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Abstract—Multitask clustering tries to improve the clustering performance of multiple tasks simultaneously by taking their relationship

into account. Most existing multitask clustering algorithms fall into the type of generative clustering, and none are formulated as convex

optimization problems. In this paper, we propose two convex Discriminative Multitask Clustering (DMTC) objectives to address the

problems. The first one aims to learn a shared feature representation, which can be seen as a technical combination of the convex

multitask feature learning and the convex Multiclass Maximum Margin Clustering (M3C). The second one aims to learn the task

relationship, which can be seen as a combination of the convex multitask relationship learning and M3C. The objectives of the two

algorithms are solved in a uniform procedure by the efficient cutting-plane algorithm and further unified in the Bayesian framework.

Experimental results on a toy problem and two benchmark data sets demonstrate the effectiveness of the proposed algorithms.

Index Terms—Convex optimization, cutting-plane algorithm, discriminative clustering, unsupervised multitask learning

Ç

1 INTRODUCTION

WITH the rapid development of information technol-
ogy, massive amounts of unlabeled task-specific data

are generated every day. Many tasks can be seen as self-con-
tained, yet somewhat similar. Because labeling the data
manually is time-consuming and expensive, we often resort
to clustering algorithms for mining the undiscovered knowl-
edge in the data.

In traditional data mining studies, we do clustering to
each task independently. However, some tasks have so few
data that the data distributions cannot be covered well.
Hence, it is natural to think about clustering several unla-
beled tasks together for improving the performance on each
individual task. However, although some tasks are similar,
there are still many tasks mutually unrelated, dissimilar,
and even reverse. Simply merging all tasks together for
clustering might be harmful. Therefore, it is urgent to
develop a multitask clustering (MTC) algorithm that 1) not
only is powerful in clustering each individual task 2) but
also can mine the task relationships automatically from the
data so as to further improve the clustering performance.
For achieving our goal on MTC, we need to resort to two
research areas—Multitask Learning (MTL) and clustering.

Multitask learning. MTL [1], also known as learning to
learn [2], learns multiple (probably) related tasks simulta-
neously for improving the generalization performance on
each task. It can be reviewed in three respects. They are
1) “what to learn”, 2) “when to learn”, and 3)“how to
learn” [3].

“What to learn” asks what knowledge is shared across
tasks [3]. In this respect, the MTL techniques can be catego-
rized to two classes. The first class shares common feature
or kernel representations, such as the hidden units of neural

networks [1], [4], [5] and a common representation within
the regularization framework [6], [7], [8], [9], [10], [11], [12].
The second class shares common model parameters, such as
placing a common prior across tasks within the hierarchical
Bayesian framework [13], [14], [15], [16], learning the differ-
ences of the task-specific models in Frobenius norms under
the regularization framework [17], [18], [19], etc. Some of
the methods are identical but appear in different mathemat-
ical forms, such as [8] and [19].

“When to learn” asks in which situation the tasks can
share. Specifically, many MTL algorithms assume that the
tasks are mutually related which is an ideal situation. In
practice, there might be some outlier tasks or tasks with
negative correlation. Learning with these tasks results in
negative transfer or worsened performance. Hence, how to
discover the task relationship is another key issue that is
becoming more and more attractive [4], [19], [20], [21], [22].
One method is to group tasks into several clusters where
the tasks in different groups are regarded as unrelated [4],
[20], [21], [22]. Another method is to learn the inter-task
covariance matrix of the multivariate Gaussian prior [19].

“How to learn” asks how the optimization problem can
reach a good solution (i.e. performance) in a reasonable
time when the first two respects are specified. In respect of
effectiveness, among the aforementioned MTL methods,
how to construct convex optimization objectives is a com-
mon thought in MTL since the global optimum solutions
can be achieved and the optimization can be simplified.
Until present, several convex MTL algorithms have been
developed, and better performance was reported [8], [11],
[12], [19], [20]. In respect of efficiency, the alternating opti-
mization method that optimizes in turn one parameter with
others fixed is a common efficient method.

Summarizing the aforementioned, in the new MTC
design, we take the convexity and the task relationship min-
ing as two important considerations.

Clustering. Clustering is the process of partitioning a set
of data observations into multiple clusters so that the obser-
vations within a cluster are similar, and the observations in
different clusters are very dissimilar [23]. Since the early
works on k-means, many clustering algorithms have
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been developed, such as kernel k-means, spectral clustering
[24], [25], hierarchical clustering, probabilistic-based cluster-
ing, metric clustering, clustering nonnumerical data, clus-
tering high dimensional data, clustering graph data, etc.

Like supervised classification, clustering algorithms can
be classified to two classes—generative clustering and discrim-
inative clustering. The generative clustering algorithms
model pðx; y; uÞ where x and y denotes the input and output
of the learning system respectively and u is the parameter.
The discriminative clustering algorithms only focus on
modeling pðy j x; uÞ. Many traditional clustering algorithms
fall into the class of the generative clustering, such as
k-means, Gaussian mixture model, restricted Boltzman
machine, etc. However, when we only care about the pre-
dicted labels but not the distribution of the observations,
the generative clustering methods seem solving a more gen-
eral problem than what we want. Moreover, if we make a
wrong model assumption on the underlying data distribu-
tion, we may get a rather weak clustering result. This phe-
nomenon has been observed in both the supervised
classification [26] and the clustering [27]. Due to the above
problems, many discriminative clustering methods have
been developed [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], such as spectral clustering [25], Maximum Margin
Clustering (MMC) [29], [30], [31], [32], [33], [34], regularized
information maximization [35], etc.

Summarizing the aforementioned, in the new MTC
design, we should try to construct a discriminative MTC
(DMTC) clustering algorithm but not a generative one.

Multitask clustering. Although the supervised MTL has
been studied extensively in the aforementioned respects,
the unsupervised MTL, i.e. MTC [37], seems far from
explored yet. Only very recently, it received more and
more attention [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47]. 1) In respect of “what to learn”, in [37],
Teh et al. proposed to discover the clusters that can be
shared via the hierarchical Dirichlet process. In [48], Kulis
and Jordan first revisited a regularized k-means algorithm
in the view of the Dirichlet process and then extended it
to MTC by sharing the clusters of the observations across
the tasks. In [38], Dai et al. extended the information theo-
retic co-clustering algorithm to MTC by making the tasks
share the same feature attribute cluster, where they stud-
ied MTC in the transfer learning scenario, a special case of
MTL that focuses on the performance of one target task.
In [39], [40], [41], [42], [43], [44], [45], the authors tried to
learn a shared feature or kernel representations in differ-
ent distance metrics, such as Bregman distance. 2) In
respect of “when to learn”, in [40], [41], Zhang and Zhang
proposed the pairwise task regularization and centralized
task regularization methods for discovering the task rela-
tionship. 3) However, in respect of “how to learn”, none
of the MTC algorithms can hold the convexity.

Moreover, most of the MTC algorithms belong to the
class of the generative clustering. To our best knowledge,
the discriminative MTC seems lack of full study. Only in
[42], [46], the authors proposed the spectral clustering
based MTCs.

Contributions. In this paper, we propose two objectives
of discriminative MTC, which are formulated as difficult
mixed integer programming (MIP) problems. We relaxed

the MIP problems to two convex optimization problems.
The first one, named convex discriminative multitask
feature clustering (DMTFC), can be seen as a technical
combination of the convex supervised multitask feature
learning (MTFL) [8] and the support vector regression
based Multiclass MMC (SVR-M3C) [34]. The second one,
named convex discriminative multitask relationship clus-
tering (DMTRC), can be seen as a technical combination
of the convex multitask relationship learning (MTRL) [19]
and SVR-M3C. These combinations are quite natural and
yield the following advantages:

1) In respect of “what to learn”, DMTFC learns a shared
feature representation between tasks. DMTRC mini-
mizes the model differences of the related tasks.
Both algorithms, as discriminative clustering algo-
rithms, try to find the optimal label pattern directly.
Both of them work in Frobenius norms under the
regularization framework.

2) In respect of “when to learn”, DMTRC can learn the
task relationship automatically from the data by
learning the inter-task covariance matrix.

3) In respect of “how to learn”, both algorithms are
formulated as convex optimization problems, and
are solved in a uniform optimization procedure. A
number of efficient SVM techniques are available
for the problems. In this paper, we employ the
cutting-plane algorithm (CPA) [49], [50], [51] that
has achieved a great success in SVM to solve the
DMTCs efficiently.

Besides, we further unify the two objectives together in the
Bayesian framework. Experimental comparison with seven
clustering algorithms and three state-of-the-art MTCs on
the pendigits toy data set, the multi-domain newsgroups
data set, and the multi-domain sentiment data set demon-
strates the effectiveness of DMTC.

The remainder of the paper is organized as follows. In
Section 2, we briefly review related techniques. In Sections 3,
4, and 5, we present the covex DMTFC and DMTRC objec-
tives respectively. In Section 6, we solve DMTFC and
DMTRC in a uniform optimization procedure. In Section 7,
we extend DMTC to nonlinear kernels. In Section 8, we ana-
lyze the complexity theoretically. In Section 9, we view
DMTC in the Baysian framework. In Section 10, we show
the effectiveness of DMTC empirically. Finally, in Section 11,
we conclude this paper and present some future work. The
detailed derivation and experimental results are in the sup-
plementary material, available at http://sites.google.com/
site/zhangxiaolei321/

We first introduce some notations here. Bold small let-
ters, e.g., w and a, indicate column vectors. Bold capital let-
ters, e.g., W, K, indicate matrices. Letters in calligraphic

bold fonts, e.g., A, B, and R, indicate sets, where Rd denotes
a d-dimensional real space. 0m (1m) is a vector with all m
entries being 1 (0). Id is a d� d identity matrix. The operator
T denotes the transpose. The x; yh i defines the inner product
of x and y. The operator k � km denotes the m-norm, where
m is a constant. The operator “trð�Þ” denotes the trace of
matrix. The abbreviation “s.t.” is short for “subject to”.
hðaa;bbÞ denotes a function h with parameters aa and bb. The

symbol fWcgCc¼1 is short for the set fW1; . . . ;WCg. Without
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confusion, we may further write fWcgCc¼1 as fWcgc in equa-
tions for simplicity.

2 RELATED WORK

Convex multitask learning.We introduce some related convex
MTL [8], [11], [12], [19], [20], [21] as follows.

In [20], Jacob et al. proposed to learn the task relationship
by clustering the similar tasks into the same group. Because
the embedded clustering problem is non-convex, they
relaxed the problem to a convex one. In [21], Zhou et al.
proved that the alternating structure optimization (ASO) [6]
and the clustered MTL (CMTL) [20] are equivalent except
that ASO operates on the feature dimension of the multitask
model but CMTL operates on the task dimension of the
model. Observing the equivalence, in [11], [12], Chen et al.
proposed a convex ASO that learns a shared feature
subspace.

In [8], Argyriou et al. proposed to minimize the empirical
risk of all tasks with a Frobenius norm penalty on the differ-
ences of the task-specific models, which is a non-convex
optimization problem. Then, they proved that the problem
is equivalent to a convex optimization problem—multitask
feature learning. In [19], Zhang and Yeung first tried to
learn the task covariance matrix of the multivariate Gauss-
ian prior in the regularization framework. Because the con-
cave function with respect to the covariance matrix variable
makes the objective non-convex, they further replaced the
concave function by two convex constraints, which results
in a convex optimization problem, named MTRL. Although
MTFL and MTRL are derived in different ways, they are
identical. Moreover, they can be explained together in the
Bayesian framework.

To prevent misleading, here, we have to emphasize
that convex formulations do not mean absolutely better
performance over non-convex ones. How to find good
local minima in the non-convex formulations seems not a
well explored field in MTL, but is emerging in the study
of the regularization frameworks, such as [52] and the
references therein.

Convex maximum margin clustering. Among the numbers
of discriminative clustering algorithms, MMC [29], [30],
[31], [32], [33], [34], which is an unsupervised extension
of support vector machine (SVM), has received much
attention since year 2005. The key idea of MMC is to find
not only the maximum margin hyperplane in the feature
space but also the optimal label pattern, such that if an
SVM trained on the optimal label pattern, the optimal
label pattern will yield the largest margin among all pos-
sible label patterns fy j y ¼ fyjgnj¼1; 8yjg, where n is the
number of observations and yj denotes the possible class
of the jth observation. The main difficulty of MMC lies in
that it is originally formulated as a difficult mixed-integer
programming problem [29] due to the integer vector vari-
able y in the objective of MMC.

To overcome MIP, researchers either relaxed the objec-
tive as convex optimization problems [29], [30], [33], [34] or
reformulated it to non-convex ones [31], [32]. Because the
convex relaxation methods achieve better clustering results
than non-convex ones in general, we pay particular atten-
tion to this kind.

Originally, in [29], Xu et al. proposed to reformulate
MMC as a convex semi-definite programming problem by
relaxing M ¼ yyT to a continuous matrix. In [30], they fur-
ther extended the binary-class MMC to the multiclass sce-

nario which has a time complexity as high as Oðn6:5Þ.
Recently, in [34], Zhang and Wu proposed to construct a
convex hull [53] on fyg, and further extended the binary-
class algorithm to the multiclass problem, i.e. SVR-M3C,
which can be solved in an alternating method in time
Oðn lognÞ.

We found that SVR-M3C and MTFL/MTRL can be com-
bined quite naturally within DMTC, and a number of popu-
lar SVM techniques are available for solving the problem
efficiently. MMC contributes to the implementation of the
proposed DMTC.

Cluster ensemble. The most similar work with MTC in
machine learning and data mining is cluster ensemble [54],
[55], [56], [57], [58], [59], [60], [61], [62]. The cluster ensemble
aims to combine multiple clusterings with a so-called con-
sensus function for enhancing the stability and accuracy of
the base clusterings. The scenario that each base clustering
processes only a part of the observations is called the obser-
vation-distributed scenario [54], [57] or crowdclustering [59],
[61]. The main difference between MTC and the crowdclus-
tering is that the crowdclustering assumes that all parts of
observations are sampled from the same underlying distri-
bution while MTC does not assume so. But, we have to note
that several cluster ensemble techniques can be adapted to
MTC, such as [57], [59], [61], [62]. Still, to our knowledge,
none of the cluster ensembles can both hold convexity and
be constructed on discriminative clusterings.

3 PROBLEM FORMULATION

Suppose there arem clustering tasks. The ith task consists of

ni unlabeled observations fxijgnij¼1, x
i
j 2 Rd. We cluster each

task to the same number of classes, denoted as C with
C � 2. The prediction function of the cth class for the ith

task is defined as ficðxiÞ ¼ wT
i;cx

i, where wi;c is the parameter

of fic, and where we have omitted the bias term bi;c in fi
c for

simplicity. The observation xi is assigned to the c$th class, if

c$ ¼ argmaxcf
i
wi;c

holds. Note that the reason why we

assume all tasks have the same number of classes is clarified
as follows. 1) In practice, the related tasks tend to share a
similar structure. 2) We can easily extend this assumption
to the scenario that the tasks have different number of clas-
ses by extending the Frobenius norm in Eq. (1) (or in
Eq. (13)) from the one-class-versus-one-class correlation to
one-class-versus-all-classes correlation. For clarity, we use a
more strict assumption.

For a C class clustering problem with the label
y 2 f1; 2; . . . ; Cg, we extend y to a C dimensional row indica-
tor vector y, i.e. y ¼ y1; . . . ; yC½ �, where the label vector y

takes 1 for the kth element and � 1
C�1 for the others when

y ¼ k. For instance, if x falls into the first class, then

y ¼ ½1;� 1
C�1 ; . . . ;� 1

C�1�. This coding method is a common

strategy in the multiclass problems, such as k-means.
Here, a set By is defined for all possible y, i.e. By ¼
f½1;� 1

C�1 ; . . . ;� 1
C�1�; ½� 1

C�1 ; 1; . . . ;� 1
C�1�; . . . ; ½� 1

C�1 ;� 1
C�1 ;
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. . . ;$1��. For a m-task MTC problem, we denote

Wc ¼ ½w1;c; . . . ;wm;c�, Xi ¼ ½xi1; . . . ; xini �, and Yi ¼ ½ðyi1ÞT ; . . . ;
ðyiniÞ

T �T .

4 CONVEX DISCRIMINATIVE MULTITASK FEATURE
CLUSTERING

In this section, we will introduce the convex objective of the
proposed DMTFC.

We extend the MTFL algorithm [8] to its multiclass unsu-
pervised counterpart, the objective of DMTFC, which is for-
mulated as the following MIP problem:

min
Yi2Bif gm

i¼1

min
Wcf gCc¼1

min
D2D

XC

c¼1

�
�2

2
tr WT

c D
�1Wc

� �

þ �1

2
tr WT

c Wc

� �þ
Xm

i¼1

1

ni

Xni

j¼1

�
yij;c �wT

i;cx
i
j

�2
�
;

(1)

where �1 and �2 are two tunable hyper parameters, the
matrix variable D represents a covariance matrix that mod-
els the relationships between the features, the convex con-
straint set D constrains D to be a valid covariance matrix
which is defined as

D ¼ fD jD 2 Rd�d;D � 0; trðDÞ ¼ 1g; (2)

and Bi is defined as:

Bi , Yi

����
�
� li;c

C�1 	
1Tniy

i
c

ni
	 li;c; 8c ¼ 1; . . . ; C;

yij 2 By; 8j ¼ 1; . . . ; ni:

8
<
:

9
=
;; (3)

where y
i

c ¼ ½yi1;c; . . . ; yini;c�
T represents the cth column of Yi

and ffli;cgCc¼1gmi¼1 are user defined parameters that control

the class balance. The constraint � li;c
C�1 	

1Tniy
i
c

ni
	 li;c specifies

the class evenness of the cth class, while the constraint

yij 2 By commands that Yi must be a legal indicator matrix.

As will be shown in the experimental section, a correct class
balance assumption is very important to the success of
DMTC. It not only can help DMTC detect a reasonable label
pattern but also can prevent the interference of outliers. If
we know the class distribution, we can set ll;c to a value

around 1Tniy
$i
c=ni where y$i

c is the cth column of the ground

truth label matrix of the ith task, otherwise, we just set all
ll;c to the same empirical value.

Problem (1) is quite similar with [8, Theorem 1] except
that Problem (1) is a regularized multiclass problem and
label Yi is an integer matrix variable.

To void MIP, we construct a convex hull [53] on Bi as in

[33], [34]. Specifically, fixing fYigmi¼1 and D, Problem (1) is
formulated as:

XC

c¼1

 
min
Wc

�1

2
tr WT

c Wc

� �þ �2

2
tr WT

c D
�1Wc

� �

þ
Xm

i¼1

1

ni

Xni

j¼1

�
yij;c �wT

i;cx
i
j

�2
!
;

(4)

where the problems in the big brackets are mutually inde-
pendent. We rewrite the problem in the big brackets in the
constrained form as follows:

min
Wi

�1

2
tr WT

c Wc

� �þ �2

2
tr WT

c D
�1Wc

� �

þ
Xm

i¼1

1

ni

Xni

j¼1

�
�ij;c
�2

s:t: yij;c �wT
i;cx

i
j ¼ �ij;c; 8i ¼ 1; . . . ;m; 8j ¼ 1; . . . ; ni;

(5)

which is a regularized minimization of the squared-loss.
According to the Karush-Kuhn-Tucker conditions, the dual
form of Problem (5) is written as:

max
ac

Xni

j¼1

ai
j;cy

i
j;c �

1

2
aac

T eKFaac; (6)

where ac ¼ ½a1
1;c; . . . ;a

m
nm;c�T are the dual variables,

eKF ¼ KF þ 1
2LL with LL as the diagonal matrix whose diago-

nal element equals to ni if the corresponding observation
belongs to the ith task, and KF denoted as the multitask-
kernel matrix for feature learning which is defined as:

KF

�
x
i1
j1
; x

i2
j2

� ¼ x
i1
j1

T
Dð�1Dþ �2IdÞ�1x

i2
j2

ei1 ; ei2
	 


: (7)

Wc is obtained as:

Wc ¼
Xm

i¼1

Xni

j¼1

ai
j;cD �1Dþ �2Idð Þ�1xije

T
i ; (8)

where ei represents the ith column of the identity matrix.
The detailed derivation of Eq. (6) is in the supplementary
material, available online.

Substituting (6) back to Problem (4) and then substituting
(4) back to problem (1) can get an equivalent optimization
Problem of (4) as follows:

min
Yi2Bif gm

i¼1

min
D2D

max
faacgCc¼1

X

i;c;j

ai
j;cy

i
j;c �

1

2

XC

c¼1

aaT
c
eKFaac: (9)

Because the second term of Problem (9) is irrelevant to the
integer matrix variable Yi, it is easy to see that the following
problem learns a lower bound of Problem (9):

min
D2D

max
faacgCc¼1

�
max
fuigmi¼1

Xm

i¼1

ui � 1

2

XC

c¼1

aaT
c
eKFaac

s:t: ui 	
XC

c¼1

Xni

j¼1

ai
j;cy

i
j;c; 8i ¼ 1; . . . ;m; 8k : Yi

k 2 Bi

�
:

(10)

Reformulating the problem in the braces of (10) to its dual
can get the following equivalent problem:

min
D2D

max
faacgCc¼1

min
fmmi2Migmi¼1

� 1

2

XC

c¼1

aaT
c
eKFaac

þ
Xm

i¼1

XC

c¼1

Xni

j¼1

ai
j;c

X

k:Yi
k
2Bi

mi
ky

i
k;j;c;

(11)

where yik;j;c is the element of Yi
k at the jth row and cth col-

umn, and Mi is defined as Mi ¼ fmmi j 0 	 mi
k 	 1;

P
k:Yi

k
2Bi
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mi
k ¼ 1g. If we denote eBi ¼ feYi j eYi ¼ P

k:Yi
k
2Bi mi

kY
i
k;

mmi 2 Mig, according to [53, p. 24], eBi
is the convex hull of Bi

which is the tightest convex relaxation of Bi. Note that the
optimization order of fmm;D;aag is exchangeable. The
detailed derivation of Eq. (11) is in the supplementary mate-
rial, available online.

Writing the objective function in (11) back to its pri-
mal form derives the following equivalent convex opti-
mization problem:

min
mmi2Mif gm

i¼1

min
Wcf gCc¼1

min
D2D

XC

c¼1

 
�1

2
tr WT

c Wc

� �þ �2

2
tr WT

c D
�1Wc

� �

þ
Xm

i¼1

1

ni

Xni

j¼1

 
X

k:Yi
k
2Bi

mi
ky

i
k;j;c �wT

i;cx
i
j

!2!
:

(12)

Theorem 1. Problem (12) is convex with respect to fmmigmi¼1,

Wcf gCc¼1, andD.

Proof. Because Mi
� �m

i¼1
, Rd�m
� �C

c¼1
and D are all convex

sets, their Cartesian productM1 � � � � �Mm �Rd�m; . . . ;

Rd�m �D, i.e. the constraint, is also convex [53, p. 38],
where n ¼Pi ni. It is easy to see that the first and third
terms of the objective function are convex by verifying
that their Hessian matrices are positive semidefinite [53,
p. 71]. The second term has been proved to be convex in
[8]. Because the summation operation can preserve con-
vexity, the objective function is convex. Therefore, Prob-
lem (12) is jointly convex with respect to all variables. tu
Summarizing the aforementioned, Problem (12) is a con-

vex relaxation of the original Problem (1). It has two equiva-
lent forms (10) and (11). Problem (10) is the objective
function of DMTFC.

5 CONVEX DISCRIMINATIVE MULTITASK

RELATIONSHIP CLUSTERING

In this section, we will introduce the convex objective of the
proposed DMTRC.

We extend the MTRL algorithm [19, Eq. (5)] to its multi-
class unsupervised counterpart, the objective of DMTRC,
which is formulated as the following MIP problem:

min
fYi2Bigmi¼1

min
Wcf gCc¼1

min
V2A

XC

c¼1

�
�2

2
tr WcV

�1WT
c

� �

þ �1

2
tr WcW

T
c

� �þ
Xm

i¼1

1

ni

Xni

j¼1

�
yij;c �wT

i;cx
i
j

�2
�
;

(13)

where the matrix variable V is the covariance matrix that
models the relationships between the task-specific models
wi;c, and A is a convex constraint set defined as:

A ¼ fV jV 2 Rm�m;V � 0; trðVÞ ¼ 1g: (14)

Observing the factors that cause Problems (1) and (13)
the MIP problems are the same, we use a similar convex

relaxation procedure with (1)’s for (13). Due to the length
limitation of the paper, we only report the main results.

The relaxed convex optimization problem of Problem (13)
is formulated formally as follows:

min
fmmi2Migmi¼1

min
fWigCc¼1

min
V2A

XC

c¼1

 
�1

2
tr WcW

T
c

� �þ �2

2
tr WcV

�1WT
c

� �

þ
Xm

i¼1

1

ni

Xni

j¼1

 
X

k:Yi
k
2Bi

mi
ky

i
k;j;c �wT

i;cx
i
j

!2!
:

(15)

The proof of the convexity of Problem (15) is similar with
the proof of Theorem 1. Problem (15) has two equivalent
forms. The first one is written as:

min
VV2A

max
faacgCc¼1

�
max
fuigmi¼1

Xm

i¼1

ui � 1

2

XC

c¼1

aT
c
eKRac

s:t: ui 	
XC

c¼1

Xni

j¼1

ai
j;cy

i
j;c; 8i ¼ 1; . . . ;m; 8k : Yi

k 2 Bi

�
;

(16)

where eKR ¼ KR þ 1
2LL with KR denoted as the multitask-

kernel matrix for relationship learning which is defined as:

KR

�
xi1j1 ; x

i2
j2

� ¼ eTi1Vð�1Vþ �2ImÞ�1ei2
	
xi1j1 ; x

i2
j2



: (17)

We also obtainWc as:

Wc ¼
Xm

i¼1

Xni

j¼1

ai
j;cx

i
je

T
i V �1Vþ �2Imð Þ�1: (18)

The second equivalent form is written as:

min
VV2A

max
faacgCc¼1

min
mmi2Mif gmi¼1

� 1

2

XC

c¼1

aaT
c
eKRaac
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i¼1
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c¼1

Xni

j¼1

ai
j;c

X

k:Yi
k
2Bi

mi
ky

i
k;j;c:

(19)

Summarizing the aforementioned, Problem (15) is a
convex relaxation of the original Problem (13). It has two
equivalent forms (15) and (19). Problem (16) is the objective
function of DMTRC.

6 OPTIMIZATION ALGORITHM

In this section, we are to solve DMTFC (10) and DMTRC (16)
in a uniform framework. This framework utilizes the fact
that there are only two different points between them: 1) the
multitask kernel functions are different, see Eqs. (7) and (17);
2) the convex setsD andA are different, see Eqs. (2) and (14).
To facilitate the mathematical representation, we write (10)
and (16) as the following uniform objective:

max
faacgCc¼1

min
Z2Z

max
fuuigmi¼1

Xm

i¼1

ui � 1

2

XC

c¼1

aaT
c
eKaac

s:t: ui 	
XC

c¼1

Xni

j¼1

ai
j;cy

i
j;c; 8i ¼ 1; . . . ;m;8k : Yi

k 2 Bi;

(20)
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where Z stands for D in (10) or V in (16), Z stands for D in

(10) or A in (16), and eK stands for eKF in (7) or eKR in (17).
Due to the length limitation of the paper, we present

the optimization algorithm briefly as follows, leaving the
detailed derivation in the supplementary material, avail-
able online.

The solution framework is an alternating method. First, it
decomposes the unsupervised problem (20) to a serial
supervised multiclass MTL problem by the cutting-plane
algorithm [49] and the extended level method (ELM) [50],
[51], where the decomposition algorithm can be seen as a
multitask extension of the SVR-M3C algorithm [34]. Then, it
solves each supervised multiclass MTL problem in an alter-
nating way, which decomposes the multiclass MTL to a
serial supervised single-task regression problems eventu-
ally. Note that the difference of the optimization procedure
between DMTFC and DMTRC only appears in the super-
vised learning in Section 6.3.

6.1 Optimizing (20) via Cutting-Plane Algorithm

Because the number of the constraints in Problem (20) is
exponential large with respect to n, directly optimizing (20)
is impossible when the data set contains over dozens of
examples. Hence, we adopt CPA [49] to solve it approxi-
mately. CPA iterates the following two steps. The first step
is to solve the following reduced cutting plane subproblem:

max
faacgCc¼1

min
Z2Z

max
fuuigmi¼1

Xm

i¼1

ui � 1

2

XC

c¼1

aaT
c
eKaac

s:t: ui 	
XC

c¼1

Xni

j¼1

ai
j;cy

i
j;c; 8i ¼ 1; . . . ;m; 8k : Yi

k 2 Yi

�
;

(21)

where Yi 
 Bi represents the pool of the most violated con-
straints, The second step is to calculate the most violated

constraint, denoted as fYi
jYijþ1

gmi¼1, by solving the following

integer matrix optimization problem

min
Yi
jYi jþ1

XC

c¼1

Xni

j¼1

ai
j;cy

i
jYijþ1;j;c

; 8i ¼ 1; . . . ;m; (22)

and then add Yi
jYijþ1

to Yi; 8i ¼ 1; . . . ;m, respectively.

Thanks to the constraints on Yi (defined in Bi, i.e. Eq. (3)),
the problem can be solved in time OðPm

i¼1 Cni logðCniÞÞ, see
[34, Algorithm 6] for the algorithm.

6.2 Optimizing (21) via Extended Level Method

Like the full Problem (20), the cutting-plane subproblem
(21) also has an equivalent form:

max
faacgCc¼1

min
Z2Z

min
fmmi2Mi

Yg
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� 1
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mi
ky
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(23)

whereMi
Y ¼ fmmi j 0 	 mi

k 	 1;
PjYi j

k¼1 m
i
k ¼ 1g.

Problem (23) is a concave-convex optimization problem
that is convex on mm and Z and concave on aa. We will

optimize it via ELM [50] which is an efficient alternating
method that aims to find the saddle point of the problem.
ELM iterates the following two steps until convergence. The

first step is to optimize fmmigmi¼1 given fixed faagCc¼1 and Z by
constructing a cutting-plane model on the problem. See the
supplement for this complicated cutting-plane model. The

second step is to optimize faagCc¼1 and Z together given fixed

fmmigmi¼1, which is formulated as follows:

min
Z2Z

max
facgCc¼1

� 1

2
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aaT
c
eKaac þ
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i¼1

XC

c¼1
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j¼1

ai
j;c

X
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k
2Yi

mi
ky

i
k;j;c:

(24)

Note that Problem (24) is the dual form of a supervised
MTL problem. The reason why we solve DMTC in the dual
form but not primal form is because that we need the
Lagrange parameter a to solve Problem (22) but not only for
introducing the nonlinear kernels.

6.3 Optimizing (24) via Alternating Method

We adopt an alternating method that is similar with [19] for
Problem (24), which iterates the following two steps until
convergence.

The first step is to optimize faagCc¼1 given fixed Z, which is
equivalent to the following problem:

XC

c¼1
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Xm
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j¼1

ai
j;c

X
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k
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mi
ky

i
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1

2
aaT
c
eKaac

!
: (25)

When Z is fixed, the terms in the brackets are mutually inde-
pendently. Hence, we solve each term independently,
which is a supervised single-task regression problem, where
the data from all tasks are considered as the data from a sin-
gle task.

The second step is to optimize Z given fixed facgCc¼1,
which is formulated as

min
Z2Z

� 1

2

XC

c¼1

aaT
c
eKaac þ

Xm

i¼1

XC

c¼1

Xni

j¼1

ai
j;c

X
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k
2Yi

mi
ky

i
k;j;c: (26)

Note that eK is a function of Z.
Specifying (25) and (26) as a part of DMTFC. We replace Z

and Z in the equations by D and D respectively. For (25),

the multitask kernel eK should be specified by Eq. (7). The

calculation of eK will be expensive when the dimension of
the observation d is large, since the time complexity of the

matrix inversion in (7) is Oðd3Þ in the worst cases. For (26),
we can get the closed solution ofD as

D ¼
PC

c¼1
WcW

T
c

� �1
2

tr
��PC

c¼1
WcWT

c

�1
2
�

whereWc is defined in (8). The derivation is analogous to [8,
Appendix 1].

Specifying (25) and (26) as a part of DMTRC. We replace Z

and Z by V and A respectively in the equations. For (25), eK
should be specified by Eq. (17). The calculation of eK will be
expensive when the task number m is large, since the time
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complexity of the matrix inversion in (17) is Oðm3Þ in the
worst cases. For (26), we can get the closed solution of V as

V ¼
PC

c¼1
WT

c Wc

� �1
2

tr
��PC

c¼1
WT

c Wc

�1
2
�

where Wc is defined in (18). The derivation is analogous to
[19, Eq. (13)].

7 LEARNING WITH NONLINEAR KERNELS

To incorporate the nonlinear feature mapping to DMTFC
and DMTRC, we only need to modify the multitask kernel.
Specifically, for DMTFC, we only need to modify Eq. (7) to

KFðxi1j1 ; x
i2
j2
Þ ¼ eTi1fðx

i1
j1
ÞTD ð�1Dþ �2IdÞ�1

fðxi2j2Þei2 and mod-

ify Eq. (8) to Wc ¼
P

i

P
j a

i
jD �1Dþ �2Idð Þ�1

fðxijÞeTi , where

fð�Þ is the kernel-induced feature mapping. We may use the
kernel decomposition techniques, such as kernel principle
component analysis or Cholesky decomposition, to get fð�Þ
approximately and explicitly, or the methods described in
[8], [63] to incorporate the kernels. In this paper, we used
the kernel principle component analysis to get fð�Þ explic-
itly. Similarly, for DMTRC, we only need to modify Eq. (17)

to KRðxi1j1 ; x
i2
j2
Þ ¼ eTi1Vð�1Vþ �2ImÞ�1ei2Kðxi1j1 ; x

i2
j2
Þ and mod-

ify Eq. (18) to Wc ¼
P

i

P
j a

i
jfðxijÞeiV �1Vþ �2Imð Þ�1, where

Kðx; yÞ ¼ fðxÞ;fðyÞh i.

8 COMPLEXITY ANALYSIS

Because the optimization algorithm can be seen as a techni-
cal combination of SVR-M3C [34], MTFL [8], and MTRL
[19], where the outer two loops (i.e. Sections 6.1 and 6.2) is
a multitask extension of SVR-M3C and the inner loop (i.e.
Section 6.3) can be seen as a special case of the multiclass
extensions of MTFL/MTRL, the overall time and storage
complexities of the optimization algorithm are dominated
by the most expensive algorithm between SVR-M3C and
MTFL/MTRL. SVR-M3C has a time complexity of
Oðn log nÞ and a storage complexity of OðnÞ [34]. It is also
easy to observe that the worst case of MTFL has a time com-

plexity of Oðn2 þ d3Þ and a storage complexity of Oðn2Þ, and
that the worst case of MTRL has a time complexity of

Oðn2 þm3Þ and a storage complexity of Oðn2Þ. Hence,
DMTFC is suitable to middle scale and low dimensional
problems, while DMTRC is suitable to middle scale prob-
lems with small task numbers. The main obstacle that hin-
ders DMTFC and DMTRC from large scale problems is the
time-demanding kernel calculation and matrix inversion in
(7) and (17). To overcome it, dimension reduction techni-
ques, sparse MTL techniques, distributed cluster ensembles
and sparse kernel estimations might be helpful. But as will
be shown in the experimental section, when the data size is
large scale, the benefit of multitask clustering over single-
task clustering (STC) will vanish. Finally, we think the com-
plexity will not hinder them from practical use.

9 DISCUSSION: BAYESIAN FRAMEWORK OF

DISCRIMINATIVE MULTITASK CLUSTERING

In this section, we will uniform the two DMTC objectives in
the Bayesian framework.

For am-task DMTC problem, we try to estimate themaxi-

mum a posteriori of Wcf gCc¼1 as

max
Wcf gc;fYigi

pðfWcgc; fYigi j fXigiÞ

¼ max
fWcgc;fYigi

pðfWcgcÞpðfYigi j fXigi; fWcgcÞ: (27)

Equation (27) contains two parts. The first part pð Wcf gcÞ is a
prior defining the task relationship. The second part defines
a serial discriminative clusterings on all tasks. How to spec-
ify the prior and the discriminative model is the central
problem.

Here, we make four probabilistic assumptions on Prob-
lem (27) for balancing the difficulty of solving DMTC and
the effectiveness of DMTC.

a) Class evenness assumption.We assume that the empiri-
cal marginal distribution of label pðyÞ in each task is
known, which results in the class balance constraint
in (3).

b) Multivariate Gaussian prior assumption. The prior
defines what to share in MTC. In this paper, we fol-
low Zhang and Yeung’s formulation [19, Equation
(2)] for the multivariate Gaussian prior

pðfWcgcÞ /
YC

c¼1

qðWcÞ
Ym

i¼1

N wi;c j 0d; s2
1Id

� �
 !

; (28)

where N A;Bð Þ is a multivariate normal distribution
with A and B as the mean and covariance matrix
respectively, and qðWcÞ is a distribution that the
rows or columns of Wc are independent Gaussians.
See (29) and (30) below for the definition of Wc. Note
that restricting all tasks to have the same covariance

s2
1Id might be too restrictive. In practice, we can use

different covariances for different tasks.
In this paper, we consider two kinds of qðWcÞ. The

first kind defines a shared feature representation:

qfðWcÞ ¼
exp
�� 1

2 tr
�
WT

c D
�1Wc

��

ð2pÞmd=2jDjd=2
: (29)

The second kind follows Zhang and Yeung’s for-
mulation [19, Eq. (2)], which defines the relation-
ship between the tasks:

qrðWcÞ ¼
exp
�� 1

2 tr
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�1WT
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��

ð2pÞmd=2jVjm=2
: (30)

c) Task independence assumption. We assume that when
Wcf gc is sampled from the prior distribution, the
tasks are mutually independent:

p
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(31)
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With this assumption, we can incorporate any
advanced binary-class discriminative clustering into

pðyic jXi;wi
cÞ without modifying the clustering algo-

rithm significantly.
d) Gaussian assumption on the discriminative clustering

model.We assume pðyij;c j xij;wi
cÞ in (31) is Gaussian:

p
�
yij;c j xij;wi;c

� ¼ N �yij;c jwT
i;cx

i
j; s

2
2

�
: (32)

This assumption makes the discriminative clustering
a regression problem but not a classification prob-
lem, which might not be the real case since

yij;c 2 f� 1
C�1 ; 1g is a discrete variable. However, it is

known that even in the supervised classification
problem, if we set Problem (31) with a non-Gaussian
likelihood, the computations of predictions are ana-
lytically intractable [64, p. 39].

Substituting Eqs. (3), (28), (29), (31) and (32) into Prob-
lem (27) and taking the negative logarithm of (27) can derive
the following objective function:

min
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(33)

where �1 and �2 are two tunable hyper parameters that are
related to s1 and s2. Replacing the concave function ln jDj
to the convex constraint set D derives the DMTFC objec-
tive (1). The DMTRC objective can be derived in the same
way as the above, except using (30) instead of (29).

10 EXPERIMENTS

In this section, we will compare the proposed DMTFC and
DMTRC algorithms with 10 clustering algorithms on the
UCI pendigits toy data set and two benchmark data sets—
multi-domain newsgroups data set and multi-domain sentiment
data set. When we evaluate the running time, each algo-
rithm is run with only one CPU.

The competitive algorithms can be categorized to two
classes. The first class are the single task clustering algo-
rithms. They are 1) K-Means (KM), 2) Kernel K-Means
(KKM) with the RBF kernel, 3) Normalized Cut (NC) [24]
with the RBF kernel, 4) SVR-M3C with linear kernel [34], 5)
the Discriminative STC (DSTC) algorithm, 6) KM that
groups all tasks into a single task (ALL KM), 7) ALL KKM,
and 8) ALL NC, where DSTC is the single task version of
our DMTRC. The DSTCs with the linear kernel and the RBF
kernel are denoted as DSTCl and DSTCr respectively. The
second class are the state-of-the-art MTC algorithms. They
are 1) Learning the Shared Subspace for MTC (LSSMTC)
[39], 2) Learning a Spectral Kernel for MTC (LSKMTC) [42],
and 3) Multitask Bregman Clustering with Pairwise task
regularization (MBC-P) [41]. The experiments of the com-
petitive algorithms are run exactly with the authors’ experi-
mental settings.

For our DMTFC and DMTRC, �1 and �2 are both

searched from f0; 2�10; 2�8; . . . ; 2�2g, we make a strong
assumption that we know the class distribution beforehand,

so that li;c in Eq. (3) is set to ll;c ¼ 1Tniy
$i
c=ni where y$i

c is the

cth column of the ground truth label matrix Yi of the ith
task. The DMTFC and DMTRC with the linear kernel are
denoted as DMTFCl and DMTRCl respectively, and those
with the RBF kernel are denoted as DMTFCr and DMTRCr

respectively.
The kernel width of all algorithms that work with the

RBF kernel is searched from f2�2; 2�1; 20; 21; 22g � A, where
A is the average euclidean distance of the data. The data
are normalized into the range of [0, 1] in dimension. All
computation time is recorded except that consumed on
normalizing the data set. The data sets used in experi-
ments are provided with labels. Therefore, the perfor-
mance is evaluated as comparing the predicted labels
with the ground truth labels using normalized mutual
information (NMI) [54].

10.1 Results on Pendigits Data Set

In this subsection, the pendigits data set in the UCI machine
learning repository is used as a toy data set for capturing
the main characteristics of the proposed DMTC algorithms.
The pendigits data set contains 10 hand written integer dig-
its ranging from 0 to 9. It consists of 11,256 observations and
16 attributes. Each digit consists of about 1,100 observations.
Although the pendigits data set is a single task clustering
problem, we generate a multitask clustering problem from
it: First, we take 0; 3; 6; 8; 9 as one group, and 1; 2; 4; 5; 7 as
the other group. Then, we repeatedly sample 20 observa-
tions from each digit in the first group for three times.
Again, we do the same thing to the second group. Because
each repeat forms a five-class clustering task that contains
100 observations, we obtain six tasks in total, where Tasks 1,
2 and 3 are examples from the first group and Tasks 4, 5,
and 6 are examples from the second group. Because the
data are too small to cover the distributions of the digits, we
can regard Tasks 1, 2 and 3 are relevant but not the same, so
as to Tasks 4, 5, and 6. We also regard that Tasks 1, 2 and 3
are irrelevant to Tasks 4, 5, and 6. A visualized example of

Fig. 1. Visualization of the tasks on the pendigits data. The true labels
are indicated by different colors and different symbols. PCA is used to
generate the figure.
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the data distributions associated with the six tasks are
shown in Fig. 1. We run three jobs on the six tasks. Job 1 is
to cluster Tasks 1, 2, and 3. Job 2 is to cluster Tasks 4, 5, and
6. Job 3 is to cluster Tasks 1, 2, 3, 4, 5 and 6 together. For
each MTC job, we repeat the experiment 30 times. For each
single repeat, we also repeat the referenced algorithms 50
times and report the average results. For DMTFCr, KPCA is
used for getting fðxÞ explicitly. It retains the top 100 largest
eigenvalues and their eigenvectors.

Fig. 2 shows the NMI comparison over the three jobs.
From the figure, we can get the following interesting phe-
nomena. First, except for DMTFCl, the proposed DMTC
algorithms achieve higher NMIs than the referenced meth-
ods. This phenomenon demonstrates the effectiveness of
the proposed MTC algorithms. Second, except for DMTRCr,
the NMIs of all algorithms in Job 3 are lower than those in
Jobs 1 and 2. This phenomenon is particularly apparent in
DMTFCl. It shows that the unrelated tasks or the reverse
distributions worsen the clustering performance signifi-
cantly. This phenomenon also shows that when the tasks
are really related, learning a powerful feature representa-
tion is better than minimizing the distances between the
task-specific models, but when the tasks are irrelevant,
learning a feature representation forcibly is very harmful
while learning the task relationship can avoid the negative
transfer amazingly. To better explain this, we visualize D
and VV in Figs. 3 and 4 respectively. For DMTFC, in Figs. 3a,
3b, 3d, 3e, and 3f, the relationships of the features have been
learned successfully by DMTFC. But in Fig. 3c, DMTFCl

fails in learning a common feature representation, i.e., most
features are recognized as mutually independent. For

DMTRC, in Fig. 4, we can observe that DMTRC can capture
the relationships of the tasks successfully no matter in
Jobs 1 and 2 or in Job 3, which accounts for the immunity of
DMTRC to the negative transfer. Note that this study has
been conducted in many supervised MTL works, but to our
knowledge, this is the first work that captures the task rela-
tionship successfully in the unsupervised learning scenario.
Third, the referenced MTCs do not achieve better NMIs
than the STCs. One possible explanation for this is that the
referenced MTCs suffer from local minima more seriously
than the STCs.

The above experiment assumes that the class distribu-
tions are known with all parameters li;c setting to the ideal

situation 1Tniy
$i
c=ni ¼ 0. In this paragraph, we will investi-

gate how the class evenness assumption affects the perfor-

mance by setting all ffli;cgCc¼1gmi¼1 to the same value that is
selected from f0; 0:03; 0:1; 0:2; 0:3g. The results are shown in
Fig. 5. From the figure, we can observe the following phe-
nomena: 1) In all settings, DMTC can benefit from joint
training of all tasks except DMTFCl. 2) Setting the class bal-
ance parameters to a value 0.03 that is slightly biased from
the ideal situation can achieve even better performance,
which means that if we select l properly around the ideal
value, the performance is guaranteed. 3) DMTC is sensitive
to l, if parameter l is set improperly, the performance will
degrade dramatically. Hence, for DMTC’s practical use, we
should select l carefully.

Fig. 3. Visualization of the shared feature filter learned by DMTFC on the
pendigits dataset (i.e. the learned covariance between the features, i.e.
D). The more grey the grid is, the weaker the filter contributes to the new
feature representation.

Fig. 4. Hinton diagram of the task relationship learned by DMTRC on the
pendigits data set (i.e. the learned covariance between the task-specific
models, i.e. V). The grid in green means the tasks are related. The grid
in red means the tasks are reverse. The bigger the grid is, the more posi-
tive/negative the relationship is.

Fig. 2. NMI comparison on the pendigits data set.

Fig. 5. Clustering performance with respect to the class balance parame-
ter l on the pendigits data set.
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10.2 Complexity Analysis on Synthetic Data Set

In this subsection, we will study the time complexities of
DMTFC and DMTRC with respect to the number of
examples of each task (i.e. n), feature dimension (i.e. d), and
number of tasks (i.e. m) respectively. We generate each
dimension of each class of each binary-class synthetic task
from a Gaussian distribution, whose mean is sampled uni-
formly from ½0; 1� and variance varies uniformly in ½0:5; 5�.
The parameters of the proposed methods are as follows.

Only linear kernel is considered. �1 ¼ �2 ¼ 2�10, l ¼ 0.
The time complexities with respect to n are shown in

Fig. 6a, where d ¼ 3 and m ¼ 3. The time complexities with
respect to d are shown in Fig. 6b, where n ¼ 100 and m ¼ 3.
The time complexities with respect tom are shown in Fig. 6c
where n ¼ 3; 000=m and d ¼ 10. From the figures, we can
conclude that the time complexities with respect to n are

Oðn2Þ, but the time complexities with respect to d and m are

generally not in the worst cases, i.e. Oðd3Þ and Oðm3Þ. The
reasons are analyzed as follows. Compared to the CPU time
consumed on constructing the kernel, which scales with

OððnmÞ2Þ, the time consumed on the matrix inverse is quite
small. Moreover, when nm is given, more task number only
means the multitask-kernel matrix is more sparse, so that the
methods need even less time to calculate the kernel matrix.
This accounts for the interesting phenomenon of Fig. 6c.

10.3 Results on Multi-Domain Newsgroups Data Set

The 20-newsgroups data set is a widely used benchmark
data set that is a collection of about 20,000 messages col-
lected from 20 different usenet newsgroups, 1,000

messages from each. After postprocessing, each message
is a vector with 26,214 dimensions. We define a three
class MTC job on the 20-newsgroups in Table 1. From the
table, we can see that Tasks 1 and 2 are highly related,
Tasks 1 to 5 are somewhat related, while Task 6 seems an
outlier task. Based on the above task definition, we gener-
ate four MTC problems by randomly selecting 5, 10, 20,
and 40 percent of the data from each class, so as to
observe how the data number influences the effectiveness
of DMTC. Because most algorithms are quite inefficient in
high dimensional data sets, we use PCA to project the
data set to a 100-dimensional subspace. DMTC and DSTC
only use the linear kernel. The DMTRCl and DSTCl with-
out the PCA projection, which are denoted as *DMTRCl

and *DSTCl respectively, will also be investigated.
Fig. 7 shows the NMI comparison. From the figure, we

can observe the following experimental phenomena. First,
the proposed convex discriminative clustering algorithms
are apparently better than the referenced methods in the
same experimental environment. Second, DMTRCl is
much better than DSTCl which shows that the task rela-
tionship is learned successfully. Third, DMTFCl is slightly
worse than DSTCl which means that we cannot learn a
strong shared feature representation across the tasks. This
phenomenon might be caused by the PCA projection
where much useful information for constructing the fea-
ture representation is lost, however, we cannot get its per-
formance in the original data set due to its inefficiency in
high dimensional data. Fourth, when the PCA projection
is used to form the experimental environment, the per-
formances of the clustering algorithms are getting worse
when more data is used. On the contrary, when PCA is
not used, the performances of both *DSTCl and *DMTRCl

are getting better. This phenomenon tells us that when
more data is available, the features should provide more
abundant information so as to make the models available
to be more complicated for describing the more variant
distributions. It also shows the power of DSTC and
DMTRC on high dimensional data sets. Moreover, it dem-
onstrates that the power of the proposed discriminative
clusterings do not rely on the predefined models for

Fig. 7. NMI comparison on the 20-newsgroups dataset. a percent is short
for “experiments running with a percent data of the data set.”

Fig. 8. Visualizations ofD of DMTFCl on the 20-newsgroups data set.

Fig. 6. Time complexities with respect to the data set size of each task
(n), feature dimension (d), and number of tasks (m). The symbol x in the
legends Oðx2Þ and Oðx2Þ stands for n, d or m in (a), (b) or (c)
respectively.

TABLE 1
Task Definition on the 20-Newsgroups Data Set

ID Names of the classes

Task 1 comp.sys.mac.hardware versus rec.sport.hockey ver-
sus sci.electronics

Task 2 comp.sys.ibm.pc.hardware versus rec.sport.baseball
versus sci.crypt

Task 3 comp.windows.x versus rec.autos versus talk.politics.
guns

Task 4 comp.os.ms-windows.misc versus sci.med versus
talk.politics.mideast

Task 5 rec.motorcycles versus sci.space versus talk.politics.
misc

Task 6 misc.forsale versus alt.atheism versus soc.religion.
christian
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describing the data distribution which is an apparent
superiority to the generative clusterings.

To show how well the feature representation is learned,
we visualize D of DMTFCl in Fig. 8. The figure shows that
most features are considered as mutually independent,
which might account for the ineffectiveness of DMTFCl.

To demonstrate how well the task relationship is learned,
we list the hinton diagrams of V of DMTRCl and *DMTRCl

in Figs. 9 and 10 respectively. The figures show that both
methods can learn the task relationships in different percen-
tages of data equivalently well. They also show that the task
relationship is different from what we have defined in
Table 1. As an example, Task 6 is originally designed as an
outlier task, but it contributes to the performance positively.
This phenomenon is worth of further study.

Fig. 11 gives the CPU time comparison. The figure shows
that although the proposed methods have higher absolute
time, both the proposed algorithms and the referenced
methods have a time complexity of Oðn2Þ except KM, SVR-
M3C, LSKMTC and MBC-P, which means that they are all
unavailable for large-scale problems.

The results on each individual task and the stability
analysis are described in the supplementary materials,
available online.

10.4 Results on Multi-Domain Sentiment Data Set

The multi-domain sentiment data set is a widely used
benchmark data set that was originally designed for the
MTL research propose. It contains product reviews taken
from Amazon.com from many product types (domains or

tasks). For a convenient comparison with the supervised
MTFL and MTRL, we adopt the same experimental setting
as [19]. Specifically, the data set in use is a postprocessed
version that aims to classify the reviews of some products to
two classes: positive or negative reviews. It contains four
binary-class tasks: books, DVDs, electronics, and kitchen
appliances. Each task contains 2,000 observations, in which
1,000 reviews are labeled as positive and the other 1,000 as
negative. Each observation is a vector with 4,73,853 dimen-
sions.Note that we discarded three features that contain
unrecognized characters. We generate three MTC problems
by randomly selecting 10, 30, and 50 percent of the data
from each task. Other experimental settings are the same as
those on the 20-newsgroups data set.

Fig. 12 gives the NMI comparison. The experimental
phenomena are quite similar with those on the 20-news-
groups data set. The only difference is that when more
data is available and when PCA is used to project the high
dimensional data set to a low dimensional space, the clus-
tering algorithms are generally getting better on the senti-
ment data set while the algorithms are getting worse on
the 20-newsgroups data set. This might be caused by the
difficulties of the data sets. That is to say, projecting
the data to 100 dimensional subspace is enough to catch
the useful information on the sentiment data set while
doing so is not enough on the 20-newsgroups data set. To
support this explanation, we visualize D of DMTFCl in
Fig. 13 and compare it with the visualizations of D in
Fig. 8. We can see that the filters D on the sentiment set
are more effective than those on the 20-newsgroups set.

We provide the hinton diagrams of V of DMTRCl and
*DMTRCl in Figs. 14 and 15. We further provide the

Fig. 11. CPU time comparison on the 20-newsgroups.

Fig. 9. Hinton diagrams of VV of DMTRCl on the 20-newsgroups dataset.

Fig. 10. Hinton diagrams of VV of *DMTRCl on the 20-newsgroups data
set.

Fig. 12. NMI comparison on the sentiment data set. a percent is short for
“experiments running with a percent data.”

Fig. 13. Visualizations ofD of DMTFCl on the sentiment data set.

Fig. 14. Hinton diagrams of VV of DMTRCl on the sentiment data set.
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performance of the proposed algorithms on the individ-
ual tasks in Fig. 16. The experimental phenomena in
Fig. 16 are consistent with those in Fig. 12 and are com-
parable with those yielded by the supervised counter-
parts of the proposed clusterings, i.e. MTFL and MTRL
(see [19, Section 4.3]). Finally, we list the running time of
the methods in Fig. 17. The results are consistent with
the results in Fig. 11.

11 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel Bayesian DMTC
framework. Within the framework, we have implemented
two multiclass DMTC objectives by specifying the frame-
work with four assumptions. The first one, named
DMTFC, works under the multivariate Gaussian prior
that models a shared feature representation across tasks,
while the second one, named DMTRC, models the task
relationship. Both objectives are formulated as difficult
MIP problems. We have further relaxed the MIP prob-
lems to convex optimization problems and solve the
relaxed problems efficiently in a uniform alternating opti-
mization procedure. Technically, the two convex DMTC
algorithms can be seen as the objective combination of
the supervised MTFL/MTRL and the unsupervised SVR-
M3C. Experimental comparison with seven STC algo-
rithms as well as three state-of-the-art MTC algorithms
on the pendigits, multi-domain newsgroups and multi-

domain sentiment data sets demonstrated the effective-
ness of the proposed algorithms.
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