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Abstract—Multilayer bootstrap network (MBN), which is a recent simple unsupervised deep model, is sensitive to its network structure.
How to select a proper network structure that may be dramatically different in different applications is a hard issue, given little prior
knowledge of data. In this paper, we explore ensemble learning and selection techniques for determining the optimal network structure
of MBN automatically. Specifically, we first propose an MBN ensemble (MBN-E) algorithm which concatenates the sparse outputs
of a set of MBN base models with different network structures into a new representation. Then, we take the new representation as a
reference for selecting the optimal MBN base models. The ensemble selection criteria can be categorized into two classes. The first kind
employs optimization-like selection criteria, under the assumption that the number of classes of data is known as a prior. The second
kind proposes distribution divergence criteria, when such a prior is unavailable. Experimental results on several benchmark datasets
show that MBN-E yields good performance that is close to the optimal performance of MBN, while the ensemble selection techniques
for MBN-E can further improve the performance. More importantly, MBN-E and its ensemble selection techniques maintain the simple
formulation of MBN, and act like off-the-shelf methods that reach the state-of-the-art performance without manual hyperparameter
tuning. The source code is available at http://www.xiaolei-zhang.net/mbn-e.htm.
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1 INTRODUCTION

UNSUPERVISED learning is a fundamental task of
machine learning. A core problem of unsupervised

learning is how to deal with non-Gaussian and linearly
inseparable distributions of data. A common thought is
to transform the data into linearly separable distribu-
tions by some unsupervised nonlinear algorithms, e.g.
kernel methods, neural networks, probabilistic models,
and ensemble methods. Because little prior knowledge is
available for unsupervised learning, simple and tuning-
free algorithms are always desired in practice. However,
it is not easy to achieve this goal. Many factors may
make an algorithm suboptimal and fragile if not prop-
erly set, such as the hyperparameters for regularization
terms and probability priors, network structures, depth
of trees, and kernel width of Gaussian kernels. This
paper aims to address this issue for a recent simple
unsupervised deep ensemble model, named multilayer
bootstrap network (MBN) [1].

MBN can be described simply as:
• Step 1, randomly sample k data points from the in-

put data as the centroids of a clustering, and repeat
the process for V times, which learns V mutually-
independent one-hot representations of the data by
the clusterings.
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• Step 2, stack the clustering ensemble repeatedly for
M times, where the concatenation of the one-hot
representations is used as the input of the upper
layer.

As shown in Fig. 2a, MBN builds an M -layer deep
network after the stacking. Geometrically, it builds as
many as O(k2V ) agglomerative hierarchical trees on the
original data space, instead of on data points. The tree
structure is guaranteed by setting km = δkm−1, where
km and km−1 are the parameter k at the m-th and
(m − 1)-th adjacent layers respectively, and δ ∈ (0, 1)
is a hyperparameter controlling the network structure of
MBN.

Although MBN with its default setting has demon-
strated good performance in previous studies, “good”
does not mean “optimal”. Several factors affect the
performance of MBN, such as how many clusterings
it should have per layer? how many layers it should
be set? and how large the parameter k at the bottom
layer should be? Although we could find regularities
on most of the problems, and use a default setting to
approximate the optimal setting, how to find the optimal
δ, which determines the network structure, remains un-
solved. When δ approaches to 0, MBN builds a shallow
network with a single nonlinear layer, which is suitable
for linearly separable data. When we enlarge δ towards
1, MBN becomes deeper and deeper, which is suitable
for nonlinear and non-Gaussian data.

Because it is difficult to evaluate the properties of data
in unsupervised learning, MBN has to make a compro-
mise by setting δ = 0.5. This may lead to far inferior
performance from the optimal one. As we see from Fig.
2a, the optimal performance on the object recognition
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Fig. 1. Motivation and contributions. The hyperparameter “δ” controls the network structure of MBN. The words
in red color are two ensemble selection criteria for MBN-SO and MBN-SD respectively. The word “ACC” is short for
clustering accuracy. The demo data is the COIL20 dataset [2].

problem, which appears at around δ = 0.9, is far better
than the performance with the default setting δ = 0.5. In
other words, MBN needs to be built very deep to achieve
the optimal performance on this highly nonlinear and
non-Gaussian data. Some contrary examples can also be
observed in [1, Fig. 10].

In this paper, we address the above issue by ensemble
learning and ensemble selection. The contribution of this
paper is summarized as follows:

• MBN ensemble (MBN-E) is proposed. It groups the
sparse outputs of a number of MBN base models
with different δ into a new representation. Because
the main computational cost is at the bottom layer,
we make the MBNs share the same bottom layer.

• MBN ensemble selection with optimization-like cri-
teria (MBN-SO) is proposed. It first predicts the la-
bels of data by conducting clustering on the output
representation of MBN-E, and then measures the
discriminant ability of the output representation of
each base model by the optimization-like criteria
given the predicted labels. Finally, it selects the base
models with highly discriminant outputs as a new
ensemble.

• MBN ensemble selection with distribution diver-
gence criteria (MBN-SD) is proposed. It measures
the distribution divergence between the outputs of
MBN-E and its base models by maximum mean dis-
crepancy (MMD), and then selects the base models
whose outputs are similar to the MBN-E output.
To our knowledge, this is the first time that unsu-
pervised ensemble selection is conducted on data
distributions directly without clustering labels.

Note that, because the optimization-like criteria require
predicted labels to evaluate the discriminant ability of
a data distribution, we consider using MBN-SO for the
scenario where the number of classes is known as a prior.
Because the distribution divergence criteria evaluate di-
vergence of data distributions directly, we use MBN-SD
mainly for the scenario where the number of classes is
unknown.

We have run experiments on a number of benchmark
datasets where the optimal δ appears at fundamentally
different ranges. Experimental results show that MBN-E
significantly outperforms MBN with the default setting
and approaches to MBN with the optimal setting. MBN-
SO and MBN-SD further improves the performance of
MBN-E.

1.1 Related work

This subsection introduces the connection between the
proposed methods, clustering ensemble, ensemble selec-
tion and reweighting, and unsupervised domain adap-
tation.

1.1.1 Clustering ensemble

Ensemble learning, such as bagging [3], boosting [4], and
their variations, have demonstrated their effectiveness
on many learning problems. Their success relies on a
good selection of base models and a strong diversity
among the base models, where the word “diversity”
means that when the base models make predictions on
an identical pattern, they are different from each other
in terms of errors.
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Unsupervised ensemble learning inherits the funda-
mental theories and methods of classifier ensemble.
The mostly studied unsupervised ensemble learning is
clustering ensemble. It aims to combine multiple base
clusterings with a so-called meta-clustering function, a.k.a
consensus function, for enhancing the stability and ac-
curacy of the base clusterings [5]–[9]. Similar to super-
vised ensemble learning [10], the methods for improving
the diversity of the base clusterings can be partitioned
generally into four groups [11]: (i) manipulating train-
ing examples [6], (ii) manipulating input features, (iii)
manipulating training parameters [7], [12], [13], and (iv)
manipulating different clustering algorithms [5]. Meta-
clustering functions can be categorized generally to two
classes [9]. The first class analyzes the co-occurrence of
objects: how many times an object belongs to one cluster
or how many times two objects belong to the same
cluster. The second class, called the median partition,
pursues the maximal similarity with all partitions in
the ensemble [14]. See [9], [15], [16] for the reviews of
clustering ensemble.

Recently, some unsupervised deep ensemble learning
has been proposed. In [17], the authors first learn a co-
occurrence matrix of data by a number of basis clus-
terings, and then use the co-occurrence matrix as the
input of a deep auto-encoder to refine the matrix. In [18],
the authors aggregate an ensemble of auto-encoders for
text summarization, where random noise is added into
the data for enlarging the diversity between the auto-
encoders. In [19], the authors decompose each layer of
a deep neural network into an ensemble of encoders or
decoders and mask operations, where different encoders
or decoders capture different local complementary in-
formation. However, to our knowledge, unsupervised
deep ensemble learning is not prevalent, due to that
neural networks need supervised signals to maximize
its discriminant ability.

To summarize, MBN-E is an unsupervised deep en-
semble learning method. It learns deep representations
without resorting to neural networks and hyperparam-
eter tuning.

1.1.2 Clustering ensemble reweighting and selection
Most of the aforementioned research assigns the same
weight to each base clustering. However, not all base
clusterings contribute equivalently to the ensemble.
Some base clusterings may contribute negatively to the
ensemble, while some may be highly correlated with
each other. Therefore, it is needed to conduct ensemble
reweighting and selection, which mainly focuses on
three respects: (i) different types of weights, (ii) algo-
rithms for determining the weights, and (iii) cluster val-
idation criteria for measuring the diversity and quality
of the base models.

The most common type of weights is to assign a
weight to each base clustering according to its quality
or/and diversity in the ensemble, e.g. [20]. A special case
of this type is to constrain the weights of some weak

base clusterings to zero, named clustering selection [21],
[22]. However, weak base clusterings may also contain
some high quality clusters, and vise versa. With this
perspective, many reweighting strategies at levels of
clusters [23], [24], data structures [25], and data points
[26] were proposed.

The algorithms for determining the weights can be
categorized into two types [27]. The first type calcu-
lates weights from the given clustering ensemble using
specific validation criteria, e.g. [20], [21]. The weights
reflecting the quality of the base clusterings are usu-
ally calculated by measuring the similarity between the
predicted labels of the clustering ensemble and its base
clusterings. The weights reflecting the diversity between
the base clusterings are usually calculated according to
the pairwise dissimilarity between the predicted labels of
the base clusterings. A common algorithm for reweight-
ing the base clusterings is to reweight the co-occurrence
matrix. The second type treats the weights as variables
of consensus functions which are obtained by advanced
optimization algorithms, e.g. [28].

The criteria for measuring the diversity and quality of
the base models [25], [29]–[33] can be categorized into
two classes. The first class of measurements calculates
the normalized mutual information [20], [21], adjusted
rand index [34], clustering accuracies [35], and their
variants [36] between the sets of the predicted labels.
However, the predicted labels do not contain the infor-
mation of data distributions. As we know, even if two
sets of predicted labels are exactly the same, their un-
derlying data distributions can be dramatically different.
To remedy this weakness, the second class of validation
criteria is based on data distributions [30], [32]. They
usually calculate some kinds of statistics of data. For
example, Naldi et al, [33] studied six cluster validation
indices based on distances between samples and their
first- and second-order statistics. Yu et al. [25] studied
the first and second order statistics of Gaussian mixture
models as new validation indices. Some systematical
studies on cluster validation indices [30], [32] have been
carried out as well.

To our knowledge, all cluster validation criteria in
the second class takes the predicted labels of data as a
requirement of measuring the discriminant ability of the
data distribution. However, when the number of clusters
is not given explicitly, the predicted labels may be highly
unreliable. Moreover, unsupervised ensemble learning is
beyond clustering ensemble. If we view the predicted
labels as a representation of data, then clustering ensem-
ble may be regarded as a special case of unsupervised
ensemble learning. Therefore, it is needed to develop
new validation criteria that measure the divergence of
data distributions directly.

To summarize, when the number of classes is
given, we evaluate the quality of the base models by
optimization-like criteria [32], for MBN-SO. When the
number of classes is not given, we propose to evaluate
the quality of the base models by so-called distribution di-
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Fig. 2. Architecture of MBN-E. Different color represents
different MBN base models with random δ values.

vergence criteria for MBN-SD, which measure the learned
representations of data directly without predicted labels.
To our knowledge, this is the first time that the distribu-
tion divergence criteria are applied to the unsupervised
ensemble selection problem.

1.1.3 Unsupervised domain adaptation
Domain adaptation is the ability of applying an al-
gorithm trained in one or more “source domains” to
a different but related “target domain”. Unsupervised
domain adaptation is a subtask of domain adaptation
where the target domain does not have labels. The
algorithms can be categorized into three branches [37],
which are sample-based, feature-based, and inference-
based approaches. No matter how the approaches vary,
the distribution divergence measurement between the
source domains and the target domain always lies in the
core of unsupervised domain adaptation. The most pop-
ular measurement is MMD [38]. Other measurements
include Kullback-Leibler divergence [39], total variation
distance, second-order (covariance) statistics [40], and
Hellinger distance [41]. Some very recent work incor-
porates supervised information into the measurement of
the distribution divergence, e.g. [42].

Although the distribution divergence measurement
has been extensively studied in unsupervised domain
adaptation, it seems far from explored in unsupervised
ensemble selection. In this paper, we name this kind
of measurements as distribution divergence criteria, and
apply them to MBN-SD. Because MMD performs gener-
ally well among the measurements and is applicable to
all data types, from high-dimensional vectors to strings
and graphs, we focus on discussing MMD.

2 MULTILAYER BOOTSTRAP NETWORK EN-
SEMBLE
The architecture of MBN-E is shown in Fig. 2. It is an
ensemble of MBN base models who share the same
bottom layer and have different δ values. We present
MBN-E in detail as follows:
• Step 1: Share the bottom layer.

Given a dataset of n data points, MBN-E first trains
a bottom layer. The bottom layer consists of V k1-
centroids clusterings, where the parameter k1 = n/2.

The centroids of each clustering are k1 randomly
sampled data points from the dataset. For each
data point, a k1-centroids clustering outputs a k1-
dimensional one-hot code indicating which centroid
the data point belongs to. The V one-hot codes of the
data point is concatenated as a new representation
of the data.

• Step 2: Train an ensemble of base MBN learners.
MBN-E trains Z MBN base models (Z � 1). For
each MBN base model, we randomly sample its
hyperparameter δ from the range (0, 1). Then, we
train the MBN model layer by layer from bottom
up, with the parameter km = δkm−1 where m is the
index of the m-th layer. The training process of each
layer of the MBN model is the same as that of the
bottom layer. The entire training process stops when
km reaches a predefined value ko (ko � k1).

• Step 3: Construct an output layer.
After training an ensemble of MBNs, MBN-E con-
catenates the sparse outputs of the MBN base mod-
els as a new representation of data. If we de-
note the output of the z-th MBN base model as
{xz,i}ni=1, ∀z = 1, . . . , Z, then the output representa-
tion of MBN-E is x̄i = [xT

1,i, . . . ,x
T
z,i, . . . ,x

T
Z,i]

T ,∀i =
1, . . . , n.

Because {x̄i}ni=1 is very high dimensional, we some-
times need to reduce {x̄i}ni=1 to a low-dimensional repre-
sentation {ȳi}ni=1 in an Euclidian space by, e.g. PCA, for
applications. Likewise, we denote the low-dimensional
representation of {xz,i}ni=1 as {yz,i}ni=1.

The reason why we make the MBN base models
share the bottom layer is that the main computational
complexity of MBN is at the bottom layer. For the same
reason, we usually conduct PCA preprocessing before
MBN-E, which not only reduces the computational com-
plexity of the bottom layer but also de-correlates the
input features.

Making the MBN base models share the same bottom
layer will not affect the diversity between the base mod-
els. From the geometric analysis of MBN in [1], we know
that the bottom layer of an MBN model will partition its
input data space to as many as O(k12V ) fractions, which
maintain sufficient details of data for the upper layers to
generate accurate and diverse representations.

3 UNSUPERVISED ENSEMBLE SELECTION FOR
MBN-E
In this section, we first present an unsupervised ensem-
ble selection framework for MBN-E in Section 3.1, and
then present MBN-SO and MBN-SD in Sections 3.2 and
3.3 respectively.

3.1 Framework

Algorithm 1 presents the unsupervised ensemble selec-
tion framework for MBN-E. If the number of classes c
is given, it first conducts clustering on {ȳi}ni=1, which
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generates a set of predicted labels {li}ni=1. Then, it cal-
culates a weight wz for the z-th MBN base model by
an optimization-like criterion fMBN-SO({li}ni=1, {yz,i}ni=1).
If c is not given, it calculates the weight wz by eval-
uating the difference of the distributions {x̄i}ni=1 and
{xz,i}ni=1 directly via an distribution divergence criterion
fMBN-SD(·). After obtaining {wz}Zz=1, it concatenates the
sparse output of the B (B � Z) MBN base models whose
weights are the B largest ones among {wz}Zz=1 into a new
sparse representation of data {¯̄xi}ni=1.

Note that there are a vast number of ensemble selec-
tion algorithms manipulating on {wz}Zz=1. Because this
is not the focus of this paper, here we prefer the simple
yet effective one.

3.2 MBN-SO: Ensemble selection with optimization-
like criteria

When the number of classes c is given, we use
optimization-like criteria to generate the weights of the
base models. We follow the comparison conclusion on
the optimization-like criteria [32], and pick the 4 best
criteria, which are the silhouette width criterion (SWC),
point-biserial (PB), PBM, and variance ratio criterion
(VRC), respectively. Because they are defined in Euclid-
ian spaces, we take the low-dimensional representations
{yz,i}Zz=1 of the MBN base models for evaluation. We
omit the subscript z for simplicity in this subsection. The
criteria are described as follows:

3.2.1 Silhouette width criterion

SWC calculates the ratio of the geometric compactness
and separation of clusters. Suppose the i-th data point
yi belongs to a cluster p ∈ {1, . . . , c}. Let the average
distance of yi to all other data points in cluster p be
denoted by ai. Let the average distance of yi to all data
points in another cluster q (q 6= p) be denoted as gq,i. Let
bi be the minimum gq,i over all q = 1, . . . , c, q 6= p. Then,
the silhouette of yi is defined as:

si =
bi − ai

max{ai, bi}
(1)

In case that cluster p consists of only yi, then si = 0.
The SWC score is the average of si over all data points:

wSWC =
1

n

n∑
i=1

si (2)

The higher the SWC score is, the better the discriminant
ability of a representation is.

3.2.2 Point-biserial

PB calculates correlation between a distance matrix and
a binary matrix that encodes the pairwise memberships
of data points to clusters. It first calculates the average
within-class distance dw and the average between-class

Algorithm 1 Unsupervised ensemble selection for MBN-
E.
Input: Sparse output of MBN-E {x̄i}ni=1 and its low-

dimensional representation {ȳi}ni=1;
Sparse outputs of the MBN base models
{{xz,i}ni=1}Zz=1 and their low-dimensional
representations {{yz,i}ni=1}Zz=1;
Number of selected base models B
Number of classes c (optional).

Output: {¯̄xi}ni=1, {¯̄yi}ni=1.
1: if c is given then
2: {li}ni=1 ← clustering({ȳi}ni=1, c)
3: for z = 1 to Z do
4: wz ← fMBN-SO({li}ni=1, {yz,i}ni=1)

(or wz ← fMBN-SO({li}ni=1, {xz,i}ni=1))
5: end for
6: else
7: for z = 1 to Z do
8: wz ← fMBN-SD({x̄i}ni=1, {xz,i}ni=1)

(or wz ← fMBN-SD({ȳi}ni=1, {yz,i}ni=1))
9: end for

10: end if
11: Pick B sparse representations that correspond to the

B largest weights, supposed to be {{xb,i}ni=1}Bb=1

without loss of generality
12: ¯̄xi ← [xT

1,i, . . . ,x
T
B,i]

T

13: ¯̄yi ← PCA(x̄i)

distance db, which can be formulated as:

dw=
1

n

n∑
i=1

ai (3)

db=
1

n

n∑
i=1

∑
{q|q=1,...,c,q 6=p}

nq
n− np

gq,i (4)

where np is the number of data points of cluster p where
yi belongs to, and nq is the number of data points in
cluster q where q = 1, . . . , c and q 6= p. Then, it is defined
as:

wPB =
(db − dw)

√
wdbd/t2

sd
(5)

where sd is the standard deviation of the pairwise dis-
tances of all data points, wd =

∑c
p=1 np(np − 1)/2 is the

number of within-class distances, bd =
∑c

p=1 np(n−np)/2
is the number of between-class distances, and t = n(n−
1)/2 is the total number of pairwise distances. The higher
the PB score is, the better the discriminant ability of a
representation is.

3.2.3 PBM

PBM is defined over between-class distances and within-
class distances:

wPBM =

(
1

k

E1

EK
DK

)2

(6)



6

where E1 denotes the average distance between the data
points and the grand mean of the data, EK denotes
the average within-class distances, and DK denotes the
maximum distance between cluster centroids:

E1=
1

n

n∑
i=1

‖yi − µ̄‖ (7)

EK=
1

n

c∑
p=1

∑
{yi|li=p}

‖yi − µp‖ (8)

DK= max
p,q=1,...,c

‖µp − µq‖ (9)

where µ̄ = 1
n

∑n
i=1 yi is the grand mean of the data,

µp = 1
np

∑
{yi|li=p} yi is the center of the p-th cluster

centroid. A large PBM score implies a good separation
ability of the representation.

3.2.4 Variance ratio criterion

VRC calculates the ratio of the between-class variance
over within-class variance:

wVRC =
1

h

n− c
c− 1

tr(B)

tr(W)
(10)

where tr(·) denotes the trace operator, h is the dimension
of the feature, and B and W are the between-class
variance and within-class variance respectively, defined
as:

W=

c∑
p=1

Wp (11)

Wp=
∑

{yi|li=p}

(yi − µp)(yi − µp)T (12)

B=

c∑
p=1

np(µp − µ̄)(µp − µ̄)T (13)

The normalization terms 1/h and (n − c)/(c − 1) make
the VRC score irrelevant to h and c. A large VRC score
implies a good separation ability of the representation.

3.3 MBN-SD: Ensemble selection with distribution
divergence criteria

When the number of classes c is unknown, we prefer
MMD, which is a common distribution divergence cri-
terion in unsupervised domain adaptation, for evaluat-
ing the distribution divergence between the outputs of
MBN-E and its MBN base models.

We have also studied many probability distribution
divergence criteria in literature, including the Kullback-
Leibler (KL) divergence, total variance distance, L2-norm
distance, Hellinger distance, Wasserstein distance, Bhat-
tacharyya distance, etc. Unfortunately, they do not work
for MBN-SD.

TABLE 1
Description of data sets. The term “optimal δ” denotes

where the optimal performance of MBN appears by
searching δ from a range of (0, 1).

Name # samples # dimensions # classes Attribute Optimal δ

Dermatology 366 34 6 Biomedical (0, 0.2)

New-Thyroid 255 5 3 Biomedical (0, 0.35)

UMIST 575 1024 20 Faces (0.75, 0.85)

Extended-Yale B 2414 32256 38 Faces (0.6, 0.75)

COIL20 1440 4096 20 Images (0.8, 0.9)

COIL100 7200 1024 100 Images (0.8, 0.9)

20-Newsgroups 18846 26214 20 Text (0.4, 0.5)

MNIST 70000 768 10 Images (0.35, 0.75)

3.3.1 Maximum mean discrepancy
MMD is originally defined in kernel-induced feature
spaces, where multiple kernels are usually adopted to
reach an accurate estimation. Here we simply use the
linear kernel based MMD to evaluate the distribution
divergence between {x̄i}ni=1 and {xz,i}ni=1. Since x̄i =
[xT

1,i, . . . ,x
T
Z,i]

T , here we define MMD as follows:

vMMD =
1

Z

1

n(n− 1)

∑
i 6=j

x̄T
i x̄j

+
1

n(n− 1)

∑
i 6=j

xT
z,ixz,j −

2

Z

1

n2

Z∑
u=1

∑
i,j

xT
u,ixz,j

(14)

Because the first term of MMD is the same for all MBN
base models, we only calculate the last two terms in
practice. The smaller the MMD score is, the more similar
the distributions {x̄i}ni=1 and {xz,i}ni=1 are. To make
MMD satisfy Algorithm 1, we transform vMMD by:

wMMD = 1− vMMD − vmin

vmax − vmin

(15)

where vmax and vmin are the largest and smallest values
of all MMD scores respectively.

4 EXPERIMENTS

In this section, we first compare the proposed meth-
ods with the state-of-the-art methods on a number of
benchmark datasets, then demonstrate the effectiveness
of MBN-E by comparing it with 12 representative meta-
clustering functions that use the same MBN base models,
and finally demonstrate the effectiveness of MBN-SO
and MBN-SD by comparing them with 5 representative
cluster ensemble selection functions. The effect of the
number of the selected base models on performance will
be studied as well.

4.1 Datasets

We selected 8 benchmark datasets as summarized in Ta-
ble 1. For Extended-Yale B, because the luminance of the
images dominates the similarity measurement instead
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of the faces themselves, we preprocessed Extended-
Yale B by the dense scale invariant feature transform
as in [43]. For 20-Newsgroups, we extracted the term
frequency-inverse document frequency text feature. PCA
preprocessing was applied to the image datasets, which
reduced the original features to 100 dimension. Cosine
similarity measurement was used to measure the sim-
ilarity between the documents of 20-Newsgroups. All
other datasets used Euclidean distance as the similarity
measurement. Clustering accuracy (ACC) was used as
the evaluation metric.

From the table, we see that the operating range of
the optimal δ of MBN appears at dramatically differ-
ent positions, which are sufficient to demonstrate how
the proposed methods address the network structure
selection problem, as well as how the proposed methods
behave when comparing with the state-of-the-art refer-
enced methods.

4.2 Parameter settings

The parameter settings of MBN and the proposed meth-
ods are summarized as follows:
• MBN [1]: We used its default setting as in [1].

Specifically, the number of k-centroids clusterings
per layer was set to 400. The parameter k at the
bottom layer was set to n/2 where n is the number
of input data points. The parameter k at the top
layer was set to 1.5c. The parameter δ was set to
0.5. If PCA preprocessing was used, then random
feature selection step was enabled. The ratio of the
randomly selected features a was set to 0.5. The
above method is denoted as “MBN (default)”.

• MBN-E: MBN-E used 40 MBN base models. The
base models of MBN-E used the same parameter
setting as MBN except that δ was randomly selected
from [0.05, 0.95].

• MBN-SO: The number of selected base models
B was set to 3. The MBO-SO with the four
optimization-like criteria are denoted as “MBN-SO
(SWC)”, “MBN-SO (PB)”, “MBN-SO (PBM)”, and
“MBN-SO (VRC)”, respectively.

• MBN-SD: The parameter B was set to 10.
Agglomerative hierarchical clustering (AHC) was used
for partitioning data into clusters. Although the MMD
criterion in MBN-SD is designed to handle the case
where the number of classes is unknown, we still give
AHC the number of classes during the clustering stage,
for a comparable study on how the distribution diver-
gence criterion differs from the optimization-like criteria
in MBN-SO. All reported results are average ones over
5 independent runs.

4.3 General comparison with the state-of-the-art
methods

The comparison strategy is described as follows. For the
image datasets, we copied the ranking lists of the image

clustering methods from https://paperswithcode.com/,
which reflects the state-of-the-art performance on the
datasets. Note that here we omit self-supervised deep
learning based methods, given that they actually have
strong handcrafted supervised signals to train the net-
works, where the signals are efficiently obtained from
the intrinsic structure of data instead of heavy man-
ual labeling. Note also that many of the referenced
image clustering methods have adopted prior knowl-
edge (e.g. convolutional structures for image data, or
multi-modal information [47]), data augmentation (e.g.
DDC-DA [59]), hyperparameter tuning with the ground-
truth labels (e.g. DSSC [51]), etc., that our methods do
not use. For the small-scale Dermatology and New-
Thyroid datasets that deep learning methods usually
do not handle with, we compared with 12 representa-
tive clustering ensemble methods, which are CSPA [5],
HGPA [5], MCLA [5], DREC [44], LinkClueE [48], [66],
ARA1 [67], ARA2 [67], Borda [45], Cvote [13], Vote [52],
ECPCS_MC [50], and ECPCS_HC [50], respectively. All
these clustering ensemble methods are meta-clustering
functions, which can be used jointly with any base
clusterings, such as k-means or spectral clustering. Here
we took 40 k-means clusterings as the base clusterings
for each meta-clustering function. Like many clustering
ensemble methods, e.g. [7], we selected the number
of clusters of each k-means base clustering randomly
from a range of [2c, 10c]. For the 20-Newsgroups text
corpus, we compared with 9 text clustering methods:
four probabilistic models, including PLSI [68], LDA [60],
LapPLSI [64], and LTM [55]; four nonnegative matrix
factorization methods, including SPA [69], SNPA [70],
XRAY [71], AnchorFree [63]; as well as one deep learning
based method, i.e. DFPA [58]. Besides, k-means cluster-
ing are also provided as a baseline. Because k-means
clustering suffers from bad local minima, we ran k-
means clustering on each dataset for 100 times, and pick
one that has the minimum objective value. All reported
results are average ones over 5 independent runs.

Table 2 lists the results of the aforementioned compar-
ison methods and the proposed methods. Because it is
too lengthy to list all results, here we only list the results
of the top 5 referenced methods; for the proposed MBN-
SO variants, we only provide “MBN-SO (VRC)” as a
representative. We also list the performance of the MBN
with the optimal δ, denoted as MBN†. Note that because
it is unlikely to select the optimal δ manually in real-
world applications, MBN† only provides an upperbound
of the proposed methods.

From the table, we see that the proposed methods
outperform “MBN (default)” in general, as what we
have targeted to in this paper. Specifically, MBN-E out-
performs “MBN (default)” on UMIST, Extended Yale B,
COIL20, and COIL100 significantly where the optimal
operating range of δ of MBN is far from the default
value 0.5. It is also comparable to “MBN (default)”
on Dermatology and New-Thyroid. As for MNIST and
20-Newsgroups, even if the default δ happens to be
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TABLE 2
ACC comparison between the proposed methods and the state-of-the-art referenced methods. The results of

the referenced methods on the datasets marked with “∗” are copied from their original publications or the “papers
with code” website.

Dermatology New-Thyroid UMIST* Extended-Yale B*

kmeans 0.261 0.860 0.408 0.311
Rank1 0.313 (DREC [44]) 0.863 (Borda [45]) 0.769 (DASC [46]) 0.992 (DMSC [47])
Rank2 0.307 (LinkClueE [48]) 0.859 (LinkClueE [48]) 0.750 (DSC-Net-L2 [49]) 0.973 (DSC-Net-L2 [49])
Rank3 0.306 (HGPA [5]) 0.853 (ECPCS_MC [50]) 0.732 (J-DSSC [51])) 0.924 (J-DSSC [51]))
Rank4 0.299 (CSPA [5]) 0.851 (MCLA [5]) 0.728 (DSC-Net-L1 [49]) 0.917 (A-DSSC [51])
Rank5 0.297 (ECPCS_HC [50]) 0.845 (Vote [52]) 0.725 (A-DSSC [51])) 0.776 (SSC-OMP [53])
MBN (default) 0.855 0.881 0.544 0.934
MBN-E 0.866 0.860 0.670 0.973
MBN-SO (VRC) 0.714 0.771 0.767 0.941
MBN-SD 0.947 0.941 0.547 0.909

MBN† 0.971 0.964 0.770 0.969

COIL20* COIL100* 20-Newsgroups MNIST*

kmeans 0.679 0.511 0.416 0.527
Rank1 1.000 (JULE [54]) 0.911 (JULE [54]) 0.600 (LTM [55]) 0.979 (N2D [56])
Rank2 0.858 (AGDL [57]) 0.824 (A-DSSC [51]) 0.523 (DFPA [58]) 0.969 (DDC-DA [59])
Rank3 0.858 (GDL [57]) 0.796 (J-DSSC [51])) 0.490 (LDA [60]) 0.965 (PSSC [61])
Rank4 0.793 (DBC [62]) 0.775 (DBC [62]) 0.447 (AnchorFree [63]) 0.964 (GDL [57])
Rank5 No 0.731 (GDL [57]) 0.435 (LapPLSI [64]) 0.939 (SR-K-means [65])
MBN (default) 0.795 0.683 0.623 0.964
MBN-E 0.929 0.832 0.584 0.964
MBN-SO (VRC) 0.995 0.908 0.623 0.964
MBN-SD 0.973 0.803 0.611 0.963

MBN† 0.994 0.901 0.623 0.965

in the optimal operating range, MBN-E can still be
competitive to “MBN (default)” if the range is wide
enough, such as that on MNIST. MBN-SO further im-
proves the performance of MBN-E, and outperforms
“MBN (default)” significantly on most datasets, except
the small-scale Dermatology and New-Thyroid. Finally,
MBN-SD outperforms “MBN (default)” on Dermatology
and New-Thyroid, COIL20, and COIL100 significantly,
and is comparable to the latter in the remaining four
datasets.

The proposed MBN-SO also approaches to the top
performance of the referenced methods on most datasets.
Although it behaves worse than DMSC on Extended Yale
B, it still ranks among the top 5 comparison methods.
Here we need to emphasize one merit of MBN-SO: it
is implemented in a simple mathematical form and be-
haves robustly across datasets without carefully selected
architectures or hyperparameters, which fascinates its
practical use. Note that it is interesting to observe that
the clustering ensemble methods [5], [13], [44], [45], [48],
[50], [52], [66], [67] do not show significant performance
improvement over k-means. Note also that although
deep learning has dominated image clustering, it is
not very prevalent in text clustering. From the table
as well as the summary on text clustering in https:

//paperswithcode.com/, we see that the deep model
DFPA [58] is inferior to the conventional probabilistic
method LTM [55].

Focusing on our three algorithms, we see that MBN-
SO is at least comparable to MBN-E and MBN-SD on
most of the challenging data, except the two small-scale
data where a shallow network of MBN is able to produce
a highly accurate result. Comparing MBN-E and MBN-
SD, we see that MBN-SD outperforms MBN-E on the
two small-scale data, COIL20 and 20-Newsgroups, and
is inferior to the latter on UMIST, Extended Yale B,
and COIL100. Although the result of MBN-SD is not
very impressive, it introduces a new class of ensemble
selection criteria—distribution divergence criteria— into
clustering ensemble, which may motivate new criteria
beyond MMD for further improving the performance of
MBN-SD.

4.4 Comparison with meta-clustering functions

MBN-E concatenates the learned representations from
the MBN base models as a new meta-representation
for clustering, while a conventional clustering ensem-
ble method usually uses a meta-clustering function
to fuse the predictions produced from a number of
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TABLE 3
ACC comparison between MBN-E and the meta-clustering functions that use the same MBN base models as

MBN-E. The abbreviations “Derm.”, “NT”, “Yale B”, and “20-NG” are short for Dermatology, New-Thyroid,
Extended-Yale B, and 20-Newsgroups, respectively. The term “N/A” means that a single run cannot be finished in 24

hours.

Derm. NT UMIST Yale B COIL20 COIL100 20-NG MNIST Rank

CSPA [5] 0.721 0.491 0.592 0.966 0.816 0.677 0.581 0.106 8.125
HGPA [5] 0.306 0.698 0.083 0.027 0.050 0.010 0.053 0.113 12.000
MCLA [5] 0.791 0.949 0.602 0.961 0.830 0.726 0.586 0.965 5.125
DREC [44] 0.669 0.777 0.500 0.684 0.619 0.545 0.401 N/A 10.875
LinkClueE [66] 0.891 0.948 0.651 0.917 0.894 0.796 N/A N/A 5.875
ARA1 [67] 0.866 0.897 0.587 0.921 0.837 0.586 0.578 N/A 7.750
ARA2 [67] 0.848 0.937 0.431 0.834 0.757 0.399 0.494 N/A 9.875
Borda [45] 0.922 0.940 0.539 0.888 0.656 0.536 0.516 0.965 7.375
Cvote [13] 0.685 0.683 0.631 0.965 0.981 0.831 0.204 0.965 5.750
Vote [52] 0.867 0.880 0.649 0.968 0.930 0.825 0.618 0.965 3.250
ECPCS_MC [50] 0.935 0.940 0.598 0.947 0.884 0.784 0.633 0.965 4.125
ECPCS_HC [50] 0.852 0.943 0.597 0.816 0.857 0.765 0.431 0.694 7.000
MBN-E 0.866 0.860 0.670 0.973 0.929 0.832 0.584 0.964 3.875

MBN† 0.971 0.964 0.770 0.969 0.994 0.901 0.623 0.965

base clusterings. To evaluate whether this simple meta-
representation exploits the potential of MBN-E fully, we
compared it with the 12 meta-clustering functions de-
scribed in Section 4.3. Unlike Section 4.3, the predictions
of data for the meta-clustering functions here is obtained
by applying agglomerative hierarchical clustering to the
learned representations of the MBN base models.

Table 3 lists the comparison results of the MBN-E and
12 meta-clusterings that use the same MBN base models.
From the table, we find that the proposed MBN-E ranks
the second place, which is slightly worse than Vote [52].
If we look at the details, we find that MBN-E performs
only 0.1% worse than Vote on Dermatology, COIL20,
and MNIST, which accounts for the inferiority of MBN-E
over Vote. We further observe that MBN-E wins the best
performance on three datasets, which has the same high-
est number of championships as ECPCS_MC [50]. Com-
paring Table 3 with Table 2 on Dermatology and New-
Thyroid, we find that it is the selection of a good base
model rather than a carefully designed meta-clustering
that determines the performance. To summarize, consid-
ering the “Occam’s Razor” as the principle for designing
algorithms, the simple MBN-E is recommended as the
best choice of fusing multiple MBN base models.

If we further compare the results in Table 3 with
MBN†, we find that none of the 13 comparison methods
achieve comparable performance with MBN†—one of
the base models that has been applied to all of the
comparison methods. This phenomenon suggests that,
if we could find MBN† from the candidate base models,
then the performance could at least outperform the
comparison methods, which motivates the invention of
MBN-SO and MBN-SD.

4.5 Comparison with clustering ensemble selection
functions

This section compares MBN-SO with five representative
clustering ensemble selection functions, given the same
MBN base models. They can be categorized into two
classes. The first class conducts the ensemble selection
according to the clustering results of the base models
only. It consists of the sum of the normalized mutual
information (SNMI) [21], joint criterion (JC) [21], and
cluster and select (CAS) [21]. The selection criteria of
the methods consider both the accuracy and diversity
of the clustering results. The second class [33] picks the
base models according to an optimization-like criterion,
which is closely related to the proposed MBN-SO. Here
we compare with the following representative ones:
• Single index selection (SIS) [33]: Contrary to MBN-

SO which uses the predicted label from MBN-E
as a reference to evaluate the discriminability of
the output representation of each base model, SIS
uses the predicted label from each base clustering
as a reference to evaluate the discriminability of
the original data representation, and uses a meta-
clustering function to fuse the predicted labels from
the top B base clusterings into the final prediction
result. Because the original data representation is
very noisy, we replaced it with the output repre-
sentation of MBN-E, which improves SIS to a fair
experimental setting with MBN-SO. Here we apply
the criteria of SWC, PB, PBW, and VRC to SIS for a
point-to-point comparison with MBN-SO. Following
[33], we used CSPA as the meta-clustering function
of SIS.

• Sum of ranks (SR) [33] It runs SIS with different
optimization-like criteria, each of which produces a
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TABLE 4
ACC comparison between MBN-SO and the clustering ensemble selection functions that use the same

candidate MBN base models as MBN-SO.

Derm. NT UMIST Yale B COIL20 COIL100 20-NG MNIST Rank

SNMI [21] 0.708 0.485 0.555 0.823 0.726 0.608 0.534 0.106 15.375
JC [21] 0.746 0.537 0.546 0.947 0.873 0.800 0.556 0.106 11.250
CAS [21] 0.734 0.479 0.560 0.940 0.698 0.617 0.462 0.106 14.250
SIS (SWC) [33] 0.686 0.528 0.559 0.929 0.880 0.776 0.544 0.106 13.000
SIS (PB) [33] 0.682 0.494 0.572 0.930 0.898 0.771 0.544 0.106 12.875
SIS (PBM) [33] 0.658 0.486 0.587 0.910 0.892 0.808 0.483 0.106 13.250
SIS (VRC) [33] 0.643 0.522 0.634 0.909 0.963 0.809 0.545 0.106 11.125
SR [33] 0.645 0.509 0.567 0.924 0.889 0.790 0.532 0.106 13.625

MBN-SO (SWC) 0.854 0.859 0.717 0.968 0.957 0.857 0.602 0.964 4.500
MBN-SO (PB) 0.851 0.880 0.699 0.960 0.956 0.884 0.591 0.964 5.250
MBN-SO (PBM) 0.852 0.630 0.718 0.961 0.990 0.866 0.602 0.962 4.750
MBN-SO (VRC) 0.714 0.771 0.767 0.941 0.995 0.908 0.623 0.964 4.750
MBN-SD 0.849 0.940 0.519 0.891 0.958 0.760 0.607 0.841 9.750

rSNMI 0.730 0.565 0.552 0.949 0.873 0.796 0.556 0.106 11.500
rMBN-SO (SWC) 0.867 0.885 0.625 0.966 0.920 0.823 0.611 0.965 5.125
rMBN-SO (PB) 0.806 0.938 0.656 0.934 0.965 0.852 0.617 0.965 4.625
rMBN-SO (PBM) 0.905 0.937 0.626 0.954 0.953 0.821 0.605 0.964 5.625
rMBN-SO (VRC) 0.855 0.937 0.654 0.945 0.952 0.830 0.611 0.962 5.875

ranking of the base models. Then, it averages the
rankings for the final ranking of the base models.
At last, it uses a meta-clustering function to fuse
the predicted labels from the top B base clusterings
into the final prediction result. Following [33], we
used CSPA as the meta-clustering function of SR.

The top 2 parts of Table 4 lists the comparison result
between MBN-SO and the referenced methods [21], [33].
From the ranking list of the table, we see that the
variants of MBN-SO behave similarly with each other,
and outperform the referenced methods apparently. The
variants of SIS perform similarly as well, which outper-
form SNMI and CAS, and are inferior to JC. If we look
at the details, we find that “MBN-SO (VRC)” achieves
the top performance in five out of the eight datasets. As
for the referenced methods, most of them do not behave
fundamentally different. Particularly, they have failed
to achieve reasonable results on MNIST, comparing to
random guess.

Figs. 3 and 4 show the weights of the MBN base
models of all comparison methods in a single run.
After comparing the curves of the weights with the
clustering accuracy of the MBN base models, we see
that although the weights of MBN-SO are more accurate
than the weights of the SIS variants, the performance gap
between SIS and MBN-SO in Table 4 seem unnecessarily
to be so large.

To investigate why the proposed MBN-SO has such
a large advantage over the referenced methods, we
first removed the ensemble selection criterion based on
diversity in SNMI by simply picking the B base models
that have the largest weights. The new method is named

revised SNMI (rSNMI). From the result in Table 4, we see
that rSNMI significantly outperforms SNMI and CAS,
and performs as good as JC. That is to say, a simple
ensemble selection strategy like MBN-SO is enough,
while further exploring the diversity between the base
models via complicated algorithms is unnecessary.

Then, we replaced the meta-clustering function of SIS
by simply concatenating the output representations of
the selected base models. Because the only difference
between the revised algorithm and MBN-SO is that the
revised algorithm uses the data representation produced
by MBN-E as a reference to evaluate the clustering
quality of each MBN base model, while MBN-SO uses
the clustering result of MBN-E as a reference to evalu-
ate the data representation learned by each MBN base
model, we name the revised algorithm as revised MBN-
SO (rMBN-SO). The bottom 2 parts of Table 4 lists
the comparison result between MBN-SO and rMBN-SO.
From the apple-to-apple comparison, we see that the
ensemble selection strategy of MBN-SO is better than
rMBN-SO. By comparing rMBN-SO and SIS, we see that
the meta-clustering function is responsible for the large
performance gap between MBN-SO and SIS.

4.6 Effect of the number of selected base models on
performance
This subsection studies whether the proposed ensemble
selection methods are sensitive to the number of the
selected base models, i.e. hyperparameter B. For MBN-
SO and MBN-SD, we set B to {1, 2, 3, 5, 10} respectively.
From the result in Fig. 5, we see that the MBN-SO
variants are not sensitive to the number of the base
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Fig. 3. Weights of the MBN base models of MBN-SO and MBN-SD.
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Fig. 4. Weights of the MBN base models of the SNMI and SIS functions.
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Fig. 5. Effect of the number of the base models of MBN-SO and MBN-SD on performance.

models on most datasets except Dermatology and New-
Thyroid. Therefore, we can set the hyperparameter B of
MBN-SO to a small number for saving the computing
resource. On the other side, the performance of MBN-
SD is generally improved when B is increased, which
suggests that we should set B to a large number in order
to achieve the optimal performance of MBN-SD.

5 CONCLUSIONS

In this paper, we have solved the network structure se-
lection problem of MBN by ensemble learning and selec-
tion. Specifically, we have first proposed MBN-E, which
concatenates the sparse output of a number of MBN
base models with different δ to a meta-representation.

Then, we take the meta-representation as a guidance to
select the optimal base models. We have introduced two
unsupervised ensemble selection methods. The first one,
named MBN-SO, uses the clustering result of MBN-E to
select the base models whose output distributions have
the highest discriminability in terms of the optimization-
like criteria. The second method, named MBN-SD, uses
the meta-representation of MBN-E directly for selecting
the optimal base models in terms of distribution di-
vergence criteria. Experimental comparison results on
a wide variety of benchmark datasets show that the
proposed methods significantly outperform the MBN
model with the default network structure; MBN-SO is
able to detect the optimal MBN base model, and reaches
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comparable performance to the state-of-the-art cluster-
ing methods; although MBN-SD is less effective than
MBN-SO, it is the first work of unsupervised ensemble
selection based on the distribution divergence criteria.
Further studies also show that the proposed methods
reach top performance via only a simple mathematical
formulation, comparing to a number of meta-clustering
functions and clustering ensemble selection functions.
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