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Linear Regression for Speaker Verification
Xiao-Lei Zhang

Abstract—This paper presents a linear regression based back-
end for speaker verification. Linear regression is a simple linear
model that minimizes the mean squared estimation error between
the target and its estimate with a closed form solution, where
the target is defined as the ground-truth indicator vectors of
utterances. We use the linear regression model to learn speaker
models from a front-end, and verify the similarity of two speaker
models by a cosine similarity scoring classifier. To evaluate the
effectiveness of the linear regression model, we construct three
speaker verification systems that use the Gaussian mixture model
and identity-vector (GMM/i-vector) front-end, deep neural net-
work and i-vector (DNN/i-vector) front-end, and deep vector (d-
vector) front-end as their front-ends, respectively. Our empirical
comparison results on the NIST speaker recognition evaluation
data sets show that the proposed method outperforms within-
class covariance normalization, linear discriminant analysis, and
probabilistic linear discriminant analysis, given any of the three
front-ends.

Index Terms—Linear regression, speaker verification.

I. INTRODUCTION

SPEAKER verification has long been a fundamental task in
speech processing. A speaker verification system verifies

an identity claim made by a test speaker, and decides to
accept or reject the claim. It can be either text-dependent
or text-independent based on its input speech materials: the
former constrains a speaker to pronounce a prescribed text,
while the latter does not constrain the speech contents. This
paper studies text-independent speaker verification. A text-
indepdent speaker verification system generally contains two
components. The first component is a front-end which extracts
a feature vector from a speaker utterance by some density
estimator. The second component is a back-end which builds
speaker models and measures the similarity of two speaker
models by a classifier.

An early speaker verification front-end is feature averaging
which learns a feature vector from a speaker utterance by
averaging the frame-level acoustic features [1]. The method
requires long speech utterances to reach stable speech statis-
tics. Another class of front-ends is statistical models, which
estimates the density of speech frames by statistical models.
Early approaches of this kind build a model, e.g. vector
quantization [2] or Gaussian mixture model (GMM) [3], [4],
for each speaker. These approaches are inefficient when the
number of speakers is large. To alleviate this problem, in [5],
Reynolds et al. proposed a GMM-based universal background
model (GMM-UBM) which builds a single GMM from the
pool of all training speakers. GMM-UBM is a fundamental
method of speaker verification in recent years. To deal with
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speaker and channel variability, many approaches were pro-
posed along with GMM-UBM, where factor analysis [6] is
among the effective ones. It first extracts high-dimensional
supervectors of utterances which are their first- and second-
order statistics produced from GMM-UBM, and then reduces
the supervectors to low-dimensional identity vectors (i-vectors)
by factor analysis. The above combination of GMM-UBM and
i-vector is the GMM/i-vector front-end.

Recently, deep neural network (DNN) based front-ends have
received much attention [7]–[9]. In [7], Sarkar et al. used
DNN to extract frame-level bottleneck features that were then
used as the input of GMM-UBM. In [9], Lei et al. took a
DNN trained for a different task, e.g. speech recognition, to
generate posterior probability of speech frames, which is a
supervised alternative to GMM-UBM, and then used the factor
analysis [6] to extract i-vectors from the DNN based UBM.
The method is denoted as the DNN/i-vector front-end. To
demonstrate the advantages of the DNN/i-vector front-end, its
DNN acoustic model needs to be trained with additional data
[10]. In [8], Variani et al. trained a DNN classifier to map
frame-level features in a given context to the corresponding
speaker identity target, and extracted a feature vector, referred
as a deep vector or “d-vector”, from a speaker utterance by
averaging the activations derived from the last DNN hidden
layer. The method is known as the d-vector front-end.

After feature extraction by a front-end, a speaker verification
back-end builds speaker models for classification. It generally
contains two stages—a development stage and a test stage. The
development stage builds a speaker space from development
data, where each speaker acts like a coordinate axis of the
space. The test stage gets the enrollment and test speaker
models of a trial from the speaker space and then evaluates
the similarity of the two models by a classifier.

We summarize some back-ends as follows. In [5], Reynolds
et al. first built a speaker space by adapting the GMM-
UBM to many speaker-dependent GMMs by the maximum a
posteriori estimation in the development stage and then verifies
the identity of a test speaker by a likelihood ratio test. Later
on, in [11], Campbell et al. trained a support vector machine
classifier to distinguish true speakers from imposter speakers
with nuisance attribute projection [12] for compensating ses-
sion variability. In [6], Dehak et al. proposed to learn a speaker
space by within class covariance normalization (WCCN) or
linear discriminant analysis (LDA) and then applied cosine
similarity scoring as the classifier. In [13], Kenny proposed
to extract speaker models from an i-vector based front-end or
LDA and then used probabilistic LDA (PLDA) as the classifier.
Besides, in [14], Snyder et al. proposed an end-to-end training
method to train a DNN based front-end and a PLDA-like back-
end jointly.

In this paper, we propose a linear regression (LR) based
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back-end. LR is a traditional statistical regression model that
minimizes the mean squared error between the target and its
estimate with a closed-form solution. In the development stage
of the back-end, we apply LR to learn a speaker space where
the target of the LR model is the ground-truth indicator vectors
of the speaker utterances. In the enrollment and test stages, we
first extract the enrollment and test speaker models of a trial
from the speaker space, and then evaluate the similarity of the
two models by cosine similarity scoring. The overall back-
end is denoted as the LR+cosine back-end. To evaluate its
effectiveness, we propose three speaker verification systems
which combine the LR+cosine back-end with the GMM/i-
vector, DNN/i-vector, and d-vector front-ends, respectively.

We have conducted an extensive experiment on the NIST
2006 speaker recognition evaluation (SRE) and NIST 2008
SRE data sets. We have compared the LR+cosine back-end
with the cosine similarity scoring (cosine), WCCN with the co-
sine similarity scoring (WCCN+cosine), LDA with the cosine
similarity scoring (LDA+cosine), and LDA with the PLDA
scoring (LDA+PLDA) back-ends. Our experimental results
show that the proposed method outperforms the comparison
methods, and the experimental conclusion is consistent in
different lengths of enrollment speech.

This paper is organized as follows. In Section II, we
introduce the LR-based back-end and three LR-based speaker
verification systems. In Section III, we present the experi-
ments. In Section IV, we summarize the paper.

II. LINEAR REGRESSION FOR SPEAKER VERIFICATION

In this section, we first present the LR-based back-end in
Section II-A, and then present three front-ends that will be
combined respectively with the LR-based back-end in Section
II-B.

The procedure of any of the three speaker verification
systems is as follows. The front-end extracts a feature vector
x from an utterance {zk}sk=1 where s denotes the number
of frames of the utterance. Then, the LR-based back-end first
gets the speaker model m from x by the LR model and then
verifies the identity of m by the cosine similarity scoring.

A. Linear regression based back-end

Suppose a labeled development corpus after processed by
a front-end is given by {{(xi,j , yi,j)}Ui

j=1}
S
i=1 where S is the

number of speakers, Ui is the number of utterances of the i-
th speaker, xi,j is the feature vector of a speaker utterance
produced from a front-end, and yi,j is the ground-truth label
of the utterance representing the identification of the speaker,
1 ≤ yi,j ≤ S. Suppose yi,j = k, then we change yi,j to an
S-dimensional indicator vector yi,j which is a binary code
with the k-th dimension set to 1 and the other dimensions
set to 0. As a result, we can rewrite the labeled corpus as
{{(xi,j ,yi,j)}Ui

j=1}
S
i=1. We fit {{(xi,j ,yi,j)}Ui

j=1}
S
i=1 to a LR

model:

yi,j = ATxi,j + εi,j (1)

where A is the LR model and εi,j is the estimation error.
Minimizing the squared estimation error ‖ε‖22 derives the

following closed-form solution:

A = (XXT )−1XYT (2)

where

X = [x1,1, . . . ,x1,U1 , . . . ,xi,j , . . . ,xS,1, . . . ,xS,US
],

Y = [y1,1, . . . ,y1,U1 , . . . ,yi,j , . . . ,yS,1, . . . ,yS,US
].

In the enrollment and test stages, we apply the LR model
to extract a new feature ŷ from x by the following equation:

ŷ = ATx. (3)

The speaker model m is given by:

m =
1

V

V∑
v=1

ŷv (4)

where V is the number of utterances of the speaker.
Finally, we employ a classifier to identify the similarity of

two speaker models menroll and mtest. Despite that many clas-
sifiers could be applied, we use the simple and effective cosine
similarity scoring as an example based on the experimental
conclusion of reference [6]. The cosine similarity of the two
models is calculated by:

score(menroll,mtest) =

〈
menroll,mtest〉
‖menroll‖ ‖mtest‖

R θ (5)

which is compared with a decision threshold θ. If the score
is larger than θ, then the two models are judged as from the
same speaker; otherwise, they are from different speakers.

B. Front-ends
The three speaker verification systems based on the LR-

based back-end use the GMM/i-vector [5], [6], DNN/i-vector
[9], and d-vector [8] front-ends, respectively.

1) GMM/i-vector front-end: The GMM/i-vector front-end
contains a GMM-UBM Ω [5], [15] which is a speaker- and
channel-independent GMM trained from the pool of all speech
frames of the development data, and a total variability matrix
T [6] that encompasses both speaker- and channel-variability.
Suppose Ω contains C Gaussian mixture components, and
suppose we have an utterance of L frames {zl}Ll=1 where zl
is a F -dimensional acoustic feature. The zero-th order and
centralized first-order Baum-Welch statistics of the utterance
extracted from the c-th component of Ω is:

nc =

L∑
l=1

P(c|zl,Ω), (6)

fc =

L∑
l=1

P(c|zl,Ω)(zl − µc) (7)

where µc is the mean of the c-th component of Ω. If we define
N as a CF×CF -dimensional diagonal matrix whose diagonal
blocks are ncI, f̄ = [fT1 , . . . , fC ]T as a supervector, and Σ as a
CF × CF -dimensional diagonal covariance matrix estimated
during factor analysis training [6], then we obtain the i-vector
x by:

x = (I + TTΣ−1NT)−1TTΣ−1f̄ (8)

where T and Σ is invariant across utterances.
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2) DNN/i-vector front-end: The difference between the
DNN/i-vector front-end [9] and the GMM/i-vector front-end
is that the GMM-UBM in the DNN/i-vector front-end is
estimated by a DNN acoustic model trained for automatic
speech recognition. Specifically, the DNN acoustic model is
used to estimate the senone posteriors of acoustic features,
where a senone is used to model the tied states of a set of
triphones that are close in the acoustic space. If we model
the posterior distribution of a senone by a Gaussian mixture
component of the GMM-UBM, then we can use the senone
posteriors to train the GMM-UBM in the following way.

Suppose the development corpus contains U utterances, and
the u-th utterance has Lu frames {z(u)l }

Lu

l=1. The parameters
of the GMM-UBM are estimated by:

γ
(u)
c,l ≈ P(c|z(u)l ), (9)

πc =

U∑
u=1

Lu∑
l=1

γ
(u)
c,l , (10)

µc =

∑U
u=1

∑Lu

i=1 γ
(u)
c,l z

(u)
l∑U

u=1

∑Lu

i=1 γ
(u)
c,l

, (11)

Σc =

∑U
u=1

∑Lu

i=1 γ
(u)
c,l z

(u)
l z

(u)
l

T∑U
u=1

∑Lu

i=1 γ
(u)
c,l

− µcµ
T
c (12)

where {γ(u)c,l }Cc=1 represent the alignments of z
(u)
l which are

the posteriors of z
(u)
l produced by the DNN acoustic model,

πc and Σc are the prior and covariance of the c-th mixture
component, respectively.

The DNN acoustic model is trained in a supervised mode,
where the ground-truth labels of the speech frames are
the alignments produced by a hidden-Markov-model-GMM
(HMM-GMM) speech recognition system. It usually adopts
a contextual window with a window size of, e.g. (2W + 1),
to expand the input from zl to [zTl−W , . . . , zTl , . . . , z

T
l+W ]T

where W is the half-window length.
3) D-vector front-end: The d-vector front-end [8] averages

the frame-level features of an utterance produced from the top
hidden layer of a DNN classifier for an utterance-level d-vector
x. The DNN is trained to minimize the classification error of
speech frames, where the ground-truth label of a speech frame
is the indicator vector y of the speaker that the speech frame
belongs to. The DNN adopts a large contextual window with a
window size of (2Wd +1) to expand its input acoustic feature
from zl to [zTl−Wd

, . . . , zTl , . . . , z
T
l+Wd

]T , which is important
in improving the effectiveness and robustness of the d-vector
front-end.

III. EXPERIMENTS

In this section, we present the databases and evaluation
metrics at first in Section III-A, then the experimental setup in
Section III-B, and finally the experimental results in Sections
III-C and III-D.

A. Databases and evaluation metrics

We took the 8conv condition of NIST 2006 speaker recog-
nition evaluation (SRE) database as the development set, and

TABLE I
DESCRIPTION OF TEST CONDITIONS.

Name Length of enrollment speech Length of test speech

15"-15" 15 seconds 15 seconds
30"-15" 30 seconds 15 seconds
45"-15" 45 seconds 15 seconds
75"-15" 75 seconds 15 seconds

150"-15" 150 seconds 15 seconds
225"-15" 225 seconds 15 seconds

the 8conv condition of NIST 2008 SRE for enrollment and
test. The 8conv condition of NIST 2006 SRE contains 402
female speakers and 298 male speakers. The 8conv condition
of NIST 2008 SRE contains 395 female speakers and 240
male speakers. Each speaker has 8 conversations. A speaker
utterance in a conversation was about 1 to 2 minutes long
after removing the silence segments by VAD, where we took
its ASR transcript as its VAD label. We split all speech signals
into 15 second segments.

To illustrate the global performance of the proposed method
in terms of detection error tradeoff (DET) curves, we built
an initial test condition as follows. We selected the first 150
second speech of the first conversation of a speaker as the
enrollment data of the speaker, and split the last 30 second
speech of the 6-th conversation of the speaker into two test
segments with each segment as an individual test. We took
each speaker as a claimant with the remaining speakers acting
as imposters, and rotated through the tests of all speakers. We
conducted the experiment on females and males respectively.
The number of claimant and imposter trials are summarized in
Table II. The closer the DET curve approaches to the origin,
the better the performance is.

To investigate how the performance of the proposed method
varies with the length of the enrollment speech, we con-
ducted experiments in six test conditions described in Table
I. Specifically, for each speaker in the 8conv condition of the
NIST 2008 SRE, we first randomly picked 2 segments from
a randomly selected conversation with each segment as an
individual test; then, we randomly selected X segments from
the remaining 7 conversations as the enrollment data of the
speaker, where we set X to 1, 2, 3, 5, 10, and 15 for the
six test conditions respectively. For a given test condition,
we built the claimant and imposter trials in the same way
as the initial test condition. Therefore, the number of the
trials are the same as that in Table II. Because the enrollment
and test speech of a trial was selected randomly, we ran the
experiments on each test condition 100 times and reported
the average results so as to prevent biased conclusions. We
used equal error rate (EER), minimum detection cost function
(DCF) with SRE’08 parameters (DCF08), and minimum DCF
with SRE’10 parameters (DCF10) as the evaluation metrics.
The smaller the EER or DCF is, the better the performance
is.

B. Experimental setup

1) Acoustic features: We set the frame length to 25 ms
and the frame shift to 10 ms. We extracted 19-dimensional



4

TABLE II
NUMBER OF CLAIMANT AND IMPOSTER TRIALS.

#speakers #true trials #imposter trials

Female 395 790 311,260
Male 240 480 114,720

mel-frequency cepstral coefficients (MFCC), 13-dimensional
relative spectral filtered perceptual linear predictive cepstral
coefficients (RASTA-PLP) and 1-dimensional log energy, as
well as their delta and delta-delta coefficients from each frame,
which produced a total of 99-dimensional acoustic feature per
frame.

2) Front-ends: For the GMM/i-vector front-end, we used
gender-dependent UBMs containing 2048 Gaussian mixtures
and 400 total factors defined by the total variability matrix T.
We followed the MSR identity toolbox for the implementation
of the GMM/i-vector front-end.

For the DNN/i-vector front-end, we trained a DNN acoustic
model from the Switchboard-1 database. The alignments of the
frames for the DNN training, which contained 8730 senones,
were generated by a HMM-GMM speech recognition system
implemented in the Kaldi pipeline. The half-window length
W of the DNN was set to 3, which expanded the acoustic
features to 693 dimensions. As a result, the DNN acoustic
model used the 693-dimensional feature as the input and its
corresponding 8730 dimensional alignment as the ground-
truth label. The DNN has 7 hidden layers, each of which
consists of 2048 rectified linear units. The output units of the
DNN are the softmax functions. The DNN was optimized by
the minimum cross-entropy criterion. The number of epoches
for backpropagation training was set to 50. The batch size
was set to 512. The learning rate of the stochastic gradient
descent was set to 0.1. The momentum was set to 0.5 for
the first 10 epoches, and set to 0.9 for the other epoches.
The dropout rate of the hidden units was set to 0.2. We used
the posterior probability of the development data produced by
the DNN acoustic model to train gender-dependent UBMs.
Because many senones have small posterior probabilities, we
truncated the UBMs from 8730 Gaussian mixtures to 3096
Gaussian mixtures by discarding the mixtures that have small
zero-th order Baum-Welsh statistics. We used 400 total factors
to generate the i-vectors.

For the d-vector front-end, we trained gender-dependent
DNNs on the development data, where the two DNNs have the
same parameter setting as follows. The half-window length Wd

was set to 20, which expanded the acoustic feature to 4059
dimensions. Each DNN has 4 hidden layers, each of which
consists of 400 rectified linear units. The output dimensions
of the two DNNs are 395 for the females and 240 for the
males, respectively. The learning rate of the stochastic gradient
descent was set to 0.008. All other parameters were set to the
same values as those in the DNN/i-vector front-end.

3) Back-ends in comparison: We compared the LR+cosine
back-end with the following back-ends:

• Cosine similarity scoring (cosine): The cosine back-
end evaluates the cosine similarity of two speaker models
directly where the speaker model is simply an average
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Fig. 1. DET curves of the back-ends with the GMM/i-vector front-end on
the female part of the initial test condition.

of the utterance-level feature vectors of the speaker
produced from a front-end [6].

• WCCN+cosine: WCCN helps compensate for channel
variability [16]. It was first proposed for a SVM based
back-end, and then applied to the cosine similarity scor-
ing by Dehak et al. [6]. Here we compared with the
WCCN+cosine method [6].

• LDA+cosine: LDA is a supervised dimensionality reduc-
tion method. Dehak et al. [6] applied LDA to the cosine
similarity scoring. Here we set the output dimension
of LDA to 200 in all evaluations, which is a common
experimental setting in literature.

• LDA+PLDA: The PLDA classifier was first introduced
to speaker verification by Kenny in [13]. LDA is usually
used as a feature extractor for PLDA. We set the output
dimension of LDA to 200 in all evaluations.

C. Results

We report the comparison results in the initial test condition
in Figs. 1 to 6 respectively. From the figures, we observe
that the proposed method outperforms the comparison methods
significantly when the GMM/i-vector or DNN/i-vector front-
end is used (Figs. 1, 2, 4 and 5), and outperforms the
comparison methods slightly when the d-vector front-end is
used (Figs. 3 and 6).

To prevent a biased conclusion that the proposed method
happens to have some advantage in the initial test condition,
we ran a comparison in the 6 test conditions described
in Table I, where each test condition has 100 independent
implementations randomly generated from the NIST 2008
SRE database. We report the average results on the male
and female parts of the implementations in Tables III and IV
respectively. From the tables, we observe that the proposed
LR+cosine back-end outperforms the comparison methods
when the enrollment speech is longer than 15 seconds, and
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TABLE III
COMPARISON RESULTS OF THE BACK-ENDS ON THE FEMALE PARTS OF THE 6 TEST CONDITIONS.

EER (in %) DCF08 DCF10

GMM/i-vector DNN/i-vector d-vector GMM/i-vector DNN/i-vector d-vector GMM/i-vector DNN/i-vector d-vector

15"-15"

Cosine 16.52 12.14 9.87 6.2423 4.8058 4.2655 0.0940 0.0882 0.0873
WCCN+cosine 3.78 4.26 9.87 1.8382 2.2631 4.2655 0.0625 0.0764 0.0873
LDA+cosine 9.70 9.21 10.03 3.9029 3.8131 4.0192 0.0805 0.0833 0.0855
LDA+PLDA 3.08 2.84 7.70 1.3656 1.3634 3.1572 0.0550 0.0575 0.0831
LR+cosine 2.80 3.10 7.45 1.2911 1.4950 2.9859 0.0528 0.0578 0.0748

30"-15"

Cosine 10.54 7.14 7.80 4.2643 3.0554 3.5023 0.0833 0.0760 0.0808
WCCN+cosine 2.44 2.71 7.80 1.1682 1.4803 3.5023 0.0485 0.0629 0.0808
LDA+cosine 5.72 5.54 7.72 2.4234 2.4642 3.2372 0.0655 0.0706 0.0789
LDA+PLDA 2.05 1.85 5.80 0.9270 0.9054 2.4158 0.0455 0.0471 0.0750
LR+cosine 1.59 1.77 5.10 0.7326 0.8503 2.1988 0.0391 0.0435 0.0645

45"-15"

Cosine 7.63 5.07 7.02 3.2110 2.2481 3.2053 0.0745 0.0679 0.0778
WCCN+cosine 1.98 2.22 7.02 0.9423 1.1902 3.2053 0.0413 0.0563 0.0778
LDA+cosine 4.17 4.12 6.91 1.7938 1.9061 2.9395 0.0563 0.0636 0.0752
LDA+PLDA 1.73 1.57 5.15 0.7831 0.7733 2.1448 0.0410 0.0434 0.0715
LR+cosine 1.18 1.34 4.34 0.5670 0.6585 1.9069 0.0331 0.0380 0.0592

75"-15"

Cosine 5.07 3.29 6.57 2.2101 1.5529 2.9559 0.0629 0.0586 0.0745
WCCN+cosine 1.64 1.79 6.57 0.7537 0.9592 2.9559 0.0355 0.0493 0.0745
LDA+cosine 3.01 2.94 6.36 1.3081 1.4282 2.7023 0.0480 0.0554 0.0719
LDA+PLDA 1.53 1.40 4.62 0.6779 0.6855 1.9399 0.0376 0.0396 0.0674
LR+cosine 0.94 1.07 3.70 0.4384 0.5065 1.6927 0.0274 0.0327 0.0545

150"-15"

Cosine 2.92 1.89 6.06 1.2964 0.9553 2.7485 0.0493 0.0484 0.0713
WCCN+cosine 1.35 1.46 6.06 0.5999 0.7758 2.7485 0.0308 0.0430 0.0713
LDA+cosine 2.10 2.12 5.81 0.9249 1.0437 2.4882 0.0402 0.0484 0.0683
LDA+PLDA 1.34 1.24 4.25 0.6010 0.6022 1.7482 0.0356 0.0371 0.0640
LR+cosine 0.74 0.86 3.25 0.3375 0.3967 1.4872 0.0233 0.0281 0.0500

225"-15"

Cosine 2.14 1.45 5.88 0.9864 0.7626 2.6622 0.0430 0.0438 0.0700
WCCN+cosine 1.24 1.37 5.88 0.5564 0.7024 2.6622 0.0286 0.0409 0.0700
LDA+cosine 1.82 1.85 5.65 0.8148 0.9222 2.4214 0.0371 0.0449 0.0672
LDA+PLDA 1.33 1.22 4.07 0.5771 0.5913 1.6874 0.0344 0.0364 0.0619
LR+cosine 0.69 0.78 3.10 0.3155 0.3674 1.4063 0.0218 0.0265 0.0476
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Fig. 2. DET curves of the back-ends with the DNN/i-vector front-end on
the female part of the initial test condition.
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Fig. 3. DET curves of the back-ends with the d-vector front-end on the
female part of the initial test condition.
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TABLE IV
COMPARISON RESULTS OF THE BACK-ENDS ON THE MALE PARTS OF THE 6 TEST CONDITIONS.

EER (in %) DCF08 DCF10

GMM/i-vector DNN/i-vector d-vector GMM/i-vector DNN/i-vector d-vector GMM/i-vector DNN/i-vector d-vector

15"-15"

Cosine 15.74 7.95 10.16 5.9013 3.2361 4.0586 0.0898 0.0755 0.0883
WCCN+cosine 4.14 4.13 10.16 1.8184 1.9061 4.0586 0.0661 0.0713 0.0883
LDA+cosine 9.89 6.55 10.29 3.8431 2.7328 3.8002 0.0781 0.0717 0.0785
LDA+PLDA 3.72 3.33 8.58 1.5178 1.4099 3.2521 0.0630 0.0654 0.0858
LR+cosine 3.55 3.44 8.37 1.5312 1.4960 3.1300 0.0572 0.0557 0.0793

30"-15"

Cosine 10.03 4.31 8.12 3.9863 1.8684 3.3539 0.0780 0.0598 0.0837
WCCN+cosine 2.63 2.68 8.12 1.1601 1.2544 3.3539 0.0523 0.0588 0.0837
LDA+cosine 5.87 3.77 7.97 2.3780 1.6657 3.0572 0.0630 0.0571 0.0720
LDA+PLDA 2.50 2.25 6.46 1.0336 0.9715 2.5377 0.0544 0.0588 0.0822
LR+cosine 2.05 2.08 5.90 0.9079 0.9157 2.3789 0.0448 0.0446 0.0727

45"-15"

Cosine 7.38 2.94 7.25 3.0176 1.3420 3.0528 0.0682 0.0516 0.0810
WCCN+cosine 2.08 2.12 7.25 0.9033 1.0171 3.0528 0.0451 0.0507 0.0810
LDA+cosine 4.29 2.81 7.00 1.7848 1.2687 2.7608 0.0545 0.0498 0.0682
LDA+PLDA 2.08 1.83 5.59 0.8581 0.8065 2.2553 0.0508 0.0550 0.0799
LR+cosine 1.54 1.57 4.99 0.6975 0.7030 2.0807 0.0385 0.0385 0.0689

75"-15"

Cosine 4.80 1.93 6.68 2.0268 0.9133 2.7933 0.0564 0.0423 0.0785
WCCN+cosine 1.65 1.70 6.68 0.7231 0.8063 2.7933 0.0384 0.0431 0.0785
LDA+cosine 3.07 2.11 6.25 1.3144 0.9545 2.4982 0.0452 0.0417 0.0638
LDA+PLDA 1.74 1.56 5.06 0.7340 0.6900 1.9961 0.0477 0.0516 0.0778
LR+cosine 1.14 1.20 4.13 0.5295 0.5530 1.7971 0.0327 0.0323 0.0644

150"-15"

Cosine 2.92 1.28 6.28 1.2581 0.6091 2.6047 0.0442 0.0339 0.0752
WCCN+cosine 1.38 1.42 6.28 0.6140 0.6831 2.6047 0.0333 0.0373 0.0752
LDA+cosine 2.27 1.61 5.83 0.9524 0.7351 2.3034 0.0381 0.0352 0.0606
LDA+PLDA 1.57 1.41 4.69 0.6839 0.6470 1.8220 0.0458 0.0502 0.0744
LR+cosine 0.93 1.03 3.73 0.4423 0.4682 1.6328 0.0290 0.0285 0.0602

225"-15"

Cosine 2.23 1.03 6.04 0.9779 0.4954 2.5024 0.0383 0.0302 0.0746
WCCN+cosine 1.28 1.29 6.04 0.5518 0.6083 2.5024 0.0309 0.0346 0.0746
LDA+cosine 1.89 1.42 5.53 0.8172 0.6262 2.2010 0.0352 0.0320 0.0590
LDA+PLDA 1.49 1.29 4.41 0.6461 0.6154 1.7348 0.0453 0.0488 0.0737
LR+cosine 0.86 0.94 3.43 0.3913 0.4057 1.5194 0.0267 0.0262 0.0582
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Fig. 4. DET curves of the back-ends with the GMM/i-vector front-end on
the male part of the initial test condition.
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Fig. 5. DET curves of the back-ends with the DNN/i-vector front-end on
the male part of the initial test condition.
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Fig. 6. DET curves of the back-ends with the d-vector front-end on the male
part of the initial test condition.

is comparable to LDA+PLDA when the enrollment speech is
15 seconds long, given any of the three front-ends.

We drew the curves of the relative improvement scores of
the proposed method over the best comparison methods in
Figs. 7 and 8, where the relative improvement score is defined
by:

Score =
EERLR − EERbest_comp

EERbest_comp

with EERLR and EERbest_comp denoted as the EERs of the
proposed method and best comparison method respectively.
From the figures, we observe the following phenomena. (i)
The relative improvement is getting larger when the enrollment
speech is getting longer. An exception is that, when the DNN/i-
vector is used as the front-end, the relative improvement is
not always increased for the females. This is caused by the
fast performance improvement of the cosine similarity scoring
when the enrollment speech is getting longer. (ii) The highest
relative improvement happens with the GMM/i-vector front-
end, which reaches 44.3% for the females in the 225"-15"
test condition and 33.0% for the males in the 150"-15" test
condition.

We also drew the soft decision scores produced from the
LR+cosine and LDA+PLDA back-ends for the females in
Fig. 9 where we have normalized the decision scores to a
range where the mean values of the decision scores of the
imposter and true trials are zero and one respectively. From
the figure, we observe that the scores produced by LR+cosine
have smaller with-in class variances and smaller overlaps than
those produced by LDA+PLDA.

D. Effects of back-ends in fusion systems

Fusing the decision scores produced from multiple base
methods is an effective way for further improving the per-
formance of the base methods. This subsection studies the
approach of averaging the soft decision scores produced from
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Fig. 7. Relative EER improvement of the LR+cosine back-end over the best
comparison methods in the female parts of the 6 test conditions.
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Fig. 8. Relative EER improvement of the LR+cosine back-end over the best
comparison methods in the male parts of the 6 test conditions.

the systems that use GMM/i-vector and DNN/i-vector as the
front-ends, respectively. Figures 10 and 11 show the DET
curves of the fusion systems with different back-ends on the
initial test condition. Tables V and VI list the comparison
results of the fusion systems on the 6 test conditions defined
in Table I. From the figures and tables, we observe the same
experimental phenomena as those in Section III-C, which
supports the effectiveness of the LR+cosine back-end in the
fusion systems.

Note that we have also evaluated the fusion systems that
fuse the GMM/i-vector, DNN/i-vector, and d-vector front-ends
together. The experimental conclusions are similar with the
above.

IV. CONCLUSIONS

In this paper, we have presented a speaker verification back-
end based on linear regression. Linear regression is a simple
linear model that minimizes the mean squared estimation
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Fig. 9. Histograms of the soft decision scores produced by LR+cosine and LDA+PLDA in the female parts of the 6 test conditions, where the decision
scores have been normalized so that the mean values of the imposter and true trials are zero and one respectively.
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Fig. 10. DET curves of the fusion systems on the female part of the initial
test condition.

error between the target and its estimate with a closed form
solution, where the target for our speaker verification problem
is defined as the ground-truth indicator vectors of utterances.
The proposed LR+cosine back-end first learns speaker models
by the LR model, and then applies the cosine similarity scoring
to evaluate the similarity of a pair of speaker models. We have
further proposed three LR-based speaker verification systems
by combining the LR+cosine back-end with the GMM/i-
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Fig. 11. DET curves of the fusion systems on the male part of the initial
test condition.

vector, DNN/i-vector, and d-vector front-ends respectively. We
have conducted an extensive experiment on the NIST 2006
SRE and NIST 2008 SRE data sets, where we used the
8conv condition of the NIST 2006 SRE for development and
the 8conv condition of the NIST 2008 SRE for enrollment
and test. To prevent a biased experimental conclusion on a
particular evaluation environment, the experiment was carried
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TABLE V
COMPARISON RESULTS OF THE BACK-ENDS IN THE FUSION SYSTEMS ON

THE FEMALE PARTS OF THE 6 TEST CONDITIONS.

EER (in %) DCF08 DCF10

15"-15"

Cosine 9.85 3.9613 0.0816
WCCN+cosine 3.34 1.6565 0.0625
LDA+cosine 6.72 2.7861 0.0720
LDA+PLDA 2.64 1.1850 0.0491
LR+cosine 2.46 1.1496 0.0501

30"-15"

Cosine 5.32 2.3171 0.0669
WCCN+cosine 2.12 1.0516 0.0486
LDA+cosine 3.78 1.6648 0.0575
LDA+PLDA 1.73 0.7877 0.0399
LR+cosine 1.43 0.6557 0.0369

45"-15"

Cosine 3.59 1.6360 0.0582
WCCN+cosine 1.76 0.8402 0.0416
LDA+cosine 2.69 1.2355 0.0498
LDA+PLDA 1.48 0.6643 0.0359
LR+cosine 1.07 0.5102 0.0317

75"-15"

Cosine 2.22 1.0728 0.0487
WCCN+cosine 1.44 0.6726 0.0356
LDA+cosine 1.88 0.8991 0.0424
LDA+PLDA 1.31 0.5844 0.0328
LR+cosine 0.89 0.3925 0.0269

150"-15"

Cosine 1.27 0.6418 0.0393
WCCN+cosine 1.18 0.5437 0.0308
LDA+cosine 1.35 0.6384 0.0358
LDA+PLDA 1.16 0.5038 0.0308
LR+cosine 0.72 0.3108 0.0230

225"-15"

Cosine 0.97 0.5041 0.0349
WCCN+cosine 1.11 0.4976 0.0289
LDA+cosine 1.17 0.5593 0.0332
LDA+PLDA 1.13 0.4923 0.0300
LR+cosine 0.66 0.2911 0.0217

out with different lengths of enrollment speech covering a
range from 15 seconds to 225 seconds and repeated 100 times.
The experimental results show that the proposed LR+cosine
back-end outperforms several common back-ends including
the cosine, WCCN+cosine, LDA+cosine, and LDA+PLDA
back-ends in most cases in terms of DET curves, EER, DCF08,
and DCF10.
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