
¯̃y
T

i ,
¯̂sTi

]T)
, ∀i = 1, . . . ,M (16)

We train g(·) by supervised learning. In the training stage of
g(·), we take the ground-truth SNR in the time domain as the tar-
get of g(·). Specifically, suppose that a noisy speech sequence in
the time domain and its corresponding clean speech and noise com-
ponents are {ytime(t)}t, {stime(t)}t, and {ntime(t)}t respectively,
then the training target of g(·) is:

popt =
∑
t

|s|time(t)

|n|time(t)
(17)

We need to construct another training corpus X2 excluded from
X1 to train g(·), so as to prevent overfitting. We first take the noisy
speech in X2 as the input of DNN1, and then use the estimated clean
speech produced by DNN1 as part of the training data ŝ. Because
g(·) deals with segment-level features, X2 should be much larger
than X1 in practice. This paper uses DNN as g(·) given the scalabil-
ity of DNN, though many regression models can be used as well.

4. EXPERIMENTS

4.1. Datasets

We simulated a room where a speaker moves randomly. The farest
distance from the speaker to a microphone in the room is limited to
at most 20 meters. The clean speech propagates at a speed of 343
meters per second. Its amplitude is fading at a rate of 1/r where r is
the distance from the speech source. It is corrupted by additive noise.
We assumed that (i) the space has weak or no reverberation, (ii) the
additive noise is diffuse noise whose energy distributes evenly across
the entire space, and (iii) the additive noise between two locations is
uncorrelated. The average SNR level at a place of 1 meter away
from the speaker was set to 15 dB. Based on the above setting, the
relationship between the SNR level and the distance from the speech
source is shown in Fig. 3.

The clean speech was generated from the “tr05_org” corpus
of CHiME-4, which are 16 bit stereo WAV files sampled at 16
kHz. The additive noise was the babble and factory1 noise from
the NOISEX-92 database respectively. For each noise scenario, we
selected 500, 5000, and 30 clean utterances from the clean corpus to
construct the databases for training DNN1, DNN2, and test, respec-
tively. We further split the noise recordings to three parts as the noise
sources for training DNN1, DNN2 and test, respectively. For train-
ing DNN1, we synthesized 500 noisy utterances every other meter
in a distance range of [1, 20] meters from the location of the speaker,
which amounts to 10,000 utterances totally. For training DNN2, we
synthesized 100,000 noisy utterances distributed uniformly from 1
to 20 meters from the location of the speaker. We have conducted
many tests, see Section 4.2 for their detailed descriptions. For each
test, we produced 30 clean utterances from the speech source, and
recorded their noisy counterparts at any necessary location of a
microphone for evaluation.

Fig. 3. SNR of the received noisy speech signals at all locations of
microphones.

4.2. Experimental settings

We generated an ad-hoc microphone array of 4 microphones for
DAB. The microphones are distributed randomly in a distance range
of [a1, a2] meters from the speaker; the average distance between
the microphones and the speaker is b meters, where (a1, a2, b) are
three experimental parameters. We repeated the above experiment
on DAB 20 times. We compared DAB with a DNN-based single-
channel speech enhancement method that takes the IRM as the tar-
get (DS) and a DNN-based MVDR beamforming with a linear mi-
crophone array (DB-LMA) of 4 microphones, where the distance
between two neighboring microphones of the LMA is 10 centime-
ters. The microphone (array) is distributed randomly in a distance
range of [a1, a2] meters from the speaker. Different from [3], DB-
LMA takes the IRM as the training target of the DNN-based noise
estimation. We repeated the experiments on DS and DB-LMA 20
times. The average distance between the microphone (array) and
the speaker over the 20 independent runs was controlled to be b me-
ters. We adopted two evaluation scenarios, whose (a1, a2, b) were
set to (2, 14, 8) and (2, 18, 10) respectively. For each evaluation
scenario, we reported the average performance of the comparison
methods over the 20 runs in terms of short-time intelligibility mea-
sure (STOI). We also reported the average STOI scores of the noisy
speech recorded by all microphones. The higher the STOI score is,
the better the performance is.

We set the frame length and frame shift to 32 and 16 millisec-
onds respectively, and extracted 257-dimensional STFT features. We
used the same DNN1 for DAB, DS, and DB-LMA. The parameter
setting of DNN1 is as follows. DNN1 is a standard feedforward
DNN. It contains two hidden layers. Each hidden layer has 1024
hidden units. The activation functions of the hidden units and out-
put units are rectified linear unit and sigmoid function, respectively.
The number of epochs was set to 30. The batch size was set to 512.
The scaling factor for the adaptive stochastic gradient descent was
set to 0.0015, and the learning rate decreased linearly from 0.08 to
0.001. The momentum of the first 5 epochs was set to 0.5, and the
momentum of other epochs was set to 0.9. A contextual window was
used to expand each input frame to its context along the time axis.
The window size was set to 7. The parameter setting of DNN2 for
DAB was as follows. It contains one hidden layer with 1024 hidden
units. The number of epochs was set to 10. The batch size was set to
128. All other parameters were set to the same values as DNN1. The
ground-truth SNR popt was normalized globally to the range [0, 1]
so as to fit the output range of the sigmoid function.



Table 1. Comparison results in two evaluation scenarios (2, 14, 8)
and (2, 18, 10) respectively in terms of STOI.
(a1, a2, b) Noise type Noisy DS DB-LMA DAB

(2, 14, 8)
Babble 0.6967 0.7529 0.7680 0.8417
Factory 0.7045 0.7727 0.8077 0.8853

(2, 18, 10)
Babble 0.6523 0.6990 0.6971 0.8007
Factory 0.6518 0.7196 0.7560 0.8119

Table 2. Comparison results between the DAB without channel-
reweighting and the DAB with the channel-reweighting.
(a1, a2, b) Noise type without reweighting with reweighting

(2, 14, 8)
Babble 0.8142 0.8417
Factory 0.8789 0.8853

(2, 18, 10)
Babble 0.7634 0.8007
Factory 0.8045 0.8119

4.3. Main results

Table 1 lists the comparison results between DS, DB-LMA, and
the proposed DAB in the two evaluation scenarios (2, 14, 8) and
(2, 18, 10). From the table, we observe that DAB outperforms DS
and DB-LMA by a large margin, while DB-LMA is only slightly
better than DS on average. This phenomenon indicates that the
main advantage of DNN-based multichannel speech enhancement
over DS is in the setting of ad-hoc microphone arrays. We also
see that the STOI scores of all comparison methods drop signif-
icantly when the evaluation scenario becomes difficult, i.e. from
(2, 14, 8) to (2, 18, 10). The performance decrease of DAB suggests
that the proposed channel-reweighting algorithm, which takes all mi-
crophones into consideration, still has much room to get improved,
since some microphones that are too far away from the speaker may
be completely noisy.

4.4. On the effectiveness of channel-reweighting

Table 2 lists the comparison results between the DAB without
channel-reweighting and that with the proposed channel-reweighting.
From the table, we see that the DAB with the channel-reweighting al-
gorithm significantly outperforms that without channel-reweighting
in the babble noise environment, and slightly outperforms the lat-
ter in the factory noise environment. This phenomenon indicates
that the DNN2-based channel-reweighting becomes more and more
important when the environment is getting difficult.

To study how much room we can further improve beyond the
proposed DAB, we pick up the “best” single-channel result among
the results produced from the 4 microphones respectively for each
test utterance, as well as the STOI score of the noisy utterance re-
ceived by the “best” single-channel microphone. The two methods
are denoted as sDAB⋆ and noisy⋆ respectively. Because the best
microphone for each test utterance cannot be identified perfectly by
DNN2, the two referenced methods may be understood as “upper-
bound” and “lowerbound” of DAB, instead of two realistic methods.

Table 3 lists the comparison results between DAB, sDAB⋆ and
noisy⋆. From the table, we see that DAB produces higher STOI
scores than noisy⋆, which indicates the effectiveness of DAB. Com-
paring Table 3 with Tables 1 and 2, we see that all comparison
methods including the DAB without channel-reweighting are no bet-

Table 3. Comparison results between DAB, sDAB⋆, and noisy⋆.
(a1, a2, b) Noise type DAB sDAB⋆ Noisy⋆

(2, 14, 8)
Babble 0.8417 0.8782 0.8227

Factory 0.8853 0.9140 0.8617

(2, 18, 10)
Babble 0.8007 0.8437 0.7818

Factory 0.8119 0.8712 0.8025

Fig. 4. Comparison of the estimation errors of channel weights be-
tween DNN2 and linear regression.

ter than noisy⋆, which emphasizes the importance of the channel-
reweighting. However, the proposed DAB is still worse than sDAB⋆,
which indicates that there is still much room we can improve. More-
over, we believe that, if more advanced channel-reweighting meth-
ods are developed, DAB can outperform sDAB⋆ significantly, which
is our future work.

To verify that DNN2 is a valid choice of the channel-reweighting
model, we compared DNN2 with linear regression. The comparison
result is shown in Fig. 4, where the normalized estimation error is
defined as |popt−p|/popt. From the figure, we see that DNN2 yields
much lower estimation error than linear regression. The estimation
error of linear regression quickly becomes large along with the in-
crease of SNR, while DNN2 keeps the estimation error in a low level
steadily.

5. CONCLUSIONS

In this paper, we have proposed deep ad-hoc beamforming, which
is the first deep beamforming method for ad-hoc microphone arrays.
The difference between DAB and deep beamforming is that DAB
employs another DNN, i.e. DNN2, to produce the channel weights
for a reweighted aggregation of the single-channel signals picked up
by an ad-hoc microphone array. Empirically, we have found that the
advantage of the deep beamforming over DNN-based single-channel
speech enhancement is released to a maximum extent in the ad-hoc
microphone arrays. We have also verified that channel-reweighting
is important to DAB, and the DNN2-based channel-reweigting is ef-
fective. To summarize, the proposed DAB is still premature. We
believe that many advanced methods can be developed to fully mine
the potential of deep learning based multi-channel speech enhance-
ment in ad-hoc microphone arrays.
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