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a b s t r a c t

Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom
up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric
density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data
points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-
neighbor optimization. Geometrically, the nonparametric density estimator at each layer projects the
input data space to a uniformly-distributed discrete feature space, where the similarity of two data points
in the discrete feature space is measured by the number of the nearest centroids they share in common.
The multilayer network gradually reduces the nonlinear variations of data from bottom up by building a
vast number of hierarchical trees implicitly on the original data space. Theoretically, the estimation error
caused by the nonparametric density estimator is proportional to the correlation between the clusterings,
both of which are reduced by the randomization steps.

© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Principal component analysis (PCA) (Pearson, 1901) is a simple
and widely used unsupervised dimensionality reduction method,
which finds a coordinate system in the original Euclidean space
that the linearly uncorrelated coordinate axes (called principal
components) describe the most variances of data. Because PCA is
insufficient to capture highly-nonlinear data distributions, many
dimensionality reduction methods are explored.

Dimensionality reduction has two core steps. The first step finds
a suitable feature spacewhere the density of datawith the new fea-
ture representation can bewell discovered, i.e. a density estimation
problem. The second step discards the noise components or small
variations of the data with the new feature representation, i.e. a
principal component reduction problem in the new feature space.

Dimensionality reduction methods are either linear (He &
Niyogi, 2004) or nonlinear based on the connection between the
data space and the feature space. This paper focuses on nonlinear
methods, which can be categorized to three classes. The first class
is kernel methods. It first projects data to a kernel-induced feature
space, and then conducts PCA or its variants in the new space.
Examples include kernel PCA (Schölkopf, Smola, & Müller, 1998),
Isomap (Tenenbaum,De Silva, & Langford, 2000), locally linear em-
bedding (LLE) (Roweis & Saul, 2000), Laplacian eigenmaps (Belkin
& Niyogi, 2003; Ng, Jordan, & Weiss, 2002; Shi & Malik, 2000),
t-distributed stochastic neighbor embedding (t-SNE) (Van der
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Maaten & Hinton, 2008), and their generalizations (Nie, Zeng,
Tsang, Xu, & Zhang, 2011; Yan et al., 2007). The second class is
probabilistic models. It assumes that data are generated from an
underlying probability function, and takes the posterior param-
eters as the feature representation. Examples include Gaussian
mixture model and latent Dirichlet allocation (Blei, Ng, & Jordan,
2003). The third class is autoassociative neural networks (Hinton
& Salakhutdinov, 2006). It learns a piecewise-linear coordinate
system explicitly by backpropagation, and uses the output of the
bottleneck layer as the new representation.

However, the feature representations produced by the afore-
mentioned methods are defined in continuous spaces. A funda-
mental weakness of using a continuous space is that it is hard to
find a simple mathematical form that transforms the data space
to an ideal continuous feature space, since a real-world data dis-
tribution may be non-uniform and irregular. To overcome this
difficulty, a large number of machine learning methods have been
proposed, such as distance metric learning (Xing, Jordan, Russell,
& Ng, 2002) and kernel learning (Lanckriet, Cristianini, Bartlett,
Ghaoui, & Jordan, 2004) for kernel methods, and Dirichlet process
prior for Bayesian probabilistic models (Teh, Jordan, Beal, & Blei,
2005), in which advanced optimization methods have to be ap-
plied. Recently, learning multiple layers of nonlinear transforms,
named deep learning, is a trend (Hinton & Salakhutdinov, 2006). A
deep network contains more than one nonlinear layers. Each layer
consists of a group of nonlinear computational units in parallel.
Due to the hierarchical structure and distributed representation at
each layer, the representation learning ability of a deep network is
exponentially more powerful than that of a shallow networkwhen
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given the same number of nonlinear units. However, the devel-
opment of deep learning was mostly supervised, e.g. He, Zhang,
Ren, and Sun (2016), Hinton et al. (2012), Schmidhuber (2015),
Wang and Chen (2017), Wang, Qin, Nie, and Yuan (2017) and Zhou
and Feng (2017). To our knowledge, deep learning for unsuper-
vised dimensionality reduction seems far from explored (Hinton
& Salakhutdinov, 2006).

To overcome the aforementioned weakness in a simple way,
we revisit the definition of frequentist probability for the density
estimation subproblem of dimensionality reduction. Frequentist
probability defines an event’s probability as the limit of its relative
frequency in a large number of trials (Wikipedia, 2017). In other
words, the density of a local region of a probability distribution
can be approximated by counting the events that fall into the local
region. This paper focuses on exploring this idea. To generate the
events, we resort to random resampling in statistics (Efron, 1979;
Efron & Tibshirani, 1993). To count the events, we resort to one-
nearest-neighbor optimization and binarize the feature space to a
discrete space.

To further reduce the small variations and noise components of
data, i.e. the second step of dimensionality reduction, we extend
the density estimator to a gradually narrowed deep architecture,
which essentially builds a vast number of hierarchical trees on
the discrete feature space. The overall simple algorithm is named
multilayer bootstrap networks (MBN).

To our knowledge, although ensemble learning (Breiman,
2001; Dietterich, 2000; Freund & Schapire, 1995; Friedman, Hastie,
Tibshirani, et al., 2000; Tao, Tang, Li, & Wu, 2006), which was trig-
gered by random resampling, is a large family of machine learning,
it is not very prevalent in unsupervised dimensionality reduction.
Furthermore, we did not find methods that estimate the density of
data in discrete spaces by random resampling, nor their extensions
to deep learning.

This paper is organized as follows. In Section 2, we describe
MBN. In Section 3, we give a geometric interpretation of MBN.
In Section 4, we justify MBN theoretically. In Section 5, we study
MBN empirically. In Section 6, we introduce some related work. In
Section 7, we summarize our contributions.

2. Multilayer bootstrap networks

2.1. Network structure

MBN contains multiple hidden layers and an output layer
(Fig. 1). Each hidden layer consists of a group of mutually inde-
pendent k-centroids clusterings; each k-centroids clustering has k
output units, each of which indicates one cluster; the output units
of all k-centroids clusterings are concatenated as the input of their
upper layer. The output layer is PCA.

The network is gradually narrowed from bottom up, which is
implemented by setting parameter k as large as possible at the
bottom layer and be smaller and smaller along with the increase
of the number of layers until a predefined smallest k is reached.

2.2. Training method

MBN is trained layer-by-layer from bottom up.
For training each layer given a d-dimensional input data set

X = {x1, . . . , xn} either from the lower layer or from the original
data space, we simply need to focus on training each k-centroids
clustering, which consists of the following steps:

• Random sampling of features. The first step randomly
selects d̂ dimensions of X (d̂ ≤ d) to form a subset of X ,
denoted as X̂ =

{
x̂1, . . . , x̂n

}
.

Fig. 1. Network structure. The dimension of the input data for this demo network
is 4. Each colored square represents a k-centroids clustering. Each layer contains
3 clusterings. Parameters k at layers 1, 2, and 3 are set to 6, 3, and 2 respectively.
The outputs of all clusterings in a layer are concatenated as the input of their upper
layer. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

• Random sampling of data. The second step randomly se-
lects kdata points from X̂ as the k centroids of the clustering,
denoted as {w1, . . . ,wk}.

• One-nearest-neighbor learning. Thenew representation of
an input x̂ produced by the current clustering is an indicator
vector h which indicates the nearest centroid of x̂. For ex-
ample, if the second centroid is the nearest one to x̂, then
h = [0, 1, 0, . . . , 0]T . The similarity metric between the
centroids and x̂ at the bottom layer is customized, e.g. the
squared Euclidean distance argmink

i=1∥wi − x̂∥2, and set to
argmaxki=1w

T
i x̂ at all other hidden layers.

2.3. Novelty and advantages

Twonovel components ofMBNdistinguish it fromother dimen-
sionality reduction methods.

The first component is that each layer is a nonparametric den-
sity estimator based on resampling, which has the followingmajor
merits:

• It estimates the density of data correctly without any prede-
fined model assumptions. As a corollary, it is insensitive to
outliers.

• The representation ability of a group of k-centroids cluster-
ings is exponentially more powerful than that of a single
k-centroids clustering.

• The estimation error introduced by binarizing the feature
space can be controlled to a small value by simply increasing
the number of the clusterings.

The second component is thatMBN reduces the small variations
and noise components of data by an unsupervised deep ensemble
architecture, which has the following main merits:

• It reduces larger and larger local variations of data gradually
from bottom up by building as many as O(kL2V ) hierarchical
trees on the data space (instead of on data points) implicitly,
where L is the total number of layers, kL is parameter k at the
Lth layer, V is the number of the clusterings at the layer, and
function O(·) is the order in mathematics.
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Fig. 2. Principle of compressiveMBN. The numbers are the dimensions of represen-
tations.

• It does not inherit the problems of deep neural networks
such as local minima, overfitting to small-scale data, and
gradient vanishing, since it is trained simply by random
resampling and stacking. As a result, it can be trained with
as many hidden layers as needed and with both small-scale
and large-scale data.

See Sections 3 and 4 for the analysis of the above properties.

2.4. Weaknesses

The main weakness of MBN is that the size of the network is
large. Although MBN supports parallel computing, its prediction
process is inefficient, compared to a neural network.

To overcome this weakness, we propose compressive MBN
(Fig. 2). Compressive MBN uses a neural network to learn a map-
ping function from the training data to the output of MBN at the
training stage, and uses the neural network for prediction. More
generally, if MBN is applied to some specific task, then we can use
compressive MBN to learn a mapping function from the input data
to the output of the task directly.

3. Geometric interpretation

In this section, we analyze the two components of MBN from
the geometric point of view.

3.1. Feature learning by a nonparametric density estimator based on
resampling

As presented in Section 1, a core problem ofmachine learning is
to find a suitable similaritymetric thatmaps the original data space
to a uniformly-distributed feature space. Here we give an example
on its importance. As shown in Fig. 3, the similarity between the
data points that are far apart in a distribution with a large variance
(e.g., x1 and x2 in a distribution P1) might be the same as the
similarity between the data points that are close to each other in a
distribution with a small variance (e.g., x3 and x4 in a distribution
P2). If we use the Euclidean distance as the similarity metric, then
the similarity between x1 and x2 is smaller than that between x3
and x4, which is not true.

The proposed method provides a simple solution to the above
similarity metric learning problem. It outputs a new feature repre-
sentation of x1 as follows. Each k-centroids clustering contributes
a neighboring centroid of x1. The centroid partitions the local

region of x1 to two disconnected parts, one containing x1 and the
other not. The data point x1 owns a local region supported by the
centroids of all clusterings that are closest to the data point.1 These
centroids partition the local region to as many as O(2V ) fractions.
Each fraction is represented as a unique binary code at the output
space of the estimator in a way illustrated in Fig. 4.2 The new
representation of x1 in the output feature space is a binary code
that represents the local fraction of the data space where x1 is
located.

With the new representation, the similarity between two data
points is calculated by counting the number of the nearest cen-
troids they share in common—a method in frequentist methodol-
ogy. In Fig. 3, (i) if the local region in P1 is partitioned in the same
way as the local region in P2, and if the only difference between
them is that the local region in P1 is an amplification of the local
region inP2, then the surfaces of the two local regions are the same
in the discrete feature space. (ii) x1 and x2 share 5 common nearest
centroids, and x3 and x4 also share 5 common nearest centroids, so
that the similarity between x1 and x2 in P1 equals the similarity
between x3 and x4 in P2.

Note that because V k-centroids clusterings are able to par-
tition the data space to O(k2V ) fractions at the maximum, its
representation ability is exponentiallymore powerful than a single
k-centroids clustering.

3.2. Principal component reduction by a deep ensemble architecture

The nonparametric density estimator captures the variances of
the input data, however, it is not responsible for reducing the small
variances and noise components. To reduce the nonlinear varia-
tions, we build a gradually narrowed deep network. The network
essentially reduces the nonlinear variations of data by building a
vast number of hierarchical trees on the data space (instead of
on data points) implicitly. We present its geometric principle as
follows.

Suppose MBN has L layers, parameters k at layers 1 to L are
k1, k2, . . . , kL respectively, and k1 > k2 > · · · > kL. From Fig. 4, we
know that the lth layer partitions the input data space to O(kl2V )
disconnected small fractions. Each fraction is encoded as a single
point in the output feature space. The points in the output feature
space are the nodes of the trees. Hence, the lth layer has O(kl2V )
nodes. The bottom layer has O(k12V ) leaf nodes. The top layer has
O(kL2V ) root nodes, which is the number of the trees that MBN
builds.

For two adjacent layers, because kl−1 < kl, it is easy to see
that O(kl−1/kl) neighboring child nodes at the (l − 1)-th layer will
be merged to a single father node at the lth layer on average. To
generalize the above property to the entireMBN, a single root node
at the Lth layer is a merging of O(k1/kL) leaf nodes at the bottom
layer, which means that the nonlinear variations among the leaf
nodes that are to be merged to the same root node will be reduced
completely. Because kL ≪ k1, we can conclude that MBN is highly
invariant to the nonlinear variations of data.

One special case is that, if kL = 1, the output feature spaces of
all k-centroids clusterings at the top layer are just a single point.
However, in practice, we never set kL = 1; instead, we usually
set the termination condition of MBN as kL ≥ 1.5c where c is the
ground-truth number of classes. The termination condition makes
each k-centroids clustering stronger than random guess (Schapire,
1990).

1 It is important to keep parameter k of the k-centroids clusterings in a layer the
same. Otherwise, the density of the centroids between the clusterings is different,
that is to say, if we regard the centroids as the coordinates axes of the local region,
then the coordinate axes are built in different data spaces.
2 A small fraction should not have to contain data points as shown in Fig. 4.
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Fig. 3. Illustration of the similarity metric problem at the data space. (a) The similarity problem of two data points x1 (in red color) and x2 (in blue color) in a distribution
P1 . The local region of x1 (or x2) is the area in a colored circle that is centered at x1 (or x2). The small hollow points that lie in the cross area of the two local regions are
the shared centroids by x1 and x2 . (b) The similarity problem of two data points x3 and x4 in a distribution P2 . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Encoding the local region of a data point x1 (in blue color) by (a) one k-centroids clustering, (b) two k-centroids clusterings, and (c) three k-centroids clusterings. The
centroids of the three k-centroids clusterings are the points colored in red, black, and green respectively. The local region of a centroid is the area in the circle around the
centroid. The centroid itself and the edge of its local region are drawn in the same color. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Note that because O(k2V ) ≫ n, the data points are distributed
sparsely in the output feature space. Hence, MBN seldom merges
data points. In other words, MBN learns data representations in-
stead of doing agglomerative data clustering.

4. Theoretical analysis

Although MBN estimates the density of data in the discrete
feature space, its estimation error is small and controllable. Specif-
ically, as shown in Fig. 4c, V k-centroids clusterings can partition
a local region to O(2V ) disconnected small fractions at the max-
imum. It is easy to imagine that, for any local region, when V is
increasing and the diversity between the centroids is still reserved,
an ensemble of k-centroids clusterings approximates the true data
distribution. Because the diversity is important, we have used two
randomized steps to enlarge it.

In the following, we analyze the estimation error of the pro-
posed method formally:

Theorem 1. The estimation error of the building block of MBN
Eensemble and the estimation error of a single k-centroids clustering
Esingle have the following relationship:

Eensemble =

(
1
V

+

(
1 −

1
V

)
ρ

)
Esingle (1)

where ρ is the pairwise positive correlation coefficient between the
k-centroids clusterings, 0 ≤ ρ ≤ 1.

Proof. We prove Theorem 1 by first transferring MBN to a super-
vised regression problem and then using the bias–variance decom-
position of the mean squared error to get the bias and variance
components of MBN. The detail is as follows.

Suppose the random samples for training the k-centroids clus-
terings are identically distributed but not necessarily independent,
and the pairwise positive correlation coefficient between two ran-
dom samples (i.e., {wv1,i}

k
i=1 and {wv2,j}

k
j=1, ∀v1, v2 = 1, . . . , V and

v1 ̸= v2) is ρ, 0 ≤ ρ ≤ 1.
We focus on analyzing a given point x, and assume that the true

local coordinate of x is s which is an invariant point around x and
usually found when the density of the nearest centroids around
x goes to infinity (i.e. n → ∞, V → ∞, {wv}

V
v=1 are identically

and independently distributed, and parameter k is unchanged).We
also suppose that x is projected to ŝwhen given a finite number of
nearest centroids {wv}

V
v=1. The correlation coefficient between the

centroids {wv}
V
v=1 is ρ. Note that s is used as an invariant reference

point for studying ŝ.
The effectiveness of MBN can be evaluated by the estimation

error of the estimate ŝ to the truth s. The estimation error is defined
by E(∥s − ŝ∥2) where E(·) is the expectation of a random variable.

From the geometric interpretation, we know that eachwv owns
a local space Sv , and moreover, both s and ŝ are in Sv . When
parameter k → n, Sv is small enough to be locally linear. Un-
der the above fact and an assumption that the features of wv ,
i.e. wv,1, . . . , wv,d, . . . , wv,D, are uncorrelated, we are able to as-
sume thatwv follows a multivariate normal distribution around s:
wv ∼ MN (s, σ 2I) where I is the identity matrix, σ describes the
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Table 1
Hyperparameters of MBN.

Parameter Description

δ A parameter that controls the network structure by kl+1 = δkl ,
∀l = 1, . . . , L

a Fraction of randomly selected dimensions (i.e., d̂ ) over all dimensions
(i.e., d) of input data.

V Number of k-centroids clusterings per layer.
k1 A parameter that controls the time and storage complexities of the

network. For small-scale problems, k1 = 0.5n. For large-scale
problems, k1 should be tuned smaller to fit MBN to the computing
power.

variance of wv and σ 2I is the covariance matrix. We can further
derive E(∥s − ŝ∥2) =

∑D
d=1E((sd − ŝd)2) where we denote s =

[s1, . . . , sD]T and ŝ = [ŝ1, . . . , ŝD]T .
In the following, we focus on analyzing the estimation error at a

single dimension E((sd−ŝd)2) andwill omit the index d for clarity. It
is known that the mean squared error of a regression problem can
be decomposed to the summation of a squared bias component and
a variance component (Hastie, Tibshirani, & Friedman, 2009):

E((s − ŝ)2) =
(
s − E

(
ŝ
))2

+ E
((

ŝ − E
(
ŝ
))2)

= Bias2
(
ŝ
)
+ Var

(
ŝ
)
. (2)

Because wv follows a univariate normal distribution, it is easy to
obtain:

E(wv) = s (3)

E(w2
v ) = σ 2

+ s2 (4)

E(wv1wv2 ) = ρσ 2
+ s2. (5)

For a single estimate wv , we have ŝv = wv . For a set of estimates
{wv}

V
v=1, we have ŝΣ =

1
V

∑V
v=1wv . Based on Eqs. (3) to (5), we can

derive:

Bias2
(
ŝv
)

= 0 (6)

σ 2
single = Var

(
ŝv
)

= σ 2 (7)

and

Bias2
(
ŝΣ
)

= 0 (8)

σ 2
ensemble = Var

(
ŝΣ
)

=
σ 2

V
+

(
1 −

1
V

)
ρσ 2. (9)

Substituting Eqs. (6) and (7) to Eq. (2) gets:

Esingle = σ 2 (10)

and substituting Eqs. (8) and (9) to Eq. (2) gets:

Eensemble =
σ 2

V
+

(
1 −

1
V

)
ρσ 2. (11)

Theorem 1 is proved. □

From Theorem 1, we can get the following corollaries easily:

Corollary 1. When ρ is reduced from 1 to 0, Eensemble is reduced from
Esingle to Esingle/V accordingly.

Corollary 2. When V → ∞, Eensemble reaches a lower bound ρEsingle.

From Corollary 1, we know that increasing parameter V and
reducing ρ can help MBN reduce the estimation error.

From Corollary 2, we know that it is important to reduce ρ.
We have adopted two randomization steps to reduce ρ. However,
although decreasing parameters a and k can help MBN reduce ρ,

it will also cause Esingle rise. In other words, reducing Esingle and
reducing ρ is a pair of contradictory factors, which needs a balance
through a proper parameter setting.

5. Empirical evaluation

In this section, we first introduce a typical parameter setting of
MBN, then demonstrate the density estimation ability of MBN on
synthetic data sets, and finally apply the low dimensional output
of MBN to the tasks of visualization, clustering, and document
retrieval.

5.1. Parameter setting

When a data set is small-scale, we use the linear-kernel-based
kernel PCA (Canu, Grandvalet, Guigue, & Rakotomamonjy, 2005;
Schölkopf et al., 1998) as the PCA toolbox of MBN. When a data
set ismiddle- or large-scale, we use the expectation–maximization
PCA (EM-PCA) (Roweis, 1998).3

MBN is insensitive to parameters V and a as if V > 100 and
a ∈ [0.5, 1]. If not specified, we used V = 400 and a = 0.5 as the
default values.

We denote parameter k at layer l as kl. To control kl, we in-
troduce a parameter δ defined as kl+1 = δkl, δ ∈ (0, 1). MBN is
relatively sensitive to parameter δ: if data are highly-nonlinear,
then set δ to a large value, otherwise, set δ to a small value; if the
nonlinearity of data is unknown, set δ = 0.5 which is our default.

Finally, if kL+1 < 1.5c , then we stop MBN training and use
the output of the Lth nonlinear layer for PCA. This terminating
condition guarantees the validness of data resampling which re-
quires each random sample of data to be stronger than random
guess (Schapire, 1990). The hyperparameters of MBN are summa-
rized in Table 1.

In the following experiments, we adopted the above default
parameter setting of MBN, unless otherwise specified.

5.2. Density estimation

5.2.1. Density estimation for nonlinear data distributions
Four synthetic data setswith non-uniformdensities andnonlin-

ear variations are used for evaluation. They are Gaussian data, Jain
data (Jain & Law, 2005), pathbased data (Chang & Yeung, 2008),
and compound data (Zahn, 1971), respectively. Parameter a was
set to 1.

The visualization result in Fig. 5 shows that the synthetic data in
the new feature spaces produced by MBN not only are distributed
uniformly but also do not contain many nonlinear variations.

5.2.2. Density estimation in the presence of outliers
A data set of two-class Gaussian data with a randomly gener-

ated outlier is used for evaluation. The results of PCA and MBN are
shown in Fig. 6. From the figure, we observe that MBN is robust to
the presence of the outlier.

3 The word ‘‘large-scale’’ means that the data cannot be handled by traditional
kernel methods on a common personal computer.
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Fig. 5. Density estimation by MBN on synthetic data sets. The data points in different classes are drawn in different colors.

Fig. 6. Density estimation by MBN on a Gaussian data with the presence of an
outlier. The red cross denotes the outlier. Because the outlier is far from theGaussian
data, the resolution of the sub-figure in the top-right corner is not high enough to
differentiate the two classes of the Gaussian data.

5.3. Data visualization

5.3.1. Visualizing AML–ALL biomedical data
The acute myeloid leukemia and acute lymphoblastic leukemia

(AML–ALL) biomedical data set (Golub et al., 1999) is a two-class
problem that consists of 38 training examples (27 ALL, 11 AML)

and 34 test examples (20 ALL, 14 AML). Each example has 7,129
dimensions produced from 6,817 human genes.

We compared MBN with PCA and 2 nonlinear dimensionality
reduction methods which are Isomap (Tenenbaum et al., 2000)
and LLE (Roweis & Saul, 2000). We tuned the hyperparameters
of Isomap and LLE for their best performance.4 The visualization
result is shown in Fig. 7.

5.3.2. Visualizing MNIST digits
The data set of the MNIST digits (Lecun, Cortes, & Burges,

2004) contains 10 handwritten integer digits ranging from 0 to 9.
It consists of 60,000 training images and 10,000 test images. Each
image has 784 dimensions.

We compared MBN with PCA, Isomap (Tenenbaum et al.,
2000), LLE (Roweis & Saul, 2000), Spectral (Ng et al., 2002),
deep belief networks (Hinton & Salakhutdinov, 2006) (DBN), and
t-SNE (Van der Maaten & Hinton, 2008). We tuned the hyper-
parameters of the 5 nonlinear comparison methods for their best
performance.

Because the comparisonnonlinearmethods are too costly to run
with the full MNIST data set except DBN, we randomly sampled
5000 images with 500 images per digit for evaluation. The visu-
alization result in Fig. 8 shows that the low-dimensional feature
produced by MBN has a small within-class variance and a large
between-class distance.

To demonstrate the scalability of MBN on larger data sets and
its generalization ability on unseen data, we further trained MBN
on all 60,000 training images, and evaluated its effectiveness on
the 10,000 test images, where k1 was set to 8000 to reduce the
training cost. The visualization result in Fig. 9 shows that MBN on
the full MNIST provides a clearer visualization than that on the
small subset of MNIST.

5.4. Clustering

Ten benchmark data sets were used for evaluation. They cover
topics in speech processing, chemistry, biomedicine, image pro-
cessing, and text processing. The details of the data sets are given in

4 It is difficult and sometimes unable to tune the hyperparameters in practice.
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Fig. 7. Visualizations of AML–ALL produced by MBN and 3 comparison methods.

Fig. 8. Visualizations of a subset (5000 images) of MNIST produced by MBN and 6 comparison methods. For clarity, only 250 images per digit are drawn.

Table 2. The data set ‘‘20-Newsgroups’’, which originally has 20,000
documents, was post-processed to a corpus of 18,846 documents,
each belonging to a single topic.

We compared MBN with PCA and Spectral (Ng et al., 2002).
We applied k-means clustering to the low-dimensional outputs of
all comparison methods as well as the original high-dimensional
features. To prevent the local minima problem of k-means cluster-
ing, we ran k-means clustering 50 times and picked the clustering
result that corresponded to the optimal objective value of the
k-means clustering among the 50 candidate objective values as
the final result. We ran each comparison method 10 times and
reported the average performance.

The parameter settings on the data sets with IDs from 1 to 9
are as follows. For PCA, we preserved the top 98% largest eigen-
values and their corresponding eigenvectors. For Spectral, we set
the output dimension to the ground-truth number of classes and
adopted the RBF kernel.We reported the resultswith a fixed kernel
width 2−4A which behaves averagely the best over all data sets,
as well as the best result by searching the kernel width from
{2−4A, 2−3A, . . . , 24A} on each data set, where A is the average
pairwise Euclidean distance between data. The two parameter
selection methods of Spectral are denoted as Spectralno_tuning and
Spectraloptimal respectively. For MBN, we set the output dimension

Fig. 9. Visualization of the 10,000 test images of MNIST produced by the MBN at
layer 8. For clarity, only 250 images per digit are drawn. See Fig. D.16 in Appendix D
for the visualizations produced by other layers.
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Table 2
Description of data sets.

ID Name # data points # dimensions # classes Attribute

1 Isolet1 1560 617 26 Speech data
2 Wine 178 13 3 Chemical data
3 New-Thyroid 215 5 3 Biomedical data
4 Dermatology 366 34 6 Biomedical data
5 COIL100 7200 1024 100 Images
6 MNIST(small) 5 000 768 10 Images (handwritten digits)
7 MNIST(full) 70 000 768 10 Images (handwritten digits)
8 UMIST 575 1024 20 Images (faces)
9 ORL 400 1024 40 Images (faces)

10 20-Newsgroups 18846 26214 20 Text corpus

Table 3
NMI on 10 data sets. The methods named raw feature, PCA, Spectralno_tuning , and MBNno_tuning methods are compared with each other, while Spectraloptimal and MBNoptimal

are compared with each other. The numbers after ± are the standard deviations.

Raw feature PCA Spectralno_tuning MBNno_tuning Spectraloptimal MBNoptimal

1 Isolet1 77.21% ± 0.92% 56.74% ± 0.75% 75.51% ± 0.58% 77.89% ± 0.81% 79.66% ± 0.58% 77.97% ± 0.64%
2 Wine 42.88% ± 0.00% 40.92% ± 0.00% 41.58% ± 0.00% 55.49% ± 4.07% 43.02% ± 0.00% 76.96% ± 3.24%
3 New-Thyroid 49.46% ± 0.00% 49.46% ± 0.00% 39.63% ± 0.00% 68.80% ± 5.03% 43.20% ± 0.00% 75.78% ± 2.75%
4 Dermatology 9.11% ± 0.11% 59.50% ± 0.10% 51.04% ± 0.15% 82.40% ± 2.24% 51.04% ± 0.15% 92.79% ± 1.09%
5 COIL100 76.98% ± 0.27% 69.64% ± 0.45% 89.28% ± 0.59% 81.66% ± 0.59% 89.28% ± 0.59% 90.37% ± 0.65%
6 MNIST(small) 49.69% ± 0.14% 27.86% ± 0.08% 62.06% ± 0.04% 77.12% ± 0.35% 62.06% ± 0.04% 78.50% ± 0.84%
7 MNIST(full) 50.32% ± 0.12% 28.05% ± 0.07% Timeout 91.36% ± 0.07% Timeout Timeout
8 UMIST 65.36% ± 1.21% 66.25% ± 1.10% 81.83% ± 0.58% 74.48% ± 1.91% 84.66% ± 2.38% 84.84% ± 1.98%
9 ORL 75.55% ± 1.36% 75.81% ± 1.17% 80.21% ± 1.13% 79.22% ± 0.84% 83.62% ± 1.13% 81.73% ± 1.19%

10 20-Newsgroups Timeout 22.49% ± 1.41% 27.03% ± 0.05% 41.61% ± 0.05% 27.03% ± 0.05% 42.23% ± 0.46%

Table 4
Clustering accuracy on 10 data sets.

Raw feature PCA Spectralno_tuning MBNno_tuning Spectraloptimal MBNoptimal

1 Isolet1 61.47% ± 1.93% 38.62% ± 0.99% 49.63% ± 1.88 61.13% ± 2.52% 72.29% ± 1.92% 62.50% ± 1.14%
2 Wine 70.22% ± 0.00% 78.09% ± 0.00% 61.24% ± 0.00 81.91% ± 2.61% 70.79% ± 0.00% 93.20% ± 1.77%
3 New-Thyroid 86.05% ± 0.00% 86.05% ± 0.00% 79.49% ± 0.94 93.02% ± 1.60% 82.79% ± 0.00% 94.51% ± 0.93%
4 Dermatology 26.17% ± 0.28% 61.67% ± 0.26% 50.38% ± 0.35 82.81% ± 7.67% 50.38% ± 0.35% 96.07% ± 0.79%
5 COIL100 49.75% ± 1.31% 43.42% ± 1.21% 61.83% ± 2.27 57.38% ± 1.85% 61.83% ± 2.27% 68.29% ± 1.58%
6 MNIST(small) 52.64% ± 0.14% 34.49% ± 0.10% 53.30% ± 0.01 82.36% ± 0.46% 56.55% ± 0.20% 87.06% ± 1.75%
7 MNIST(full) 53.48% ± 0.11% 35.14% ± 0.11% Timeout 96.64% ± 0.04% Timeout Timeout
8 UMIST 43.20% ± 1.66% 43.44% ± 1.92% 70.99% ± 2.19 56.96% ± 3.73% 70.99% ± 2.19% 73.22% ± 4.02%
9 ORL 54.37% ± 2.41% 54.55% ± 2.81% 57.33% ± 2.37 59.68% ± 1.58% 68.85% ± 2.48% 64.25% ± 3.50%

10 20-Newsgroups Timeout 22.61% ± 1.29% 28.52% ± 0.03 46.57% ± 1.10% 28.52% ± 0.03% 47.69% ± 0.92%

to the ground-truth number of classes. We reported the results
with δ = 0.5, as well as the best results by searching δ from
{0.1, 0.2, . . . , 0.9} on each data set. The two parameter selection
methods of MBN are denoted as MBNno_tuning and MBNoptimal re-
spectively.

The parameter settings on the 20-Newsgroups are as follows.
For PCA, we set the output dimension to 100. For all comparison
methods, we used the cosine similarity as the similarity metric.

We evaluated the clustering result in terms of normalized mu-
tual information (NMI) and clustering accuracy. The clustering
results in Tables 3 and 4 show that (i) MBNno_tuning achieves bet-
ter performance than Spectralno_tuning and PCA, and (ii) MBNoptimal

achieves better performance than Spectraloptimal.
Besides the data sets in Table 2, we have also conducted exper-

iments on the following data sets: Lung-Cancer biomedical data,
COIL20 images, USPS images, Extended-YaleB images, Reuters-
21578 text corpus, and TDT2 text corpus. The experimental con-
clusions are consistent with the results in Tables 3 and 4.

5.4.1. Effect of hyperparameter δ

We showed the effect of parameter δ on each data set in Fig. 10.
From the figure, we do not observe a stable interval of δ where
MBN is supposed to achieve the optimal performance across the
data sets; if the data are highly variant, then setting δ to a large
value yields good performance, and vise versa. Generally, if the
nonlinearity of data is unknown, then setting δ = 0.5 is safe.

5.4.2. Effects of hyperparameters a and V
Theorem 1 has guaranteed that the estimation error can be

reduced by enlarging parameter V , andmay also be reduced by de-
creasing parameter a. In this subsection, we focus on investigating
the stable working intervals of V and a.

Because the experimental phenomena on all data sets are sim-
ilar, we reported the phenomena on the small subset of MNIST as
a representative in Fig. 11. From the figure, we know that (i) we
should prevent setting a to a very small value. Empirically, we set
a = 0.5. (ii) We should set V ≥ 100. Empirically, we set V = 400.

5.5. Document retrieval

We applied MBN to document retrieval and compared it with
latent semantic analysis (LSA) (Deerwester, Dumais, Landauer,
Furnas, & Harshman, 1990), a document retrieval method based on
PCA, on a larger data set—Reuters newswire stories (Lewis, Yang,
Rose, & Li, 2004) which consist of 804,414 documents. The data set
of the Reuters newswire stories is divided into 103 topics which
are grouped into a tree structure. We only preserved the 82 leaf
topics. As a result, there were 107,132 unlabeled documents. We
preprocessed each document as a vector of 2000 commonest word
stems by the rainbow software (McCallum, 1998)where each entry
of a vector was set to the word count.

We randomly selected half of the data set for training and the
other half for test. We recorded the average accuracy over all
402,207 queries in the test set at the document retrieval setting,
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Fig. 10. Effect of decay factor δ on 9 benchmark data sets.

where a query and its retrieved documents were different docu-
ments in the test set. If an unlabeled document was retrieved, it
was considered as amistake. If an unlabeled documentwas used as
a query, no relevant documents would be retrieved, which means
the precisions of the unlabeled query at all levels were zero.

Because the data set is relatively large, we did not adopt the
default setting of MBN where k1 = 201103. Instead, we set k1
manually to 500 and 2000 respectively, V = 200, and kept other
parameters unchanged, i.e. a = 0.5 and δ = 0.5.

Experimental results in Fig. 12 show that the MBN with the
small network reaches an accuracy curve of over 8% higher than
LSA; the MBNwith the large network reaches an accuracy curve of
over 13% higher than LSA. The results indicate that enlarging the
network size of MBN improves its generalization ability.

5.6. Empirical study on compressive MBN

This subsection studies the effects of the compressive MBN on
accelerating the prediction process of MBN.

We first studied the generalization ability of the compressive
MBN on the 10,000 test images of MNIST, where the models
of MBN and the compressive MBN are trained with the 60,000
training images of MNIST. The neural network in the compressive
MBN contains 2 hidden layers with 2048 rectified linear units per
layer. It projects the data space to the 2-dimensional feature space
produced by MBN. The visualization results in Fig. 13 show that
the compressiveMBN produces an identical 2-dimensional feature
with MBN on the training set and generalizes well on the test set.
The prediction time of MBN and the compressive MBN is 4857.45
and 1.10 s, respectively.

We then studied the generalization ability of the compressive
MBN in retrieving the Reuters newswire stories. The neural net-
work here has the same structure with that on MNIST. It projects
the data space to the 5-dimensional representation produced by
MBN. The result in Fig. 14 shows that the compressive MBN pro-
duces an almost identical accuracy curvewithMBN. The prediction

Fig. 11. Effect of parameters a and V on the subset of MNIST.

time of MBN and the compressive MBN is 190,574.74 and 88.80 s,
respectively.

6. Discussions

MBN is related to many methods in statistics and machine
learning. Here we introduce its connection to histogram-based
density estimators, bootstrap methods, clustering ensemble, vec-
tor quantization, product of experts, sparse coding, and unsuper-
vised deep learning.

6.1. Histogram-based density estimators

Histogram-based density estimation is a fundamental density
estimation method, which estimates a probability function by
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Fig. 12. Average accuracy curves of retrieved documents on the test set (82 topics) of the Reuters newswire stories.

Fig. 13. Visualizations of the training data (left) and test data (right) of MNIST
produced by the compressive MBN.

accumulating the events that fall into the intervals of the func-
tion (Freedman, Pisani, & Purves, 2007) where the intervals may
have an equivalent length or not. Our proposed density estimator is
essentially such an approach. An interval in our approach is defined
as the data space between twodata points. The accumulated events
in the interval are the shared centroids by the two data points.

6.2. Bootstrap methods

Bootstrap resampling (Efron, 1979; Efron & Tibshirani, 1993)
has been applied successfully to machine learning. It resamples
data with replacement. MBN does not adopt the standard boot-
strap resampling. In fact, MBN uses random subsampling with-
out replacement, also known as delete- d jackknife resampling in
statistics (Efron & Tibshirani, 1993). The reason why we do not
adopt the standard bootstrap resampling is that the resampling
in MBN is used to build local coordinate systems, hence, if a data
point is sampled multiple times, the duplicated data points are
still viewed as a single coordinate axis. Moreover, it will cause the
k-centroids clusterings built in different data spaces. However,
MBN was motivated from and shares many common properties
with the bootstrap methods, such as building each base clustering
from a random sample of the input and de-correlating the base
clusterings by the random sampling of features (Breiman, 2001)
at each base clustering, hence, we adopted the phrase ‘‘bootstrap’’
in MBN and clarify its usage here for preventing confusion.

6.3. Clustering ensemble

Clustering ensemble (Dudoit & Fridlyand, 2003; Fern & Brodley,
2003; Fred & Jain, 2005; Strehl & Ghosh, 2003; Vega-Pons & Ruiz-
Shulcloper, 2011; Zheng, Li, & Ding, 2010) is a clustering technique

Fig. 14. Comparison of the generalization ability of MBN and the compressive MBN
on retrieving the Reuters newswire stories.

that uses a consensus function to aggregate the clustering results
of a set of mutually-independent base clusterings. Each base clus-
tering is usually used to classify data to the ground-truth number
of classes. An exceptional clustering ensemble method is Fred
and Jain (2005), in which each base k-means clustering produces a
subclass partition by assigning the parameter k to a random value
that is slightly larger than the ground-truth number of classes.

Each layer of MBN can be regarded as a clustering ensemble.
However, its purpose is to estimate the density of data instead
of producing an aggregated clustering result. Moreover, MBN has
clear theoretical and geometric explanations. We have also found
that setting k to a random value does not work for MBN, particu-
larly when k is also small.

6.4. Vector quantization

Each layer of MBN can be regarded as a vector quantizer to the
input data space. The codebook produced by MBN is exponentially
smaller than that produced by a traditional k-means clustering,
when they have the same level of quantization errors. A similar
idea, named product quantization, has been explored in Jegou,
Douze, and Schmid (2011). If product quantization uses random
sampling of features instead of a fixed non-overlapping partition
of features in Jegou et al. (2011), and uses random sampling of data
points to train each k-means clustering instead of the expectation–
maximization optimization, then product quantization equals a
single layer of MBN. We are also aware of the hierarchical product
quantizer (Wichert, 2012), which builds multiple sets of sub-
quantizers (where the name ‘‘hierarchy’’ comes) on the original
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feature. OurMBN builds each layer of sub-quantizers on the output
sparse feature of its lower layer which is fundamentally different
from the hierarchical product quantization method.

An important difference between existing vector quantization
methods (e.g. binarized neural networks and binary hashing) and
MBN is that the former are designed for reducing the computa-
tional and storage complexities, while MBN is not developed for
this purpose. MBN aims at providing a simple way to overcome
the difficulty of density estimation in a continuous space. Hence,
it generates larger codebooks than common vector quantization
methods and does not transform the sparse codes to compact
binary codes.

6.5. Product of experts

PoE aims to combinemultiple individualmodels bymultiplying
them, where the individual models have to be a bit more compli-
cated and each contains one or more hidden variables (Hinton,
2002). Its general probability framework is:

p(x) =

∏V
v=1 gv(x)∑

x′

∏V
v=1 gv(x′)

(12)

where x′ indexes all possible vectors in the data space, and gv is
called an expert. A major merit of PoE is that, a function that can
be fully expressed by a mixture of experts with N experts (i.e. mix-
tures), such as Gaussian mixture model or k-means clustering, can
be expressed compactly by a PoE with only log2N experts at the
minimum, with the expense of the optimization difficulty of the
partition function

∑
x′

∏V
v=1gv(x′) which consists of an exponen-

tially large number of components.
The connection between MBN and PoE is as follows:

Theorem2. Each layer of MBN is a PoE that does not need to optimize
the partition function.

Proof. See Appendix B for the proof. □

6.6. Sparse coding

Given a learned dictionary W, sparse coding typically aims to
solve minhi

∑n
i=1∥xi − Whi∥

2
2 + λ∥hi∥

1
1, where ∥ · ∥q represents

ℓq-norm, hi is the sparse code of the data point xi, and λ is a
hyperparameter controlling the sparsity of hi. Each column of W
is called a basis vector.

To understand the connection betweenMBN and sparse coding,
we may view λ as a hyperparameter that controls the number of
clusterings. Specifically, if we set λ = 0, it is likely that hi contains
only one nonzero element. Intuitively, we can understand it as that
we use only one clustering to learn a sparse code. A good value
of λ can make a small part of the elements of hi nonzero. This
choice approximates to the method of partitioning the dictionary
to several (probably overlapped) subsets and then grouping the
basis vectors in each subset to a base clustering. Motivated by
the above intuitive analysis, we introduce the connection between
sparse coding and MBN formally as follows:

Theorem 3. The ℓ1-norm sparse coding is a convex relaxation of the
building block of MBN when given the same dictionary.

Proof. See Appendix C for the proof. □

6.7. Unsupervised deep learning

Learning abstract representations by deep networks is a re-
cent trend. From the geometric point of view, the abstract

representations are produced by reducing larger and larger lo-
cal variations of data from bottom up in the framework of trees
that are built on data spaces.5 For example, convolutional neural
network merges child nodes by pooling. Hierarchical Dirichlet
process (Teh et al., 2005) builds trees whose father nodes generate
child nodes according to a prior distribution. DBN (Hinton &
Salakhutdinov, 2006) merges child nodes by reducing the num-
ber of the nonlinear units gradually from bottom up. Subspace
tree (Wichert & Moreira, 2015) merges nodes by reducing the
dimensions of the subspaces gradually. PCANet (Chan et al., 2015)
merges nodes by reducing the output dimensions of the local PCA
associated with its patches gradually. Our MBN merges nodes by
reducing the number of the randomly sampled centroids gradually.

A fundamental difference between the methods is how to build
effective local coordinate systems in each layer. To our knowledge,
MBN is a simple method and needs little assumption and prior
knowledge. It is only more complicated than random projection
which is, to our knowledge, not an effective method for unsuper-
vised deep learning to date. Moreover, MBN is the only method
working in discrete feature spaces, and it works well.

7. Conclusions

In this paper, we have proposed multilayer bootstrap network
for nonlinear dimensionality reduction. MBN has a novel network
structure that each expert is a k-centroids clustering whose cen-
troids are randomly sampled data points with randomly sampled
features; the network is gradually narrowed from bottom up.

MBN is composed of two novel components: (i) each layer
of MBN is a nonparametric density estimator by random re-
sampling. It estimates the density of data correctly without any
model assumption. It is exponentially more powerful than a single
k-centroids clustering. Its estimation error is proven to be small
and controllable. (ii) The network is a deep ensemble model. It
essentially reduces the nonlinear variations of data by building
a vast number of hierarchical trees on the data space. It can be
trained as many layers as needed with both large-scale and small-
scale data.

MBN performs robustly with a wide range of parameter set-
tings. Its time and storage complexities scale linearly with the size
of training data. It supports parallel computing naturally. Empirical
results demonstrate its efficiency at the training stage and its
effectiveness in density estimation, data visualization, clustering,
and document retrieval. We have also demonstrated that the high
computational complexity of MBN at the test stage can be elim-
inated by the compressive MBN—a framework of unsupervised
model compression based on neural networks.

A problem left is on the selection of parameter δ which controls
the network structure. Although the performance of MBN with
δ = 0.5 is good, there is still a large performance gap between
δ = 0.5 and the best δ. Hence, how to select δ automatically is an
important problem.
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Appendix A. Complexity analysis

Theorem 4. The computational and storage complexities of MBN
are:

Otime = O (dskVn) (A.1)

Ostorage = O((ds + V )n + kV + kds) (A.2)

respectively at the bottom layer, and are:

Otime = O
(
kV 2n

)
(A.3)

Ostorage = O(2V (n + k)) (A.4)

respectively at other layers, where d is the dimension of the original
feature, s is the sparsity of the data (i.e., the ratio of the non-zero
elements over all elements).

If MBN is not used for prediction, then MBN needs not to be saved,
which further reduces the storage complexity to O((ds + V )n) at the
bottom layer and O(2Vn) at other layers.

Proof. Due to the length limitation of the paper, we omit the
simple proof. □

Fortunately, as shown in Fig. A.15, the empirical time com-
plexity grows with O(V ) instead of O(V 2). The only explanation is
that the input data is sparse. Specifically, the multiplication of two
sparse matrices only considers the element-wise multiplication of
two elements that are both nonzero, as a result, when the input
data is sparse, one factor V is offset by the sparsity factor s. The
empirical time and storage complexitieswith other parameters are
consistent with our theoretical analysis. We omit the results here.

Note that, our default parameter k1 = 0.5n makes the time
complexity scale squarely with the size of the data set n. To reduce
the computational cost, we usually set k1 manually to a small value
irrelevant to n as what we have done for visualizing the full MNSIT
and retrieving the RCV1 documents in Section 5.

Appendix B. Proof of Theorem 2

The optimization objective of k-means clustering can bewritten
as:

max
W,h

g(x|W,h)

= max
W,h

exp
(

−
1

2σ 2 ∥x − WTh∥
2
2

)
subject to h is a one-hot code (B.1)

where W = [w1, . . . ,wk] is the weight matrix whose columns
are centroids, h is a vector of hidden variables, and the covariance
matrix of the clustering is σ 2Iwith I being the identity matrix and
σ → 0 (Bishop et al., 2006).

Substituting g(x|W,h) = exp
(
−∥x − WTh∥

2
2/2σ

2
)
to Eq. (12)

gets:

p(x|{Wv,hv}
V
v=1)

=

∏V
v=1 exp

(
−∥x − WT

vhv∥
2
2/2σ

2
)

∑
x′

∏V
v=1 exp

(
−∥x′ − WT

vhv∥
2
2/2σ 2

)
=

exp
(
−
∑V

v=1 ∥x − WT
vhv∥

2
2/2σ

2
)

∑
x′ exp

(
−
∑V

v=1 ∥x′ − WT
vhv∥

2
2/2σ 2

) (B.2)

wherewe assume that all experts have the same covariancematrix
σ 2I. Maximizing the likelihood of Eq. (B.2) is equivalent to the
following problem:

JPoE = min
{Wv ,hv}

V
v=1

− log p(x|{Wv,hv}
V
v=1)

= min
{Wv ,hv}

V
v=1

1
2σ 2

V∑
v=1

∥x − WT
vhv∥

2
2

+ log
∑
x′

exp

(
−

1
2σ 2

V∑
v=1

∥x′
− WT

vhv∥
2
2

)

∝ min
{Wv ,hv}

V
v=1

V∑
v=1

∥x − WT
vhv∥

2
2

+ log

(∑
x′

exp

(
−

1
2σ 2

V∑
v=1

∥x′
− WT

vhv∥
2
2

))2σ2

subject to hv is a one-hot code. (B.3)

Because σ → 0, problem (B.3) can be rewritten as:

JPoE ∝ min
{Wv ,hv}

V
v=1

V∑
v=1

∥x − WT
vhv∥

2
2

+ log

(
max
x′

(
exp

(
−

1
2σ 2

V∑
v=1

∥x′
− WT

vhv∥
2
2

)))2σ2

= min
{Wv ,hv}

V
v=1

V∑
v=1

∥x − WT
vhv∥

2
2 − min

x′

V∑
v=1

∥x′

−WT
vhv∥

2
2

subject to hv is a one-hot code. (B.4)

Because x′ can be any possible vector in the data space, we have
minx′

∑V
v=1∥x

′
− WT

vhv∥
2
2 = 0. Eventually, the optimization objec-

tive of PoE is:

JPoE ∝ min
{Wv ,hv}

V
v=1

V∑
v=1

∥x − WT
vhv∥

2
2

subject to hv is a one-hot code (B.5)

which is irrelevant to the partition function.
It is clear that problem (B.5) is the optimization objective of an

ensemble of k-means clusterings. When we assign Wv by random
sampling, then problem (B.5) becomes:

JPoE ∝ min
{hv}

V
v=1

V∑
v=1

∥x − WT
vhv∥

2
2

subject to hv is a one-hot code (B.6)

which is the building block of MBN. Theorem 2 is proved.

Appendix C. Proof of Theorem 3

Each layer of MBN maximizes the likelihood of the following
equation:

p(x) =

V∏
v=1

gv(x) (C.1)
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Fig. A.15. Time complexity of MBN with respect to parameter V .

where gv(x) is a k-means clustering with the squared error as the
similarity metric:

gv(x) = MN
(
x;Wvhv, σ

2I
)

(C.2)

subject to hv is a one-hot code

where MN denotes the multivariate normal distribution, Wv =

[wv,1, . . . ,wv,k] is theweightmatrixwhose columns are centroids,
I is the identity matrix, and σ → 0.

Given a data set {xi}ni=1. We assume that {Wv}
V
v=1 are fixed, and

take the negative logarithm of Eq. (C.1):

min
{{hv,i}

n
i=1}

V
v=1

V∑
v=1

n∑
i=1

∥xi − Wvhv,i∥
2
2, (C.3)

subject to hv,i is a one-hot code.

If we denote W = [W1, . . . ,WV ] and further complement the
head and tail of hv,i with multiple zeros, denoted as h′

v,i, such
that Wh′

v,i = Wvhv,i, we can rewrite Eq. (C.3) to the following
equivalent problem:

min
{{hv,i}

n
i=1}

V
v=1

V∑
v=1

n∑
i=1

∥xi − Wh′

v,i∥
2
2, (C.4)

subject to hv,i is a one-hot code.

It is an integer optimization problem that has an integer matrix
variable H′

v = [h′

v,1, . . . ,h
′
v,n]. Suppose there are totally |H′

v|

possible solutions ofH′
v , denoted asH′

v,1, . . . ,H
′

v,|H′
v |
, we first relax

Eq. (C.4) to a convex optimizationproblemby constructing a convex

hull (Boyd & Vandenberghe, 2004) on H′
v:

min{
{µv,k}

|H′
v |

k=1

}V
v=1

V∑
v=1

n∑
i=1

xi − W

⎛⎝|H′
v |∑

k=1

µv,kh′

v,k,i

⎞⎠
2

2

(C.5)

subject to 0 ≤ µv,k ≤ 1,
|H′

v |∑
k=1

µv,k = 1, ∀v = 1, . . . , V .

Because Eq. (C.5) is a convex optimization problem, according to
Jensen’s inequality, the following problem learns a lower bound of
Eq. (C.5):

min{
{µv,k}

|H′
v |

k=1

}V
v=1

V
n∑

i=1

xi − Wh′′

i

2
2 (C.6)

subject to 0 ≤ µv,k ≤ 1,
|H′

v |∑
k=1

µv,k = 1, ∀v = 1, . . . , V

where h′′

i =
1
V

∑V
v=1
∑|H′

v |

k=1 µv,kh′

v,k,i with µv,k as a variable.

Recalling the definition of sparse coding given a fixed dictionary
W, we observe that Eq. (C.6) is a special form of sparse coding with
more strict constraints on the format of sparsity.

Therefore, given the same dictionary W, each layer of MBN is
a distributed sparse coding that is lower bounded by the com-
mon ℓ1-norm sparse coding. When we discard the expectation–
maximization optimization of each k-means clustering (i.e.,
dictionary learning) but only preserve the default initialization
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Fig. D.16. Visualizations of MNIST produced by MBN at different layers. This figure is a supplement to Fig. 9.

method — random sampling, Eq. (C.1) becomes the building block
ofMBN.Given the samedictionary, the ℓ1-norm-regularized sparse
coding is a convex relaxation of the building block of MBN.
Theorem 3 is proved.

Appendix D. Visualizations produced by intermediate layers

See Fig. D.16.
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