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Abstract

In this supplementary material, we first give the detailed derivation of equations (6) and (11) in the main paper in
Section 1 and Section 2 respectively. Then, we present the optimization procedure of DMTC in detail in Section 3. In the
rest of the supplement, we will report the experimental results in detail in four evaluation metrics – Accuracy (ACC), Area
Under the ROC Curves (AUC), Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI).

F

1 DERIVATION OF EQUATION (6) IN THE MAIN PAPER

We can get the Lagrange of the equation (5) in the main paper as follows:
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where αij,c is the Lagrangian variable, and Id is a d-dimensional identity matrix. Calculating the partial derivatives
of problem (1) over Wc and ξij,c and letting the derivatives equal to 0 can get the following two equations:
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From the above equations, we can get:
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Substituting (4) and (5) to (1) can derive the following maximization problem
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After making the denotations that αc = [α1
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is the diagonal matrix whose diagonal element equals to ni if the corresponding observation belongs to the i-th
task, we can write problem (6) briefly as follows:
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2 DERIVATION OF EQUATION (11) IN THE MAIN PAPER

Again, we get the Lagrange of the problem in the braces of equation (10) in the main paper as follows:
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where µik ≥ 0 is the Lagrange variable. Calculating the partial derivative of problem (8) with respect to θ and letting
the derivative equals to 0 can get the following equation:
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Substituting (10) to (8) can derive equation (11) in the main paper.

3 OPTIMIZATION PROCEDURE

In this section, we will present the optimization procedure in detail. The readers can directly use the content of
this section to replace Section 6 of the main paper.

We are to solve DMTFC (equation (10) in the main paper) and DMTRC (equation (16) in the main paper) in a
uniform framework. To facilitate the mathematical representation, we write them as the following uniform objective:
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where Z stands for D or Ω, Z stands for D or A, and K̃ stands for K̃F or K̃R.
The solution framework is an alternating method. First, it decomposes the unsupervised problem (11) to a serial

supervised multiclass MTL problem by the cutting-plane algorithm (CPA) [1] and the extended level method (ELM)
[2], [3], where the decomposition algorithm can be seen as a multitask extension of the SVR-M3C algorithm [4].
Then, it solves each supervised multiclass MTL problem in an alternating way, which decomposes the multiclass
MTL to a serial supervised single-task regression problems eventually. Note that the difference of the optimization
procedure between DMTFC and DMTRC only appears in the supervised learning in Section 3.3.

3.1 Optimizing (11) Via Cutting Plane Algorithm
Because the number of the constraints in problem (11) is exponential large with respect to n, directly optimizing
(11) is impossible when the data set contains over dozens of examples. Hence, we adopt the cutting-plane algorithm
[1] to solve problem (11) approximately.

We present the key idea of the cutting-plane algorithm as follows. Generally, given a constrained optimization
problem, the cutting plane algorithm alternates the following two steps until the objective value converges. The
first step is to solve a reduced problem of the constrained problem, i.e. a problem that contains only a part of
the constraints. The second step is to find the most violated constraint of the reduced problem, and add it to the
constraint set so as to form a new reduced problem for the next iteration. It has been proved that the number of the
cutting-plane iterations is upper bounded by O(1/ε) [5], where ε is a user defined cutting-plane solution precision.

For problem (11), the cutting-plane algorithm iterates the following two steps:
a) Solving the following reduced problem of problem (11):
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where Yi is the reduced constraint subset of Bi. Problem (12) is equivalent to
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with |Yi| denoted as the size of Yi. Here, we leave this complicated

problem to Section 3.2.
b) Calculating the most violated constraint
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Although the above problem is a binary integer matrix optimization problem, it can be solved in timeO (
∑m
i=1 Cni log(Cni))

thanks to the constraints of Yi in equation (3) of the main paper. See [4, Algorithm 6] for the efficient algorithm.

3.2 Optimizing (13) Via Extended Level Method
Like the full problem (11), the cutting-plane subproblem (13) also has an equivalent form:
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Problem (13) is a concave-convex optimization problem that is convex on µ and Z and concave on α. We will
optimize it via the efficient Extended Level Method (ELM) [2], [3].

We present the key idea of the ELM algorithm as follows. ELM tries to solve the concave-convex optimization
problem mina maxb f(a, b) that is convex on a and concave on b by iteratively constructing tighter upper and
lower bounds for the optimal objective value f(a?; b?), where (a?, b?) denotes the optimal solution. Specifically, it
iterates the following two steps. The first step is to construct the lower bound f

s
= mina max1≤r≤s f(a; br) and

the upper bound f
s

= min1≤r≤s f(ar; br) of f , where r and s denotes the indices of the iterations (i.e. solutions)
and max1≤r≤s f(a; br) is also a cutting-plane model. The second step is to first get as+1 by solving the following
optimization problem

min
as+1
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s.t. f(as+1; br) ≤ τfs + (1− τ)f
s
,∀r = 1, . . . , s,

and then get bs+1 by solving maxbs+1
f(as+1, bs+1), where τ is a user defined constant. equation (17) performs like

a regularizer that prevents as+1 far from as.
For problem (16), because optimizing µ and Z jointly is difficult, setting a = {µ,Z} is improper. We propose to

set a = µ and optimize Z and α jointly. It is easy to prove the correctness of this new optimization strategy. The
proof is similar with the proof of [2, Theorem 1]. Another very important issue is that to make the cutting-plane
algorithm presented in Section 3.1 converges, for problem (16) at the S-th cutting-plane iteration, we should inherit
all previous S−1 ELM models to initialize the upper and lower bounds of the problem, otherwise, the cutting-plane
algorithm will fail. The proof is the same as [4, Theorem 3].

With the aforementioned two key points, the ELM algorithm for problem (13) is presented as follows. Suppose
we are currently at the S-th cutting-plane subproblem. That is to say, we are to solve the S-th problem (13). Suppose

solving the R-th cutting-plane subproblem yields TR ELM solutions, denoted as
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where R = 1, . . . , S − 1. Suppose the constraint set of the i-th task at the R-th cutting plane iteration, denoted as
Yi,R, contains

∣∣Yi,R∣∣ constraints (
∣∣Yi,R∣∣ ≤ R).
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Initialization of ELM. All previous S − 1 ELM models should be inherited by adding µi,Rr with
∣∣Yi,S∣∣− ∣∣Yi,R∣∣
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ELM. The ELM algorithm for (13) iterates the following steps:
a) Constructing the lower bound hs and upper bound hs by
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where K̃r is a function of Zr. With Zr fixed, the tasks are mutually independent, hence we can get the bounds
of each task separately:

his= min
µµµi∈Mi

Y

max
1≤r≤s

C∑
c=1

ni∑
j=1

αir,j,c
∑

k:Yi
k∈Yi

µikȳ
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Similar with Step a), we replace problem (22) with the summation of the following problems
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Here, we leave problem (24) to Section 3.3.

3.3 Optimizing (24) Via the Alternating Method
Problem (24) is a supervised multiclass MTL problem. We adopt an alternating method that is similar with [6] for
it.

Specifically, for each problem (24), the method iterates the following two steps:
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When Z is fixed, the subitems in the right side of equation (25) are mutually independently. Hence, we solve
each item
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independently, which is a supervised regression problem.
b) Given fixed {αc}Cc=1, we aim to optimize
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For solving problems (26) and (27), DMTFC and DMTRC should be considered separately as follows:
Specifying (26) and (27) as a part of DMTFC: We replace Z and Z by D and D respectively in the equations. For

(26), the multitask kernel K̃ should be specified by equation (7) in the main paper. For (27), we can get the closed
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to [7, Appendix 1].
Specifying (26) and (27) as a part of DMTRC: We replace Z and Z by Ω and A respectively in the equations. For

(26), K̃ should be specified by equation (17) in the main paper. For (27), we can get the closed solution of Ω as
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3.4 Overview of the Algorithm
Observing that the relaxed DMTFC (equation (10) in the main paper) and DMTRC (equation (16) in the main
paper) are quite similar, we propose a unified convex optimization objective (11), which can be solved alternatively
by combining several existing efficient algorithms [1]–[4], [8], [9]. The optimization procedure is summarized as
Algorithm 1.

4 SUPPLEMENT TO THE RESULTS OF THE PENDIGITS DATASET

In this section, we will first give the average performance of all tasks in the metrics of Accuracy (ACC), Adjusted
Rand Index (ARI), and Normalized Mutual Information (NMI) respectively. Then, we will give the performance of
each individual task in different jobs in the metric of NMI.

4.1 Average Performance of All Tasks in Different Metrics
Figs. 1, 2, and 3 show the average performance on the Pendigits dataset in the metrics of NMI, ARI, and ACC
respectively.

Job 1 (Clustering Tasks 1-3) Job 2 (Clustering Tasks 4-6) Job 3 (Clustering Tasks 1-6)

0%

20%

40%

60%

80%

100%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

N
M
I

Fig. 1. Comparison of the average NMI of all tasks on the Pendigits dataset. The error bar denotes the standard
deviation.
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Algorithm 1 Discriminative Multitask Clustering.

Input: The unlabeled observations from m tasks
{
{xij}

ni
j=1

}m
i=1

, class number P , regularization parameters λ1 and
λ2, and the parameters that control the class balance {li}mi=1

Output: ŷ
Initialization: Arbitrary initial constraint label matrices

{
Yi

1

}m
i=1

that satisfy the constraints in equation (3) in the
main paper, initial constraint sets Yi ←

{
Yi

1

}
and µi1 ← 1 with i = 1, . . . ,m

1: repeat
2: Inherit the ELM solutions in the previous cutting-plane iterations
3: repeat
4: for task i = 1, . . . ,m do
5: Construct the lower bound via (20) and the upper bound via (21)
6: Update µi by solving (23)
7: end for
8: repeat
9: for class c = 1, . . . , C do

10: Update αc by solving (26)
11: end for
12: Update Z by solving (27)
13: until the objective value converges
14: until the objective value converges
15: for task i = 1, . . . ,m do
16: Calculate the most violated constraint Yi

|Ci|+1 of the cutting-plane algorithm by solving (15)

17: Yi ← Yi ∪
{

Yi
|Yi|+1

}
18: end for
19: until the objective value converges or

{
Yi
}m
i=1

are unchanged
20: /*Prediction*/
21: for task i = 1, . . . ,m do
22: for j = 1, . . . , ni do
23: ŷij ← arg maxp

∑m
u=1

∑nu

v=1 α
u
v,pKMT (xuv ,x

i
j), where the kernel function KMT is defined in (7) in the main

paper for DMTFC and in (17) in the main paper for DMTRC
24: end for
25: end for

100%
Job 1 (Clustering Tasks 1-3) Job 2 (Clustering Tasks 4-6) Job 3 (Clustering Tasks 1-6)

0%

20%

40%

60%

80%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

A
R
I

Fig. 2. Comparison of the average ARI of all tasks on the Pendigits dataset.
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100%
Job 1 (Clustering Tasks 1-3) Job 2 (Clustering Tasks 4-6) Job 3 (Clustering Tasks 1-6)

0%

20%

40%

60%

80%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

A
C
C

Fig. 3. Comparison of the average ACC of all tasks on the Pendigits dataset.

4.2 Performance of Each Individual Task in the Metric of NMI
Figs. 4, 5, and 6 show the NMIs of the clustering algorithms with respect to each individual task in Jobs 1, 2, and
3 respectively.

In this subsection, we should pay particular attention to the standard deviations of the NMIs on each individual
task, since the standard deviations represent the stabilities of the clustering algorithms partially.

40%

60%

80%

100%

N
M
I

Task 1 Task 2 Task 3

0%

20%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

60%60%

Fig. 4. NMI comparison with respect to each individual task in Job 1 on the Pendigits dataset.

60%

80%

100%
Task 4 Task 5 Task 6

0%

20%

40%

60%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

N
M
I

Fig. 5. NMI comparison with respect to each individual task in Job 2 on the Pendigits dataset.

100%

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
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20%

40%

60%

80%

KM KKM NC DSTC_l DSTC_r ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTFC_r DMTRC_l DMTRC_r

N
M
I

Fig. 6. NMI comparison with respect to each individual task in Job 3 on the Pendigits dataset.
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5 SUPPLEMENT TO THE RESULTS OF THE MULTI-DOMAIN NEWSGROUPS DATASET

In this section, we will first give the average performance of all tasks in the metrics of NMI, ARI, and ACC
respectively. Then, we will give the performance of each individual task with 5%, 10%, 20% and 40% data of the
20-newsgroups dataset in the metric of NMI.

5.1 Average Performance of All Tasks in Different Metrics
Figs. 7, 8, and 9 show the average performance on the 20-newsgroups dataset in the metrics of NMI, ARI, and ACC
respectively.
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Fig. 7. Comparison of the average NMI of all tasks on the 20-Newgroups dataset.
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Fig. 8. Comparison of the average ARI of all tasks on the 20-Newgroups dataset.
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Fig. 9. Comparison of the average ACC of all tasks on the 20-Newgroups dataset.

5.2 Performance of Each Individual Task in the Metric of NMI
Figs. 10, 11, 12, and 13 show the NMIs of the clustering algorithms with 5%, 10%, 20% and 40% data of the
20-newsgroups dataset in the metric of NMI.

In this subsection, we should pay particular attention to the standard deviations of the NMIs on each individual
task, since the standard deviations represent the stabilities of the clustering algorithms partially. From the figures,
we can see that when more data is available, the stability of DMTRC is improved greatly.
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Fig. 10. NMI comparison with respect to each individual task on 5% data of the 20-Newgroups dataset.
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Fig. 11. NMI comparison with respect to each individual task on 10% data of the 20-Newgroups dataset.
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Fig. 12. NMI comparison with respect to each individual task on 20% data of the 20-Newgroups dataset.
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Fig. 13. NMI comparison with respect to each individual task on 40% data of the 20-Newgroups dataset.
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6 SUPPLEMENT TO THE RESULTS OF THE MULTI-DOMAIN SENTIMENT DATASET

In this section, we will first give the average performance of all tasks in the metrics of NMI, ARI, ACC and the Area
under ROC Curve (AUC) respectively. Then, we will give the performance of each individual task with 10%, 30%,
and 50% data of the sentiment dataset in the metric of NMI. At last, we will show the CPU time of the methods.

6.1 Average Performance of All Tasks in Different Metrics
Figs. 14, 15, 16 and 17 show the average performance on the sentiment dataset in the metrics of NMI, ARI, ACC
and AUC respectively.

40%

60%

80%

100%

N
M
I

10% data 30% data 50% data

0%

20%

KM KKM NC DSTC_l ALL_KM ALL_KKM ALL_NC LSSMTC LSKMTC MBC-P DMTFC_l DMTRC_l *DSTC_l *DMTRC_l

80%80%

Fig. 14. Comparison of the average NMI of all tasks on the sentiment dataset.
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Fig. 15. Comparison of the average ARI of all tasks on the sentiment dataset.
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Fig. 16. Comparison of the average ACC of all tasks on the sentiment dataset.
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Fig. 17. Comparison of the average AUC of all tasks on the sentiment dataset.

6.2 Performance of Each Individual Task in the Metric of NMI
Figs. 18, 19, and 20 show the NMIs of the clustering algorithms with 10%, 30%, and 50% data of the 20-newsgroups
dataset in the metric of NMI.

From the figures, we can see that the proposed clustering methods are much more robust than KM and KKM.
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Fig. 18. NMI comparison with respect to each individual task on 10% data of the sentiment dataset.
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Fig. 19. NMI comparison with respect to each individual task on 30% data of the sentiment dataset.
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Fig. 20. NMI comparison with respect to each individual task on 50% data of the sentiment dataset.
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