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Abstract

We apply multilayer bootstrap network (MBN) to speaker clus-
tering. The proposed method first extracts supervectors by a
universal background model, then reduces the dimension of
the high-dimensional supervectors by MBN, and finally con-
ducts speaker clustering by clustering the low-dimensional data.
We also propose an MBN-based universal background model,
named universal background sparse coding. The comparison
results demonstrate the effectiveness and robustness of the pro-
posed method.

Index Terms: multilayer bootstrap network, speaker clustering,
universal background sparse coding, unsupervised learning

1. Introduction

Speaker clustering aims to clustering speech segments that are
belonged to the same speaker into a single cluster. It is im-
portant in many speech systems, such as speaker diarization,
language recognition, and speech recognition.

Existing speaker clustering methods mainly include princi-
ple component analysis (PCA), k-means clustering, Gaussian
mixture model (GMM), agglomerative hierarchical clustering,
and joint factor analysis. For example, Wooters and Huijbregts
[1] used agglomerative clustering to merge speaker segments by
Bayesian information criterion. Iso [2] used vector quantization
to encode speech segments and used spectral clustering, which
is a k-means clustering applied to a low-dimensional subspace
of data, for speaker clustering. Nwe et al. [3] used a group of
GMM clusterings to improve the individual base GMM clus-
terings. Some methods apply clustering techniques, e.g. varia-
tional Bayesian expectation-maximization (EM) GMM [4] and
spectral clustering [5], to i-vectors [6].

Because little prior knowledge of data is known before-
hand, an unsupervised method should satisfy the following con-
ditions: (i) no need for manually-labeled training data; (ii) no
hyperparameter tunning for a satisfied performance; and (iii) ro-
bustness to different data or modeling conditions. Due to these
strict requirements, speaker clustering is a very difficult task.

In this paper, we present a multilayer bootstrap network
(MBN) [7] based algorithm, which contains two novel points.
The first novel point is to generate high-dimensional supervec-
tors of speech segments by universal background sparse coding
(UBSC), anovel MBN-based universal background model. The
second one is to reduce the dimensionality of the supervectors
by MBN. Experimental results show that the proposed method
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Figure 1: UBSC+MBN speaker clustering system.

satisfies these requirements.

This paper is organized as follows. In Section 2, we present
the MBN-based system. In Section 3, we present the MBN al-
gorithm. In Section, 4, we present the UBSC model. In Section
5, we present the merits of the method. In Section 6, we report
comparison results. In Section 7, we conclude this paper.

2. System
We propose the following speaker clustering algorithm:'

* The first step trains a speaker- and session-independent
universal background model (UBM), which produces a
d-dimensional supervector for each session.

A common choice of UBM is GMM [8]. We further
propose another choice, i.e. UBSC, in Section 4.

* The second step reduces the dimension of x from d to d
(d < d) by MBN which is introduced in Section 3.

¢ The third step conducts k-means clustering on the low-
dimensional data if the number of the underlying speak-

IThe source code is downloadable from
http://sites.google.com/site/zhangxiaolei321/speaker_recognition
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Figure 2: The MBN network. Each square represents a k-
centers clustering.

ers is known, or agglomerative clustering if the number
of the speakers is unknown.

The system that takes GMM as the UBM is denoted as the
GMM+MBN system. The system that takes UBSC as the
UBM, which is shown in Fig. 1, is denoted as the UBSC+MBN
system.

3. Multilayer bootstrap network

The structure of MBN [7] is shown in Fig. 2. MBN is a multi-
layer localized PCA algorithm that gradually enlarges the area
of a local region implicitly from the bottom hidden layer to the
top hidden layer by high-dimensional sparse coding, and gets a
low-dimensional feature explicitly by PCA at the output layer.

Each hidden layer of MBN consists of a group of mutu-
ally independent k-centers clusterings. Each k-centers cluster-
ing has k output units, each of which indicates one cluster. The
output units of all clusterings are concatenated as the input of
their upper layer [7].

MBN is trained layer-by-layer from bottom up. For training
a hidden layer given a d-dimensional input X = {xX1,...,Xn},
MBN trains each clustering independently [7]:

* Random feature selection. The first step randomly se-
lects d dimensions of X (ci < d) to form a new set
X = {Xi1,...,%,}. This step is controlled by a hy-
perparameter a = d/d.

* Random sampling. The second step randomly selects
k data points from X as the k centers of the clustering,
denoted as {w1,...,wg}. This step is controlled by a
hyperparameter k.

* Sparse representation learning. The third step assigns
the input X to one of the k clusters and outputs a k-
dimensional indicator vector h = [hy,...,hs]T. For
example, if X is assigned to the second cluster, then
h = [0,1,0,...,0]”. The assignment is calculated
according to the similarities between X and the k cen-
ters, in terms of some predefined similarity measurement
at the bottom layer, such as the minimum squared loss
arg minf_; ||w; —%||?, or in terms of arg max?_; w7 %
at all other hidden layers [7].

A suggested parameter setting is given in [7].

4. Universal background sparse coding

The proposed UBSC is shown in Fig. 3. Suppose we have
S sessions {Z/{S}le with the s-th session U defined as Us =
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Figure 3: Principle of UBSC. The operator “+” denotes
element-wise addition between vectors.

{Xs,i } 12, where x,; is the acoustic feature of the i-th frame of
Us. UBSC executes the following steps:

* The first step mixes all sessions into a large corpus X =
{(x:}¥,, where N = S°°_ ..

* The second step trains an MBN with &', and generates a
D-dimensional sparse vector y; for each frame x;. Note
that, different from [7], MBN does not further reduce the
feature to a low-dimensional feature by PCA.

e The third step generates session-level supervectors
{ys}le by conducting an element-wise average over
the frames that belong to the same session: Y54 =
n% > Ysid, Vd = 1,...,D, where y,; =

[yssi717" 'aysqin]T and ys [gsyla---ygS,D}T

Based on the principle of MBN, one layer is enough, par-
ticularly for supervised learning. However, in practice, we may
also train multiple layers for reducing the random noise of data.

5. Merits of the proposed method

One of the main problems of a learning system is the similarity
problem between data points, which can be decomposed to two
factors: (i) similarity metric, and (ii) nonlinearity.

Regarding the similarity metric, speech frames are not dis-
tributed uniformly in the original feature space. That is to say,
Euclidean distance is not a suitable similarity metric. There-
fore, we cannot average the time-frequency energy of speech
frames directly for a session-level feature. Traditional methods
fit data to a predefined model template, e.g. GMM, where the
original feature space is projected to a rescaled space defined
by the model. After the projection, we can average frame-level
features for session-level supervectors. MBN-based methods
provide an adaptive similarity metric, which is the proportion of
the nearest neighbors that fall into the intersection of two local
regions, by a concatenation of the uniform resampling, nearest
neighbor optimization, and binarization. They do not rely on
model templates, which may work better than traditional meth-
ods.

Regarding the nonlinearity, because the supervectors are
high-dimensional, it is very likely that they contain some non-
linearity. That is to say, two speech frames that are faraway
(dissimilar) in the original high-dimensional space may not
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Figure 4: Visualizations of 10 speakers by GMM~+PCA and
GMM-+MBN respectively, where a 16-mixture GMM-UBM
with 20 EM iterations is used to produce their input supervec-
tors. The speakers are labeled in different colors.

be so far apart after projecting the original space to a linear
space by some nonlinear dimensionality reduction method, and
vice versa. However, most traditional dimensionality reduction
methods are linear methods, e.g. PCA. Although some ker-
nel based nonlinear methods have been tried, they have to tune
the free parameters of the kernels, which limits their practical
use, particularly in an unsupervised setting where no informa-
tion is available for the parameter tuning. MBN-based methods
are nonlinear methods without parameter tuning, thanks to the
binarization (the third step of MBN), which may work better
than linear methods and is more practical than existing nonlin-
ear methods. See [7] for more information.

6. Experiments

We first evaluate the GMM+MBN system, comparing with
GMM+PCA. Then, we evaluate UBSC+MBN, comparing
with GMM+PCA and the proposed GMM-+MBN.

In both evaluations, we used the training corpus of speech
separation challenge (SSC) [9]. The training corpus of SSC
contains 34 speakers, each of which has 500 clean utterances.

For each speaker clustering job, we assumed that the num-
ber of speakers was known. We took the original feature or the
low dimensional feature as the input of k-means clustering. Be-
cause the k-means clustering suffers from local minima, we ran
it 50 times and picked the clustering result that corresponded
to the optimal objective value (i.e., the minimum mean squared
error) among all 50 candidate objective values as the final clus-
tering result. We ran each experiment 10 times and reported the
average performance.

6.1. Evaluation of GMM+MBN

We selected the first 100 utterances (a.k.a., sessions) of each
speaker for evaluation, which amounts to 3400 utterances. We
set the frame length to 25 milliseconds and frame shift to 10
milliseconds, and extracted a 25-dimensional MFCC feature.

For the proposed GMM+MBN, we set V' = 400, a =
0.5, and k to 1700-850-425-212-106-53 (i.e. ki+1 = [0.5k:]
where [ denotes the [-th layer). The output of PCA was set to
{2,3,5,10, 30,50} dimensions respectively.

We compared with PCA and k-means clustering. For
the PCA-based method, we first used the same GMM-UBM
as that in GMM+MBN to extract high-dimensional super-
vectors, then reduced the dimension of the supervectors to
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Figure 5: Accuracy comparison (in terms of NMI) between
k-means clustering-, PCA-, and MBN-based methods with re-
spect to the mixture number of GMM-UBM. (a) Comparison
when the EM iteration number of GMM-UBM is set to 20. (b)
Comparison when the EM iteration number of GMM-UBM is
set to 0. Note that given a mixture number of GMM-UBM,
the accuracy of a method is the best result among the results
produced from 6 candidate output dimensions of the method,
except k-means clustering.

{2,3,5,10, 30,50} respectively, and finally evaluated the low-
dimensional output of PCA by k-means clustering. For the k-
means-clustering-based method, we apply k-means clustering
to the high-dimensional supervectors directly.

The performance was measured by normalized mutual in-
formation (NMI) [10]. MNI was proposed to overcome the la-
bel indexing problem between the ground-truth labels and the
predicted labels. It is one of the standard evaluation metrics of
unsupervised learning. The higher the NMI is, the better the
performance is. Note that NMI has a strong one-to-one corre-
spondence with classification accuracy.

Results: Because all comparison methods use GMM-
UBM to extract speaker- and session-independent supervec-
tors, we need to study how they behave in different GMM-
UBM settings, in terms of mixture number and expectation-
maximization (EM) iterations. (i) The mixture number reflects
the capacity of GMM-UBM for modelling an underlying data
distribution: if the mixture number is smaller than the number
of speakers, GMM-UBM s likely underfitting, i.e. it cannot
grasp the data distribution well. To study this effect, we set the
mixture number to {1, 2, 4, 8,16, 32,64} respectively. (ii) The
number of EM iterations reflects the quality of the acoustic fea-
ture produced by GMM-UBM: if the EM optimization is not
sufficient, the acoustic feature is noisy. To study this effect, we
set the number of EM iterations to {0, 20} respectively, where
setting the number of iterations to 0 means that GMM-UBM is
initialized with randomly sampled means without EM optimiza-
tion, which is the worst case.

Fig. 4 and Supplementary-Fig. 1 give a comparison exam-
ple between PCA and MBN in visualizing the first 10 speakers,
where a 16-mixtures GMM-UBM with 20 and 0 EM iteration
are used to generate their inputs respectively. From the figures,
we can see that MBN produces good visualizations.

Fig. 5 reports results with respect to the mixture number of
GMM-UBM. Fig. 6 reports results with respect to the number
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Figure 6: Accuracy comparison (in terms of NMI) between
PCA- and MBN-based methods with respect to the number
of output dimensions. (a) Comparison when the EM iteration
number of GMM-UBM is set to 20. (b) Comparison when the
EM iteration number of GMM-UBM is set to 0. Note that given
a number of output dimensions, the accuracy of a method is the
best result among the results produced from 7 candidate GMM-
UBMs.

of output dimensions. Supplementary-Tables 1 and 2 report the
detailed results of the two figures. From the figures and tables,
we observe the following phenomena: (i) GMM+MBN outper-
forms GMM+-PCA and the k-means-clustering-based method,
with a relative improvement of 8% when GMM-UBM is op-
timized by 20 iterations, and with an relative improvement
of 40% when GMM-UBM is optimized by 0 iteration; (ii)
GMM+MBN is less sensitive to different parameter settings of
both GMM-UBM and MBN itself; (iii) GMM-+PCA is sensi-
tive to both the mixture number of GMM-UBM and the number
of output dimensions, and strongly relies on the effectiveness of
GMM-UBM.

6.2. Evaluation of UBSC+MBN

We selected the first 10 utterances of the first 10 speakers, which
amounts to 100 utterances containing 17,385 frames.

For UBSC+MBN, UBSC adopted the following typical
parameter setting: V = 400, a = 0.5, and k were set to
2000-1000-500-250-125 (i.e. kiy1 = |0.5k;]). MBN took
V' =400, a = 0.5, and k were set to 50-35-24-16 (i.e. k;+1 =
|0.7k;]). The output of PCA was set to {2, 3,5, 10, 30,50}
dimensions respectively.

We compared the two universal background models, i.e.
UBSC and GMM-UBM, given either PCA or MBN as the di-
mensionality reduction toolbox. We searched the mixture num-
ber of GMM-UBM through {2, 4, 8,16, 32, 64} and found that
setting the mixture number of GMM-UBM to 32 performs the
best. Therefore, we reported the result of GMM-UBM with 32
mixtures. The MBN in both GMM-+MBN and UBSC+MBN
adopted the same hyperparameters.

Results: Fig. 7 gives a comparison between GMM+PCA,
UBSC+PCA, GMM+MBN, and UBSC+MBN on visualiza-
tion. From the figure, we observe that, (i) when PCA is used
as the dimensionality reduction tool, UBSC+PCA outperforms
GMM+PCA apparently, such as differentiating the speakers

1861

GMM+PCA GMM+MBN
.
- ° &
e ) ..
o
. -
0 S
L& -
&
$
UBSC+PCA UBSC+MBN
1
kr ¥
»
» RERTS

- (XS

-
P

Figure 7: Visualizations of 10 speakers by PCA and MBN at
layer 3 respectively, where a 16-mixtures UBM with 20 EM it-
erations is used to produce their input supervectors. The speak-
ers are labeled in different colors.

Table 1: Accuracy comparison (in terms of NMI) of speaker
clustering algorithms.
2-dim  3-dim 5-dim  10-dim  30-dim  50-dim
GMM+PCA 64.44 71.09 71.74 84.48 86.93 83.90
UBSC+PCA  73.78 7379 8525 97.96 96.81 94.82
GMM+MBN 8274 8759 90.76  91.72 91.27 90.91
UBSC+MBN  81.40 9186 9538  99.11 97.15 97.39

with yellow and deep-blue colors. Because GMM-UBM has
enough mixtures for modeling the 10 speakers, the only reason
for their differences is that the data distributions of the speak-
ers are not exactly Gaussian. (i) When MBN is used as the
dimensionality reduction tool, UBSC+MBN performs at least
as equally as GMM+MBN with a smaller within-class variance
than GMM+MBN.

Table 1 lists the comparison result on speaker clustering.
From the table, we observe that, (i) UBSC significantly out-
performs GMM-UBM, and (ii) MBN significantly outperforms
PCA.

7. Conclusions

In this paper, we have proposed a multilayer bootstrap network
based speaker clustering algorithm. It uses GMM-UBM or the
novel UBSC as the universal background model to extract a
high-dimensional feature from the original MFCC acoustic fea-
ture, then uses MBN to reduce the high-dimensional feature
to a low-dimensional space, and finally clusterings the low-
dimensional data. We have compared it with GMM-UBM-,
PCA-, and k-means-clustering-based methods. Experimental
results have shown that the proposed method outperforms the
referenced methods. Moreover, it is insensitive to parameter
settings, which facilitates its practical use.
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