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Abstract—One important classifier ensemble for multiclass
classification problems is error-correcting output codes (ECOCs).
It bridges multiclass problems and binary-class classifiers by
decomposing multiclass problems to a serial binary-class prob-
lems. In this paper, we present a heuristic ternary code,
named weight optimization and layered clustering-based ECOC
(WOLC-ECOC). It starts with an arbitrary valid ECOC and
iterates the following two steps until the training risk con-
verges. The first step, named layered clustering-based ECOC
(LC-ECOC), constructs multiple strong classifiers on the most
confusing binary-class problem. The second step adds the new
classifiers to ECOC by a novel optimized weighted (OW) decod-
ing algorithm, where the optimization problem of the decoding
is solved by the cutting plane algorithm. Technically, LC-ECOC
makes the heuristic training process not blocked by some difficult
binary-class problem. OW decoding guarantees the nonincrease
of the training risk for ensuring a small code length. Results
on 14 UCI datasets and a music genre classification problem
demonstrate the effectiveness of WOLC-ECOC.

Index Terms—Ensemble learning, error-correcting output code
(ECOC), multiclass classification, multiple classifier system.

I. INTRODUCTION

OVER the last decades, classifier ensembles [1]–[10],
such as bagging [11], boosting [12] and their varia-

tions, have demonstrated their effectiveness on many learning
problems [13]–[15]. Their success relies on a good selec-
tion of base learners and a strong diversity among the base
learners, where the word “diversity” means that when the
base learners make predictions on an identical pattern, they
are different from each other in terms of errors. As summa-
rized in [1]–[4] there are generally four groups of classifier
ensembles: 1) manipulating training examples; 2) manipulat-
ing input features; 3) manipulating training parameters; and 4)
manipulating output targets.

One method of manipulating output targets is error-
correcting output codes (ECOCs) [16] which is motivated
from information theory for correcting bits caused by
noisy communication channels. The key idea of ECOC is
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summarized as follows. Given a multiclass problem, ECOC
assigns each class a unique codeword. All codewords form an
ECOC coding matrix, where each row of the coding matrix
is a codeword and each column defines a bipartition of the
classes. Training dichotomizers (i.e., binary-class classifiers)
on different bipartitions of the classes gets an ECOC ensemble.
ECOC has two merits: 1) it bridges multiclass problems and
dichotomizers and 2) it may correct errors by proper codeword
designs. ECOC consists of two parts—coding and decoding.
Coding assigns each class a unique codeword. Decoding pre-
dicts a test pattern by matching the predicted codeword with
its most similar codeword in the coding matrix.

The coding techniques can be categorized to two classes.
The first class is problem-independent codings [16]–[18]
which use coding matrices that have strong error-correcting
abilities in the view of channel coding. The second class
is problem-dependent codings [19]–[37] which aim to solve
given multiclass problems without considering the error-
correcting ability of coding matrices much. This class attracted
much attention in recent years, such as discriminant ECOC
(DECOC) [26] ECOC-optimizing node embedding (ECOC-
ONE) [27], [38] subclass-ECOC [28] manipulations of fea-
tures [39], [40] and manipulations of the parameters of base
dichotomizers [34]. The decoding methods are various dis-
tance metrics, including hamming distance (HD), Euclidean
distance (ED), probabilistic [41] loss-based (LB) [42] and
loss-weighted (LW) [43] decodings.

In this paper, we propose a heuristic ternary ECOC, named
weight optimization and layered clustering-based ECOC
(WOLC-ECOC). As shown in Fig. 1, it begins with an
arbitrary valid ECOC ensemble and iteratively adds new
dichotomizers to the ensemble in a greedy training manner by
the following two steps until the training risk converges, where
the word “valid” means that each codeword is unique. The first
step trains a dichotomizer that discriminates the most confus-
ing pair of classes by a new layered clustering-based ECOC
(LC-ECOC) approach. The second step adds the dichotomizer
to ECOC by a new optimized weighted (OW) decoding algo-
rithm. The left side of the dotted line of Fig. 1 summarizes the
contributions of this paper, while the right side was proposed
in [38] and [27].

1) A novel LC-ECOC coding method is proposed. The
key idea of LC-ECOC is to construct multiple strong
dichotomizers on a single pair of classes by first clus-
tering the pair to small nonoverlapped regions multiple
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Fig. 1. System overview of WOLC-ECOC. The left side of the dotted line is
our contribution. The right side of the dotted line is ECOC-ONE [27], [38].

times and then training a classifier for each region in
each time of clustering, where all classifiers in each time
of clustering group to a strong dichotomizer. It is moti-
vated from the weakness of ECOC-ONE [27], [38] in
which the heuristic training process might be blocked by
some difficult binary-class problems; although subclass-
ECOC [28] has shown its advantage on the most con-
fusing problems by embedding a tree into each problem,
it is difficult to control the growth of the tree.

2) A novel cutting-plane algorithm (CPA)-based OW
decoding method is proposed. Like LW decoding [43]
OW decoding is also a nonbiased decoding for ternary
codes, but OW decoding improves LW decoding by opti-
mizing the empirical weight matrix of the LW decoding
for the minimum training risk. We solve the optimiza-
tion problem via CPA [44]–[47]. The CPA-based OW
decoding has linear time and storage complexities.

3) A novel WOLC-ECOC classifier system is proposed.
As shown in Fig. 1, WOLC-ECOC iterates LC-ECOC
(and also ECOC-ONE) and OW decoding until the train-
ing risk converges. The iteration integrates the merits of
the aforementioned two items together: 1) LC-ECOC
ensures that the greedy training will not be blocked
by some difficult binary-class problems and 2) OW
decoding guarantees the nonincrease of the training
risk whenever adding a new dichotomizer to ECOC,
so that the heuristic training can be easily controlled
via the training risk, which makes a small code length
available.

WOLC-ECOC inherits the advantages of ECOC-
ONE [27] subclass-ECOC [28] and LW decoding [43]
and meanwhile overcomes their drawbacks.

4) A brief literature survey of ECOC is conducted.
The experimental comparison with 15 coding–decoding

methods on 14 UCI benchmark datasets with two kinds of base
classifiers shows that WOLC-ECOC outperforms comparison
methods when the discrete AdaBoost is used as the base clas-
sifier, outperforms 12 comparison methods when the Gaussian
radial-basis-function (RBF) kernel-based SVM is used as the
base classifier, and meanwhile maintains a small code length
in both scenarios.

The rest of the paper is organized as follows. In Section II,
we conduct a brief literature survey on ECOC. In Section III,
we present the LC-ECOC coding method. In Section IV, we
present the CPA-based OW decoding method. In Section V,
we present WOLC-ECOC. In Section VI, we report the exper-
iment results and further apply WOLC-ECOC to a real-world
problem—music genre classification. Finally, we conclude this
paper in Section VII.

We first introduce some notations here. Bold small letters,
e.g., w, indicate column vectors. Bold capital letters, e.g., M
and W, indicate matrices. Letters in calligraphic fonts, e.g., W ,
indicate sets, where R

d denotes a d-dimensional real space. 0
(1) is a column vector with all entries being 1 (0).

II. BRIEF LITERATURE SURVEY

ECOC originally views “machine learning as a kind of com-
munication problem in which the identity of the correct output
class for a new example is being transmitted over a channel.
The channel consists of the input features, the training exam-
ples, and the learning algorithm.” [16]. Given a P class clas-
sification problem with a set of labeled examples {(ρi, yi)}ni=1
where ρi ∈ R

d and yi ∈ {1, 2, . . . , P} is the label of ρi, ECOC
aims to solve the problem by for example Q dichotomizers.
The relation between the classes and the dichotomizers can
be expressed by a binary coding matrix M ∈ {−1, 1}P×Q

or a ternary coding matrix M ∈ {−1, 0, 1}P×Q, where the
p-th row of M expresses the codeword of class p, denoted
as cp, and the q-th column expresses the q-th dichotomizers,
denoted as hq.

A. Survey on the Coding Phase

Two common output codes are the one-versus-all (1ver-
susALL) and one-versus-one (1versus1) matrices [48].
Because they have no error-correcting ability, later on, chan-
nel codes with large HDs between the codewords were
tried, which is known as problem-independent codings [16].
However, unlike channel codes in communication, the “chan-
nels” in ECOC are influenced by the bipartitions of classes: if
the classes are partitioned improperly, the “noise” (errors) of
the channels may be rather high. Furthermore, because there
are only 2P−1−1 possible bipartitions in any binary codes, the
code length is limited when P is small [34]. Finally, the error-
correcting ability of ECOC is severely limited. Until now, to
our knowledge, few evident proofs showed the error-correcting
ability [49] and in most cases, 1versusALL and 1versus1 are
still prevalent [50]. Although Tapia et al. [17], [18] declared
improved performance with low-density parity-check codes
and special bipartitions, we do not know how much the codes
contribute to the improvement compared to the bipartitions.
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Fig. 2. Coding matrix M of a ternary ECOC [43]. In the coding phase, if the
entry of M, denoted as mp,q, equals to 1, the dichotomizer hq takes class p as
part of the positive superclass. If mp,q = −1, hq takes class p as part of the
negative superclass. If mp,q = 0, hq does not take class p into training [42].
In the decoding phase, taking a test example ρ into h1, . . . , hQ successively
gets a test codeword of ρ, denoted as x = [x1, . . . , xQ]T . Given a decoding
strategy f (x, cp), the prediction of ρ can be formulated as a minimization

problem mincp∈M f (x, cp), where M = {cp}Qp=1 is the set of codewords.

Therefore, ECOC is more properly viewed as a bridge
between powerful dichotomizers and multiclass problems
without considering the error-correcting ability much, which
results in the following three types of problem-dependent
codings.

The first type learns ECOC in a single objective. Because
finding an optimal binary coding matrix in a single objec-
tive is NP-complete, researchers relaxed the binary coding
matrix to a continuous one and reformulated the prob-
lem to a regularized optimization problem. Typical methods
include multiclass-SVM [51] and several large margin related
works [19]–[24] However, it is worthy noting that multiclass-
SVM does not perform better than 1versusALL and 1versus1,
and even suffers from longer training time [48]. Motivated
from multiclass-SVM [51], Zhong et al. [25] further took
base dichotomizers into optimization. Because the objec-
tive is too complicated, it has to be solved approximately
via the nonconvex constrained concave-convex procedure
(CCCP) [52], [53]. Moreover, the continuous coding matrix
has to be normalized after each CCCP iteration, making
the convergence of the objective unguaranteed. Summarizing
the aforementioned, it might be difficult and time consum-
ing to learn a problem-dependent coding matrix in a single
objective.

The second type uses ternary codes.
1) Allwein et al. [42] extended binary coding to ternary

coding, i.e., M ∈ {−1, 0, 1}P×Q, see Fig. 2 for an
example. The entry M(p, q) = 0 indicates that the q-th
dichotomizer does not take the p-th class into training.
This method greatly enlarges the number of all possible
bipartitions and makes each binary-class problem easily
solved.

2) Pujol et al. [26] proposed DECOC which embeds a
binary decision tree into the ternary code and takes the
bipartition that maximizes the mutual information as a
new node of the tree whenever adding a new node to
the tree. Yang and Tsang [54] further proposed to find
the most discriminative bipartition in terms of maximum
separating margin. These methods need at most P − 1
dichotomizers.

3) Toovercome theweaknessofdecision tree that thenodesof
a tree cannot rectify misclassified examples made by their
father nodes, Pujol et al. [27], [38] proposed ECOC-ONE

which iteratively adds dichotomizers that discriminate the
most confusing pairs.

4) To overcome the weakness of ECOC-ONE that the
training process may be blocked by some stubborn
binary problems, Escalera et al. [28] further proposed
subclass-ECOC, which splits the most confusing class
to several subsets (called subclasses) by a decision tree.
Because it is also hard to decide when to stop splitting,
Escalera et al. [28] used three hyperparameters to con-
trol the splitting process, and Bouzas et al. [29] tried
to find the optimal hyperparameters by searching the
hyperparameter spaces.

The third type focuses on improving the diversity between
base dichotomizers.

1) The following methods improve the diversity by manip-
ulating output codes. Kuncheva and Whitaker [30], [31]
and Escalera et al. [32] designed new decoding met-
rics between codewords. Escalera et al. [33] suggested
to selectively replace some 0 positions of an original
ternary ECOC codes with 1 or −1 according to the
accuracies of the base learners at the corresponding
classes, which enlarges the distance between the code-
words. Escalera et al. [35] combined multiple different
DECOC trees. Hatami [55] tried to delete the columns
of a coding matrix that have weak diversities.

2) Other types of diversity were seldom explored: Only
Prior and Windeatt [34] manipulated different parame-
ter settings of multilayer perceptrons. Bagheri et al. [39],
[40] trained different base dichotomizers with different
feature subsets. Our LC-ECOC—a method of manipu-
lating training examples—was partially motivated from
this fact.

There are also many other ECOC coding designs and appli-
cations, such as the evolution computing-based methods [36],
[37] probability ECOC [56] structured outputs of ECOC [57]
online ECOC [58], [59] and reject rule-based ECOC which
rejects to use extremely confusing examples [60], [61].

B. Survey on the Decoding Phase

The representative decoding methods are HD, ED, proba-
bilistic [41], LB [42], and LW decodings [43]. Here, we focus
on reviewing LW decoding since it has a compact theory and
performs better than other decoding methods in practice.

In [43], and in previous works [33] and [38], Escalera et al.
argued that a good decoding strategy should make all code-
words have the same decoding dynamic range and zero decod-
ing dynamic range bias. Based on the argument, they proposed
the LW decoding for ternary ECOCs, which is the first decod-
ing strategy of ternary ECOCs that satisfies the aforementioned
two goals. The LW decoding introduces a predefined weight

matrix W = [wT
1 , . . . , wT

P]T =
[w1,1 . . .w1,Q

...
. . .

...wP,1. . .wP,Q

]
∈ W that has

the same size as M and satisfies the following two constraints:

wp,q

{= 0 , if mp,q = 0
∈ [0, 1] , if mp,q �= 0

∀p = 1, . . . , P,∀q = 1, . . . , Q (1)
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Q∑
q=1

wp,q = 1, ∀p = 1, . . . , P (2)

where mp,q is an element of M and W is the set of all feasi-
ble weight matrices (i.e., W ∈ W). When mp,q �= 0, wp,q is
assigned empirically according to the training accuracy of the
q-th base dichotomizer on the p-th class.

The prediction function of the LW decoding is given by

min
cp∈M

fLW(x, cp) = min
cp∈M

Q∑
q=1

wp,q�(xqcp,q) (3)

where �(·) is a user defined loss function, such as the linear
loss function �(θ) = −θ .

III. LC-ECOC

In this section, we first review the layered clustering-based
approach for classifier ensembles [3] and then propose a new
LC-ECOC.

A. Layered Clustering-Based Approach

The layered clustering-based approach [3] is an ensemble
learning method that manipulates training examples for enlarg-
ing diversity. Specifically, it first splits training examples to
several nonoverlapping regions by clustering, where the classi-
fication problem in each region is further solved by a classifier.
The classifiers in all regions group to a super-classifier. Then,
it repeats the above procedure several times. Each indepen-
dent repeat forms a layer of super-classifier. All layers of
super-classifiers vote for a test example.

This method contains two complementary properties. First,
the clustering-based approach can identify overlapping pat-
terns that are hard to differentiate, so that the classifier in
each layer may achieve a high accuracy. But the clustering-
based approach do not include any mechanism to incorporate
diversity. Second, the layered approach uses the mechanism
of bagging to achieve diversities between the super-classifiers.
This layered structure, as proved in [1, p. 2] (an article
appeared before [3]) will improve the discriminability of a
classifier ensemble on a given binary-class problem.

B. LC-ECOC

Motivated by ECOC-ONE [27] and subclass-ECOC [28] the
proposed LC-ECOC also uses the greedy training strategy, a
strategy that iteratively adds new dichotomizers that intend to
solve the most difficult binary-class problems of previous iter-
ations. The difference between them lies on how they deal
with the “stubborn” binary-class problems, where “stubborn”
means that a binary-class problem has been tried to solve by
a dichotomizer, but it appears to be the most difficult prob-
lem again. When such a situation happens, ECOC-ONE has
to stop training, subclass-ECOC employs a decision-tree to
further split the problem, and our LC-ECOC trains one layer
of clustering-based dichotomizer [3] on the problem. Because
different layers of clustering-based dichotomizers are differ-
ent in terms of errors, LC-ECOC will not be blocked by the
stubborn problems.

Fig. 3. Example of LC-ECOC for a three-class classification prob-
lem. h(s) indicates a simple dichotomizer. h(c) indicates a clustering-based
dichotomizer.

Fig. 4. Example of the heterogeneous clustering-based dichotomizer.
(a) Training. (b) Prediction.

Fig. 3 gives an example of LC-ECOC for a three-class clas-
sification problem. It is initialized with a compact code M. At
the first iteration, it finds the most difficult binary-class prob-
lem, supposing to be m = [1,−1, 0]T . Because m is not a
column of M, LC-ECOC trains a simple base dichotomizer h(s)

3
to discriminate classes 1 and 2. At the second iteration, when
observing the fact that the most difficult problem [1,−1, 0]T

has already appeared as the third column of M. it trains one
layer of clustering-based dichotomizer h(c)

4 , so as to h(c)
5 .

We adopt the heterogeneous clustering-based approach [3],
[62] to train each complicated clustering-based dichotomizer
(Algorithm 1). Specifically, in the training process, the hetero-
geneous clustering-based approach splits the space of a pair
of classes to Nc regions (Nc > 1) without considering the
class attributes. For each region, if the region contains exam-
ples from both classes, it trains a simple base dichotomizer
on the region; otherwise, it remembers the class attribute of
the region. In the prediction process, a test example is first
assigned to its host region, a region whose center has the mini-
mum ED from the example over all regions. Then, if the region
owns a base dichotomizer, the approach predicts the test exam-
ple by the base dichotomizer; otherwise, it assigns the class
attribute of the region to the test example.

Fig. 4 gives an example of the training and prediction of
a heterogeneous clustering-based dichotomizer. In the train-
ing process [Fig. 4(a)], it first finds the most confusing region
by splitting the training examples to two regions by k-means.
Because region 1 consists of two classes, it trains a simple
dichotomizer to discriminate the two classes in the region.
Because region 2 consists of only class 1, it simply remem-
bers the class attribute. In the prediction process [Fig. 4(b)],
because example 1 falls into region 1, it classifies example 1
to class −1 by the simple dichotomizer in region 1. Because
example 2 falls into region 2 and because region 2 belongs to
class 1, it classifies example 2 to class 1.
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Algorithm 1 LC-ECOC
1: /* Training */
2: repeat
3: Find the most confusing pair of classes
4: if the pair has not been tried to solve by ECOC then
5: Train a simple dichotomizer for the pair
6: else
7: /* Training a clustering-based dichotomizer */
8: Partition the space of the pair to Nc regions by

clustering
9: for i = 1, . . . , Nc do

10: if the examples in the i-th region are from both
classes then

11: Train a dichotomizer on the region
12: else
13: Remember the class attribute of the region
14: end if
15: end for
16: end if
17: Add the new dichotomizers to the ECOC ensemble
18: until the training risk converges
19:

20: /* Prediction */
21: for q = 1, . . . , Q do
22: if the dichotomizer hq is a simple one then
23: Predict the example by hq

24: else
25: Assign the test example to its host region
26: if the region owns a dichotomizer then
27: Predict the example by the dichotomizer of the

region
28: else
29: Assign the class attribute of the region to the

example
30: end if
31: end if
32: end for
33: Decode the predicted codeword of the example

Note that the clustering algorithms that have high accu-
racies, such as spectral clustering [63] agglomerative clus-
tering [64] maximum margin clustering [15] or clustering
ensemble [65] are not suitable for this job. The more “weak”
and unstable the clustering algorithm is, the more suitable it
seems to be. Hence, k-means clustering is adopted.

IV. CPA-BASED OW DECODING FOR ECOC

In this section, we first propose the OW decoding, and then
employ CPA to accelerate the decoding algorithm.

A. OW Decoding

OW decoding optimizes the weight matrix of the LW decod-
ing [43] for the minimal training risk, which is formulated
as a linear programming problem that can be solved in time
O(n log n).

The weight matrix is optimized as follows. Given a training
example ρi with its predicted codeword from the dichotomiz-
ers, denoted as xi, and ground truth label yi, if ρi is classified
correctly, according to (3), the following criterion is satisfied:

Q∑
q=1

wyi,q�(xi,qcyi,q) ≤
Q∑

q=1

wp,q�(xi,qcp,q)

∀p = 1, . . . , P (4)

where �(θ) can be defined as �(θ) = −θ . Letting ui,p =
[�(xi,1cp,1), . . . , �(xi,Qcp,Q)]T can rewrite (4) as

wT
yi

ui,yi − wT
p ui,p ≤ 0, ∀p = 1, . . . , P (5)

where any ui,p should be normalized to ui,p/ maxi,p,q |ui,p,q|,
so as to prevent unexpected numerical problems. If ρi is
misclassified, it will cause a training loss ξi. One possible
measurement of ξi is the hinge loss

ξi = max
p=1,...,P

(
0, wT

yi
ui,yi − wT

p ui,p

)
. (6)

Minimizing the training risk is to minimize the sum of the
training loss of all examples, which is formulated as the
following convex linear programming problem:

min
W∈W

J (W)

� min
W∈W

n∑
i=1

max
p=1,...,P

(
0, wT

yi
ui,yi − wT

p ui,p

)
(7)

which can be rewritten as the following constrained optimiza-
tion problem:

min
W∈W,ξi≥0

n∑
i=1

ξi

subject to wT
p ui,p − wT

yi
ui,yi ≥ −ξi

∀i = 1, . . . , n, ∀p = 1, . . . , P. (8)

Note that the definition of ξi in (6) is important to the diffi-
culty of the optimization. If it is defined as the training error,
i.e., ξi ∈ {0, 1}, problem (8) will be an integer matrix opti-
mization problem with an NP-complete complexity. Usually,
we use some convex surrogate function, such as hinge loss, to
relax ξi to a continuous value. As will be shown in Section V,
this relaxation enforces us to pick the most confusing pair
of classes according to the training risk matrix but not the
confusion matrix of classification errors.

B. CPA-Based OW Decoding

Because problem (8) has O(n) parameters and O(n) con-
straints, solving problem (8) is still inefficient for large-scale
problems. Here, we employ the well-known CPA [44]–[47],
[66] to further lower its time complexity to O(n).

CPA is an efficient optimization tool for those convex opti-
mization problems with large amounts of constraints. Its time
and storage complexities are irrelevant to the number of con-
straints. In CPA terminology, a problem with a full constraint
set is called a master problem [47] while a problem with only a
constraint subset from the full set is called a reduced problem,
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or a cutting-plane subproblem. Generally, CPA begins with a
reduced problem that has only an empty working constraint
set, and then iterates the following two steps: 1) solving the
reduced problem with the working constraint set and 2) adding
the most violated constraint of the current solution point from
the full set to the working constraint set, so as to form a new
reduced problem. If the new voilated constraint violates the
solution of the previous reduced problem by no more than ε,
CPA is stopped, where ε is a user defined solution precision. It
has been proven that the number of iterations is upper bounded
by O(1/ε) [46] which is irrelevant to n.

For our problem, we first reformulate problem (8) to the
following equivalent optimization problem:

min
W∈W,ξ≥0

ξ

subject to
n∑

i=1

P∑
p=1

gi,p

(
wT

p ui,p − wT
yi

ui,yi

)
≥ −ξ

∀G ∈ Zn (9)

where gi = [gi,1, . . . , gi,P]T , G = [
g1, . . . , gn

] =[g1,1 . . .gn,1
...

. . .
...g1,P. . .gn,P

]
, and the set Z = {zp}Pp=1 with zp defined as

zp,k =
{

1 , if k = p
0 , otherwise

, k = 1, . . . , P. (10)

Problem (8) and (9) are equivalent in the following theorem.
Theorem 1: Any solution W of problem (9) is also a

solution of problem (8), and vice versa, with ξ = 1
n

∑n
i=1 ξi.

Proof: See Appendix VII-A.
Comparing problem (9) to (8), we can see that although

problem (9) has only one slack variable, the number of its
constraints is as high as Pn. Fortunately, problem (9) can be
solved approximately by CPA. The CPA-based OW decod-
ing algorithm is described in Algorithm 2. The derivation,
which is omitted here, is similar to the well-known SVMperf

toolbox [45], [66], [67].
Because problem (11) has very few constraints, the time

complexity of Algorithm 2 is O(n), which is consumed on
calculating

∑n
i=1 gi,pui,p in (11). Besides the linear time com-

plexity, the CPA-based OW decoding has another important
merit: its storage complexity is irrelevant to the implementation
method of the linear programming toolbox, since the linear
programming problem (11) has only O(1) parameters and O(1)

constraints. We take the standard linear programming toolbox in
MATLAB as an example: if we rewrite both (8) and (11) to the
standard form “minx fTx subject to Ax ≤ b,” matrix A in (8) is
(PQ+ n)× n in size, while A in (11) is only (PQ+ 1)× |�|
in size where |�| denotes the size of the working constraint set
and is a small integer that is irrelevant to n. As a result, the
original OW decoding cannot handle middle scale datasets in
the MATLAB environment, while the CPA-based OW decoding
is not limited by the scale of the dataset.

V. WOLC-ECOC

The framework of WOLC-ECOC is presented in Fig. 1. The
training procedure of WOLC-ECOC is detailed in Algorithm 3
and described as follows.

Algorithm 2 CPA-Based OW Decoding

Input: Dataset U =
{
{ui,p}Pp=1, yi

}n

i=1
.

Output: Optimal weight matrix W.
Initialization: Arbitrary initial weight matrix W (W ∈ W),

empty initial working constraint set � = {}, the size of
working constraint set |�| ← 0.

1: repeat
2: |�| ← |�| + 1
3: Calculate the most violated constraint G|�|

g|�|i,p ←
{

1, if p = arg maxp

(
wT

yi
ui,yi − wT

p up

)
0, otherwise

4: Add the most violated constraint G|�| to �

�← � ∪G|�|
5: Solve the reduced problem

min
W∈W,ξ≥0

ξ (11)

subject to
n∑

i=1

P∑
p=1

gi,p

(
wT

p ui,p − wT
yi

ui,yi

)
≥ −ξ,

∀G ∈ �

6: until � is unchanged

WOLC-ECOC starts with any valid ECOC {M, C} with C =
{h1, . . . , hQ}, such as 1versusALL, 1versus1, or compact code
(i.e., Q < P), and then iterates the following two steps.

1) The first step optimizes the weight matrix W of the OW
decoding and obtains the minimal training risk Jo by
the weightoptimization function which is described in
Section IV.

2) The second step first finds the top s most confusing
pairs of classes, denoted as {mk}sk=1, and then adds
all s dichotomizers {h′k}sk=1 that discriminate {mk}sk=1,
respectively to C. For training h′k, as presented in
LC-ECOC (Algorithm 1), two situations should be con-
sidered: if mk does not equal to any column of M,
we train a new simple dichotomizer h′k

(s) as usual
by the simplelearning function; otherwise, we train a
complicated clustering-based dichotomizer h′k

(c) by the
ClusteringBasedLearning function in Section III.

The loop stops when the maximum iteration number T is
reached or the following inequality is satisfied for continuous
Z iterations:

J ′o − Jo

Jo
≤ η (12)

where Jo and J ′o are the training risks of the current and
previous iterations respectively, and η is a user defined solu-
tion precision. Finally, the ECOC ensemble {Mo, Co, Wo} that
achieves the minimum risk is returned. Here, we have to note
that although OW decoding can reach its global minimum
solution at each WOLC-ECOC iteration, the overall heuristic
training process only reaches a local minimum solution.
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Algorithm 3 WOLC-ECOC
Input: Dataset D = {ρi, yi}ni=1, the number of the most con-

fusing pairs per iteration s, maximum iteration number
T , solution precision η, parameter for the termination
condition Z.

Output: ECOC coding matrix Mo and the corresponding
classifier ensemble Co, optimal weight matrix Wo.

Initialization: initial ternary ECOC coding matrix M ∈
{−1, 0, 1}P×Q and the classifier ensemble C =
{h1, . . . , hQ} that is learned from M and D, J ′o ← inf ,
z← 0, t← 0.

1: repeat
2: for i = 1, . . . , n do
3: Predict ρi by the LC-ECOC prediction process
4: Calculate {ui,p}Pp=1 defined in (4)
5: end for
6: /* Optimize weight matrix */
7: {W,Jo} ←WeightOptimization(U , M), where U ={

{ui,p}Pp=1, yi

}n

i=1
8: if Jo = 0 then
9: Mo ←M, Co ← C, Wo ←W

10: return
11: end if
12: /* Get the most confusing pairs */
13: Find s pairs of classes that have the highest training

risks {mk}sk=1. Get their corresponding training risks
{εk}sk=1

14: /* Learn the base dichotomizers from {mk}sk=1 */
15: for k = 1, . . . , s do
16: if εk �= 0 then
17: if mk does not equal to any column of M then
18: h′k ← SimpleLearning(D, mk)
19: else
20: h′k ← ClusteringBasedLearning(D, mk)
21: end if
22: M← [M, mk], C ← C ∪ h′k
23: end if
24: end for
25: /* Control the termination criterion */
26: if (J ′o − Jo)/Jo ≤ η then
27: z← z+ 1
28: else
29: z← 0
30: Mo ←M, Co ← C, Wo ←W
31: end if
32: t← t + 1, J ′o ← Jo

33: until z = Z or t = T

WOLC-ECOC has two merits when compared to its com-
ponents. First, the monotonic decrease of the training risk
of WOLC-ECOC is guaranteed, see Appendix VII-B for the
proof. Second, a small ECOC code length is ensured, since
discriminating the most difficult binary-class problem at each
iteration make ECOC obtain the maximum performance gain.

In Algorithm 3, we have considered the following three
issues for the robustness and efficiency of WOLC-ECOC.

Fig. 5. Comparison of the confusion matrix and the training risk matrix of
a three-class classification problem. (a) Confusion matrix. (b) Training risk
matrix.

TABLE I
DESCRIPTIONS OF THE DATASETS. “n” IS THE DATASET SIZE, “d” IS THE

DIMENSION, “P” IS THE NUMBER OF THE CLASSES

First, how to balance the discriminability and the code length?
Multiple layers of clustering-based dichotomizers might trigger
a significant performance improvement with a risk of overfitting,
while one or two layers might not improve the performance. To
solve the problem, the following termination criterion is used:
if the training risk does not decrease in a rate of η [in (12)] for Z
continuous iterations, we stop the training procedure. Usually,
setting Z to an arrange of 3–5 is enough.

Second, how to make the performance robust? Sometimes,
the most confusing pair is too stubborn to overcome. To pre-
vent this unwanted situation, we discriminate the top s most
confusing pairs of classes, denoted as {mk}sk=1, instead of a
single most confusing pair.

Third, how to define the most confusing pair of classes?
ECOC-ONE [27] selects the most confusing pair of classes
by the confusion matrix ε which is defined as

εi,j =
∑

k:ρρρk∈ class i

ei,j(ρk) (13)

where function ei,j(·) is defined as

ei,j(ρ) =
{

1, if ρ ∈ class i but is misclassified to j
0, otherwise.

However, because OW decoding relaxes the loss function
from classification error {0, 1} to a convex continuous sur-
rogate function (6) with a range of [0,+∞), Algorithm 3
minimizes the training risk J(W) instead of classification error.
That is to say, for each iteration, Algorithm 3 picks a pair of



296 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 2, FEBRUARY 2015

TABLE II
ACCURACY COMPARISON (%) OF THE ECOC CODING–DECODING METHODS ON THE UCI DATASETS. THE BASE LEARNER IS THE DISCRETE

ADABOOST. IN EACH GRID, THE FIRST LINE IS THE ACCURACY AND THE SECOND LINE IS THE STANDARD DEVIATION.
THE ROW “RANK” IS THE AVERAGE RANK OVER ALL 14 DATASETS

classes that has the highest training risk but not the one that has
the highest classification error. Correspondingly, the training
risk matrix ε is defined as

εi,j =
∑

k:ρρρk∈ class i

(
wT

i uk,i − wT
j uk,j

)

δ

(
min

p=1,...,P;p �=j
wT

p uk,p − wT
j uk,j

)
(14)

where δ(·) is the indicator function

δ(a) =
{

1, if a > 0,

0, otherwise.

An example comparison between the confusion matrix and
the training risk matrix is shown in Fig. 5. From Fig. 5(a), we
observe that: 1) each class consists of 100 examples; 2) the
candidate confusing pairs of classes are m1,2 = [1,−1, 0]T ,
m1,3 = [1, 0,−1]T , and m2,3 = [0, 1,−1]T with the numbers
of misclassified examples being ε1,2 = 0 + 0 = 0, ε1,3 =
10+ 0 = 10, and ε2,3 = 10+ 5 = 15 respectively; and 3) the
most confusing pair is selected as m2,3.

But from Fig. 5(b), we observe that: 1) the training risk
pairs are ε1,2 = 0 + 0 = 0, ε1,3 = 0 + 20 = 20, and
ε2,3 = 4 + 6 = 10, respectively and 2) the highest training
risk pair is m1,3. Comparing Fig. 5(a) with (b), we can see
that different optimization objectives might give a binary-class
problem different training priorities.

VI. EXPERIMENT ANALYSIS

In this section, we first compare WOLC-ECOC with 15
coding–decoding pairs on 14 UCI benchmark datasets with
two kinds of base dichotomizer—AdaBoost and SVM, then
study the convergence behavior of WOLC-ECOC, and finally
apply WOLC-ECOC to a music genre classification problem.

A. Experiment Settings

We used 14 multiclass datasets in the UCI machine learning
repository database.1 The properties of the datasets are listed
in Table I. All datasets were normalized into the range of [0, 1]
in dimension [68].

For the proposed WOLC-ECOC, the number of the most
confusing pairs per iteration s was set to 3. The termination
condition Z was set to 3. The solution precision η was set
to 0.01. The initial ECOC was 1versusALL. The maximum
iteration number T was set to 3P where P is the number of
classes.

To show the effectiveness of WOLC-ECOC, we compared
it with five state-of-the-art ECOC coding designs, including
1versus1, 1versusALL, random ECOC[42], DECOC [26] and
ECOC-ONE using 1versusALL as its initialization [38]. Each
of the comparison coding methods combined three decoding
methods, including HD, LB [42], and LW [43] decodings. We

1http://archive.ics.uci.edu/ml/
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TABLE III
ACCURACY (%) COMPARISON OF THE ECOC CODING–DECODING METHODS ON THE UCI DATASETS. THE BASE LEARNER IS THE GAUSSIAN RBF

KERNEL-BASED SVM. IN EACH GRID, THE FIRST LINE IS THE ACCURACY AND THE SECOND LINE IS THE STANDARD DEVIATION.
THE ROW “RANK” IS THE AVERAGE RANK OVER ALL 14 DATASETS

followed the ECOC library [69]2 for the implementations of
the referenced methods.

To demonstrate how a base classifiers affects the per-
formance, we used two popular base classifiers—discrete
AdaBoost [70] and Gaussian RBF kernel-based SVM [66].3

AdaBoost uses 40 decision stump weak learners. The parame-
ters of SVM were searched in grid: parameter C was searched
through {212, 213, . . . , 218}, and the kernel width σ of the RBF
kernel was searched through {0.25γ, 0.5γ, γ, 2γ, 4γ }, where
γ is the average ED between the training examples.

For each dataset, we ran each pair of the coding–decoding
methods 10 times and recorded the average experimental
results. For each single run, we applied a stratified sam-
pling and 10-fold cross-validation, and tested for confidence
interval at 95% with the two-tailed t-test. Therefore, we con-
ducted 100 independent runs on each dataset for each pair of
coding–decoding methods.

B. Effectiveness

Tables II and III list the classification accuracies of all
coding–decoding methods with respect to AdaBoost and SVM,
respectively. From Table II, we can see clearly that WOLC-
ECOC is the most effective one. But from Table III, we

2http://sourceforge.net/projects/ecoclib/
3http://svmlight.joachims.org/svmperf.html

observe that WOLC-ECOC is less effective than the 1versus1
coding but more effective than other coding methods.

The reason why the WOLC-ECOC with AdaBoost performs
better than the WOLC-ECOC with SVM may be explained
from information theory. It is well known in information theory
that the error-correcting ability of any coding method is upper-
bounded by the Shannon limit which is irrelevant to the coding
method. That is to say, it is possible that the performance of
a strong coding method in a noisy channel is worse than the
performance of a weak coding method in a clean channel.

The channel of an ECOC problem, as presented in Section II,
is determined by the features, base learner and coding method.

1) The more suitable the bipartitions of the classes are and
the stronger the base learner is, the cleaner the channel
will be. Because 1versus1 bipartitions data according
to their natural distributions, its channel has minimum
noise in most datasets. Similarly, AdaBoost introduces
more noise to the channel than SVM. We can image
that the Shannon limits of different coding methods with
AdaBoost as the base learner tend to be more similar
than those with SVM as the base learner.

2) On the other side, the more diverse the dichotomizers
are and the larger the minimum distance between the
codewords is, the stronger the error-correcting ability
of the codes will be, where the term “diverse” is also
named independent in some papers [39], [40].
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TABLE IV
CODE LENGTH COMPARISON OF THE ECOC CODING–DECODING METHODS ON THE UCI DATASETS

When the Shannon limits are similar, the performance
is determined by the error-correcting ability of the coding
methods, which explains the advantage of WOLC-ECOC in
Table II; otherwise, the performance is determined by the
Shannon limits, which explains the inferior of the WOLC-
ECOC to 1versus1 coding in Table III.

Note that WOLC-ECOC was initialized by 1versusALL in
all experiments. If it is initialized by other coding methods that
are better than 1versusALL, it may achieve better performance.

C. Efficiency

The efficiency of an ECOC method is influenced by its code
length. The shorter the code length is, the more efficient the
ECOC method will be.

Table IV lists the code lengths of all comparison methods.
From the table, we can see that WOLC-ECOC has a much
shorter code length than 1versus1, though it has a slightly
longer code length than the other codings. Generally, it is wor-
thy sacrificing some efficiency for much better performance.

D. Study of the Convergence Behavior

In this subsection, we verify the convergence behavior of
WOLC-ECOC empirically. For simplicity, we only give two

Fig. 6. Convergence behavior of WOLC-ECOC on the dermathology dataset
with discrete AdaBoost as the base learner. (a) Convergence behavior of the
training risk (objective value). (b) Curves of the training and test accuracies.

examples on the dermathology and vehicle datasets, which are
shown in Figs. 6 and 7, respectively. The training risk (i.e.,
objective value) in both figures is calculated by (7), and the
accuracy is defined as the ratio of the number of correctly
classified training/test examples over the total number.

From the figures, we observe that the training risks decrease
rigorously with respect to the numbers of training iterations.
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Fig. 7. Convergence behavior of WOLC-ECOC on the vehicle dataset with
discrete AdaBoost as the base learner. (a) Convergence behavior of the training
risk (objective value). (b) Curves of the training and test accuracies.

TABLE V
ACCURACY (%) COMPARISON OF THE ECOC CODING–DECODING

METHODS ON THE DORTMUND MUSIC DATASET WITH THREE KINDS OF

FEATURES. IN EACH GRID, THE FIRST LINE IS THE ACCURACY AND THE

SECOND LINE REPRESENTS ITS CORRESPONDING DECODING METHOD

TABLE VI
CODE LENGTH COMPARISON OF THE ECOC CODING–DECODING

METHODS ON THE DORTMUND DATASET WITH THREE KINDS OF

FEATURES

We also observe that the training and test accuracies increase
in general along with the decrease of the objective values.

E. Application to Music Genre Classification

The fast development of multimedia technologies enable
people to enjoy a large amount of music, which calls for
developing tools to classify music effectively and efficiently.
The SVM-based 1versus1 and 1versusALL classifier ensem-
bles are popular for the music classification problems [71].
The purpose of this subsection is to show the advantage of the
WOLC-ECOC over the aforementioned two coding methods
on this problem.

The music genre dataset is the Dortmund dataset [72].4 It
consists of 1886 recordings of music pieces of 10 s duration,
which are classified to nine types of music. Each music piece is
a 44.1 kHz, 16-bits, stereo MP3 file. Here, we converted each
file to a mono audio file and extracted three kinds of acoustic
features from the file as in [73] which were the modulation

4http://www-ai.cs.uni-dortmund.de/audio.html

Fig. 8. Convergence behavior of WOLC-ECOC on the Dortmund music
genre dataset with MNASE as the acoustic feature.

spectral analysis of the Mel-frequency Cepstral coefficients
(MMFCC), octave-based spectral contrast (MOSC), and nor-
malized audio spectral envelope (MNASE). As a result, each
file was formulated as an example with three kinds of features.
The parameters settings of the ECOC methods and SVM were
as same as those in Section VI-A.

Tables V and VI list the accuracy and code length com-
parisons of the ECOCs with the three acoustic features. From
Table V, it is clear that WOLC-ECOC is the most power-
ful one. From Table VI, we observe that the code length of
WOLC-ECOC is much shorter than 1versus1, though the code
length of WOLC-ECOC is slightly longer than the other three
methods.

Fig. 8 gives an example of the convergence behavior of the
training risk of WOLC-ECOC with MNASE as the feature.
From Fig. 8(a), we observe that the training risk decreases
rigorously with respect to the number of iterations.

VII. CONCLUSION

In this paper, we have proposed a heuristic ternary WOLC-
ECOC. First, we have proposed LC-ECOC, a greedy training
method that iteratively constructs multiple strong dichotomiz-
ers to discriminate the most confusing binary-class problem.
Then, we have proposed the CPA-based OW decoding. OW
decoding improves LW decoding by optimizing the weight
matrix of the latter for the minimum training risk. The opti-
mization problem is further solved by CPA, which makes the
OW decoding have linear time and storage complexities. At
last, we have proposed WOLC-ECOC, which iteratively exe-
cutes LC-ECOC and the CPA-based OW decoding until the
training risk converges. WOLC-ECOC not only inherits all
merits of LC-ECOC and the CPA-based OW decoding but
also ensures the decrease of the training risk.

We have conducted an extensive experimental comparison
with 15 state-of-the-art ECOC coding–decoding pairs on 14
UCI datasets with the discrete AdaBoost and well-tuned RBF
kernel-based SVM as two base learners. Experimental results
have shown that: 1) when AdaBoost is used as the base learner,
WOLC-ECOC outperforms all 15 coding–decoding pairs; 2)
when SVM is used as the base learner, WOLC-ECOC is
weaker than the traditional 1versus1 coding method but bet-
ter than other coding methods; and 3) the code length of
WOLC-ECOC is much shorter than that of 1versus1. We have
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explained the experimental phenomena in the view of infor-
mation theory. Moreover, we have applied WOLC-ECOC to
a music genre classification problem. Experiment results have
shown that WOLC-ECOC outperforms all referenced coding
methods including 1versus1.

APPENDIX

A. Proof of Theorem 1

The proof is similar with the proof of [45, Theorem 1]. The
key point is to prove that the training loss of problem (9) and
the training loss of problem (8) are equivalent

n∑
i=1

ξi =
n∑

i=1

max
p=1,...,P

(
0, wT

yi
ui,yi − wT

p ui,p

)

=
n∑

i=1

max
∀gi∈Z

⎛
⎝ P∑

p=1

gi,p

(
wT

yi
ui,yi − wT

p ui,p

)⎞
⎠ (15)

where set Z = {z1, . . . , zP} with zp defined as

zp,k =
{

1 , if k = p
0 , otherwise

, k = 1, . . . , P. (16)

Equation (15) can be reformulated as

n∑
i=1

ξi = max
∀G∈Zn

⎛
⎝ n∑

i=1

P∑
p=1

gi,p

(
wT

yi
ui,yi − wT

p ui,p

)⎞
⎠ = ξ

(17)

where G is defined as G = [g1, . . . , gn] =
[g1,1 . . .gn,1

...
. . .

...g1,P. . .gn,P

]
.

Theorem 1 is proved.

B. Proof of the Monotonic Nonincrease of the Training Risk
of WOLC-ECOC

Given the coding matrix M(t), WOLC-ECOC classifier
ensemble C(t), minimum training risk J (t)

o , and optimal weight
matrix W(t)

o of the t-th iteration, where C(t) = {h1, h2, . . . , hq}
with q denoting the code length of the t-th iteration, and

J (t)
o = min

W(t)∈W(t)
J (t)

(
W(t)

)
(18)

W(t)
o = arg min

W(t)∈W(t)
J (t)

(
W(t)

)
(19)

with the training risk function J (t)
(
W(t)

)
defined in (7).

Suppose we get a new dichotomizer hq+1 at the (t + 1)-th
iteration, we can obtain M(t+1), C(t+1), J (t+1)

o , and W(t+1)
o

in the same way as we did in the t-th iteration, where
C(t+1) = C(t) ∪ hq+1 and M(t+1) = [M(t), m] with m denoted
as the most difficult binary-class problem (in a vector form).
We have the following theorem.

Theorem 2: The nonincrease of the training risk of
WOLC-ECOC is guaranteed by the OW decoding

J (0)
o ≥ J (1)

o ≥, . . . ,≥ J (t)
o ≥ J (t+1)

o ≥, . . .

Proof: We extend the optimal weight matrix W(t)
o to another

equivalent form W(t+1)′ =
[
W(t)

o , 0P×1

]
. It is easy to know

that W(t+1)′ ∈ W(t+1). Because, W(t+1)′ yields an objective
value that is equivalent to J (t)

o , and also because W(t+1)′ is
a point in W(t+1) and problem (7) is a convex optimization
problem with J (t+1)

o as its minimum value, the inequality
J (t)

o ≥ J (t+1)
o holds. Theorem 2 is proved.
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