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Interpretable Spectrum Transformation Attacks to
Speaker Recognition Systems

Jiadi Yao, Hong Luo, Jun Qi, and Xiao-Lei Zhang , Senior Member, IEEE

Abstract—The success of adversarial attacks on speaker recog-
nition is mainly in white-box scenarios. When applying the adver-
sarial voices that are generated by attacking white-box surrogate
models to black-box victim models, i.e. transfer-based black-box
attacks, the transferability of the adversarial voices is not only far
from satisfactory, but also lacks interpretable basis. To address
these issues, in this article, we propose a general framework, named
spectral transformation attack based on modified discrete cosine
transform (STA-MDCT), to improve the transferability of the ad-
versarial voices to a black-box victim model. Specifically, we first
apply MDCT to the input voice. Then, we slightly modify the energy
of different frequency bands for capturing the salient regions of the
adversarial noise in the time-frequency domain that are critical to
a successful attack. Unlike existing approaches that operate voices
in the time domain, the proposed framework operates voices in
the time-frequency domain, which improves the interpretability,
transferability, and imperceptibility of the attack. Moreover, it
can be implemented with any gradient-based attackers. To utilize
the advantage of model ensembling, we not only implement STA-
MDCT with a single white-box surrogate model but also with an en-
semble of surrogate models. Finally, we visualize the saliency maps
of adversarial voices by the class activation maps (CAM), which
offer an interpretable basis for transfer-based attacks in speaker
recognition for the first time. Extensive comparison results with six
representative attackers show that the CAM visualization clearly
explains the effectiveness of STA-MDCT and the weaknesses of
the comparison methods; the proposed method outperforms the
comparison methods by a large margin. Our audio samples are
available on the demo website.1

Index Terms—Speaker recognition, adversarial examples,
adversarial transferability, black-box attacks.

Manuscript received 2 March 2023; revised 30 October 2023, 14 December
2023, and 12 January 2024; accepted 3 February 2024. Date of publication
8 February 2024; date of current version 23 February 2024. This work was
supported in part by the National Science Foundation of China (NSFC) un-
der Grant 62176211 and in part by the Project of the Science, Technology,
and Innovation Commission of Shenzhen Municipality, China, under Grant
JCYJ20210324143006016 and Grant JSGG20210802152546026. The associate
editor coordinating the review of this manuscript and approving it for publication
was Dr. Omid Sadjadi. (Corresponding author: Xiao-Lei Zhang.)

Jiadi Yao and Xiao-Lei Zhang are with the School of Marine Science and Tech-
nology, Northwestern Polytechnical University, Xi’an 710072, China, and also
with the Research & Development Institute of Northwestern Polytechnical Uni-
versity, Shenzhen 710072, China (e-mail: yaojiadi@mail.nwpu.edu.cn; xiaolei.
zhang@nwpu.edu.cn).

Hong Luo is with China Mobile (Hangzhou) Information Technology Com-
pany Ltd., Hangzhou, China (e-mail: luohong@cmhi.chinamobile.com).

Jun Qi is with the Department of Computer Science, Hong Kong Baptist
University, Hong Kong, China (e-mail: jun-qi@comp.hkbu.edu.hk).

https://sea-yjd.github.io/
Digital Object Identifier 10.1109/TASLP.2024.3364100

I. INTRODUCTION

S PEAKER recognition is the task of identifying a per-
son from voices that contain voice characteristics of the

speaker [1], [2], [3], and finds its wide applications in real-world
scenarios, such as bank trading, remote payment, and criminal
investigations. State-of-the-art speaker recognition systems ex-
tract speaker embeddings with fixed dimensions to represent
the acoustic characteristics of speakers [3], [4]. Prototypical
speaker embeddings are i-vectors [5] extracted from Gaussian-
mixture-model-based universal background models [1], [2].
In recent years, with the fast development of deep learning,
deep speaker embeddings become a new trend. Represen-
tative deep embeddings include d-vectors [6], x-vector [3],
etc.

Due to the wide applications of speaker recognition, its se-
curity is raising widespread concerns. Many attack techniques
were developed to make speaker recognition systems easily fail,
which can be categorized into three types: spoofing attacks,
backdoor attacks, and adversarial attacks. There are main four
sub-types of spoofing attacks: replay, voice conversion, im-
personation, and text-to-speech synthesis [7], [8]. Notably, the
community-driven benchmark ASVspoof Challenge series [9]
aim to address voice spoofing attacks. Recently, various detec-
tions [10], [11] and spoofing countermeasures [12] for spoofing
attacks were developing rapidly. Backdoor attacks [13], [14],
[15] provide poisoned data to the training data of a victim model
in the training stage, and then activate the attack by presenting
a specific small trigger pattern to the victim model in the test
stage. Adversarial attacks aim to lead speaker recognition sys-
tems to wrong decisions by contaminating benign test examples
with perceptually indistinguishable structured perturbations.
The contaminated examples, a.k.a. adversarial examples, have
been proven to significantly undermine deep-learning-based
speaker recognition systems.

According to how much information a victim model can be ac-
cessed by an attacker, we categorize existing adversarial attacks
into two settings, which are white-box attacks and black-box
attacks. In the white-box setting, the attacker could access all
information of the victim model, including the model archi-
tecture, parameters, and training data. For example, Villalba
et al. [16] demonstrated that gradient-based white-box attacks
achieve a high success rate to speaker verification systems.
Black-box attacks, which assume that the attackers know little
about the victim models, are more practical and challenging
than their white-box counterparts. Black-box attacks can be
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further partitioned into three sub-categories, which are the score-
based, decision-based, and transfer-based attacks respectively.
For the score-based attacks, the feedback from victim mod-
els is continuous, such as the posterior probability. For the
decision-based attacks, the feedback is discrete, such as the
recognition results. In both cases, a core problem is how to
deal with the unknown gradients in the victim models. Existing
solutions include gradient estimation and natural evolution. For
example, Zhang et al. [17] proposed an adversarial example
generation method named VMask, which estimates the gradients
according to the difference between the similarity scores of
multiple queries, and then uses zeroth-order optimization [18] to
solve the gradient-agnostic problem. Chen et al. [19] proposed
the FakeBob attack to estimate the gradients through a natural
evolutionary strategy [20]. However, the above score-based and
decision-based black-box attacks usually require a large number
of queries.

To prevent a large number of queries to victim models,
transfer-based black-box attacks were developed. Transfer-
based black-box attacks [16], [19], [21], [22], [23] first gen-
erate adversarial examples from white-box surrogate models,
and then transfer the adversarial examples to black-box victim
models. Transfer-based methods do not utilize any information
about the black-box victim models. Their success relies strongly
on the transferability of the adversarial examples, which is
the generalization ability of whether an adversarial example
generated against a specific model can deceive other models.
This article focuses on discussing transfer-based black-box
attacks.

Although transfer-based black-box attacks for speaker recog-
nition have received positive effects [16], [24], [25], [26], the
following core problems still need further investigation. (i) For
a transfer-based attacker, transferability is a desired property of
adversarial examples. However, it seems still far from explored.
(ii) Many works generate adversarial examples in the time
domain [16], which may neglect the difference between the
frequency bands of speech signals, while minor changes in fre-
quency components may result in opposite decisions which is a
well-known phenomenon. (iii) The success of an attacker cannot
be interpreted straightforwardly, e.g. from the time-frequency
spectrogram of a speech segment, which makes the design of an
attack algorithm mysterious and heuristic.

To address the above issues, inspired by [23], in this article, we
propose to improve the transferability of adversarial examples in
the time-frequency domain by a novel framework, named spec-
trum transformation attack based on modified discrete cosine
transform (STA-MDCT). STA-MDCT first performs MDCT on
the input voice and then slightly modifies the energy of different
frequency bands to alter the salient regions in the time-frequency
domain that may lead the black-box victim model to an error
decision. To make the attack effect interpretable, we propose
to visualize the saliency maps of adversarial examples via the
class activation maps (CAM) [27]. By comparing the saliency
maps of a voice before and after being added with an adversarial
perturbation, we find that the adversarial examples generated
with STA-MDCT are capable of shifting the attention of a
black-box victim model, while its counterparts fail to do so,

which provides an interpretable basis to transfer-based attacks.
To summarize, our main contributions are as follows:
� We propose the STA-MDCT framework. It is a general

framework that any gradient-based attacker can be ap-
plied with for probably improving its transferability to a
black-box victim model. We implement two STA-MDCT
variants, one with a single white-box surrogate model, and
the other with an ensemble of white-box surrogate models.

� We propose to interpret the attack effect visually by CAM.
To our knowledge, it is the first time that the transferability
of an attacker can be interpreted visually beyond the final
feedback from a victim model in speaker recognition.

� We conducted adversarial attacks on four representative
black-box victim speaker recognition systems. Extensive
experiments demonstrate that the proposed STA-MDCT
outperforms the state-of-the-art adversarial attack algo-
rithms by a large margin in transfer-based attack scenarios.
The targeted attack success rate (TASR) can reach up to as
high as 70.5%.

The rest of this article is organized as follows. Section II
reviews the related work of adversarial attacks. Section III briefly
describes some preliminaries. Section IV describes the proposed
method in detail. Section V provides an interpretable analysis.
Section VI shows the experimental setup, including the dataset,
victim models, and evaluation metrics. Section VII and VIII
analyze the experimental results of adversarial attacks under
speaker verification and speaker identification, respectively. In
Section IX, we summarize the article.

II. RELATED WORK

In the following, we briefly make a literature survey of adver-
sarial attacks in white-box and black-box scenarios.

White-box attacks can directly access the gradient of a vic-
tim model for generating adversarial examples. Since the first
work named Fast Gradient Sign Method (FGSM) [28], a large
number of adversarial attack approaches have been proposed,
including DeepFool [29], I-FGSM [30], PGD [31], C&W [32],
and ACG [33]. Besides, universal adversarial perturbations [34],
[35], adversarial perturbations generative networks [36], [37],
[38] are also extensively explored for generating real-time and
efficient adversarial perturbations.

Black-box attacks can be categorized to score-based,
decision-based, and transfer-based black-box attacks. For the
score-based attacks, gradient-estimation [18] and natural evolu-
tion strategies [20], [39] can be used to adapt perturbations to
black-box victim models, given frequent queries to the victim
models. For the decision-based attacks, boundary attack [40]
aims to find the best disturbance around invisible decision
boundaries. In [41] formulates the decision-based attack as a
real-valued optimization problem that can be solved by any
zeroth order optimization algorithm. HopSkipJumpAttack [42]
estimates the gradient directions at decision boundaries using
Monte Carlo estimation.

Transfer-based attacks leverage the transferability of adver-
sarial examples. Existing approaches that aim to improve the
transferability can be categorized into four classes, which are (i)
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optimization-based algorithms, (ii) model augmentation strat-
egy [23], (iii) ensemble learning [21] and meta-learning [43]
strategies, and (iv) modification of data distributions, respec-
tively. The optimization-based algorithms aim to stabilize the
optimization directions of adversarial perturbations and avoid
getting trapped in poor local optima of white-box surrogate
models, e.g. Nesterov accelerated gradient [21], [44]. The model
augmentation strategy aims to simulate diverse models by apply-
ing loss-preserving transformations to inputs. For this purpose,
Lin et al. [45] utilizes the scale-invariant property of deep
neural networks to calculate the gradients over a set of images
with different scales. Dong et al. [46] optimize the perturbation
over an ensemble of translated images to mitigate the issues of
over-reliance on the surrogate model. Long et al. [23] perform
the model augmentation by using DCT in the frequency domain,
achieving state-of-the-art transfer-based attacks. The ensem-
ble learning and meta-learning strategies generate transferable
adversarial examples by integrating gradient information from
multiple white-box surrogate models. Both of the strategies are
beneficial in decreasing the gap between the surrogate models
and the victim models. The approach of modifying data dis-
tributions aims to push the input data away from its original
distribution to enhance the adversarial transferability [47].

The proposed STA-MDCT belongs to the second and fourth
class of the above categories. Different from the above existing
methods, we apply MDCT in the generation process of the adver-
sarial voices for the first time, which improves the transferability
and interpretability of adversarial voices in the time-frequency
domain.

III. PRELIMINARIES

A. Speaker Recognition

This article considers three representative subtasks of speaker
recognition, including automatic speaker verification (ASV),
open-set identification (OSI), and close-set identification (CSI).
We briefly present the definition of the subtasks as follows.

ASV aims to verify whether an anonymous utterance is
pronounced by an enrolled person. A state-of-the-art speaker
verification system first extracts a speaker embedding, e.g.
x-vector, from an input utterance. Then, in the test phase, it
calculates the similarity score between the speaker embeddings
of an enrollment speaker xenroll and a test speaker x. Finally, it
compares the score with a predefined threshold θ:

s(xenroll,x)
H1

≷
H0

θ, (1)

where s(xenroll,x) is the similarity score between the two speak-
ers,H1 represents the hypothesis thatx is uttered by the enrolled
speaker, and H0 is the opposite hypothesis of H1.

Speaker identification aims to detect the speaker identity of
a test utterance x from an enrollment database of R speakers
{r = 1, 2, . . . , R} (R > 1) by:

r∗ = argmax
r

{s(xenroll
r ,x)|∀r = 1, . . . , R}, (2)

where s(xenroll
r ,x) denotes the similarity score between x and

the r-th enrollment speaker xenroll
r . If x can never be out of

the R enrolled speakers, then it is a CSI task; otherwise, it
is an OSI task. From the above definitions, one can see that
ASV is a special case of the OSI task with R = 1. However,
given the importance and wide applications of ASV in biometric
authentication, this article takes it as a separate task.

B. White-Box Adversarial Attack to Speaker Recognition

An adversarial attacker intentionally crafts a tiny perturbation
δ that is indistinguishable from humans, and then combines it
with a benign voice x to produce a new one:

xadv = x+ δ (3)

which may lead a victim model to wrong decisions according
to the attacker’s proposal. According to the goal of the attacker,
adversarial attacks can be divided into targeted attacks and un-
targeted attacks. Targeted attacks involve adversarial examples
being classified as a specific target label by a neural network.
Untargeted attacks only require adversarial examples to be mis-
classified.

Given a benign voicex, the problem of searching for an adver-
sarial example xadv can be formulated as solving the following
constrained optimization problem:

max
xadv

L
(
xenroll,xadv

)
s.t.

∥∥xadv − x
∥∥
p
< ε (4)

where L(·) is a loss function that aims to make the victim model
to errors, the p-norm ‖xadv − x‖p represents the perturbation
degree that controls the energy difference between the benign
voice and the adversarial voice, which is upper-bounded by the
predefined perturbation level ε. If ε was set small, then humans
may not be able to distinguish the adversarial voice xadv from
the benign voice x. In the following, we derive the definition of
the adversarial attack for each speaker recognition subtask from
(4).

To attack an ASV system, a targeted attack, a.k.a. imperson-
ation attack, aims to make the ASV system misclassify a non-
target trial, i.e. s(xenroll,x) < θ, to a target trial s(xenroll,xadv) >
θ, where a target trial indicates that the enrolled utterance and
the test utterance belong to the same speaker identity, while a
non-target trial is the opposite. To achieve this goal, the loss
function Limp can be defined as:

Limp
(
xenroll,xadv

)
= s(xenroll,xadv)− θ. (5)

In contrast, an untargeted attack, a.k.a. evasion attack, aims to
make the ASV system misclassify a target trial s(xenroll,x) >
θ into a non-target trial s(xenroll,xadv) < θ. Therefore, its loss
function can be Leva defined as:

Leva
(
xenroll,xadv

)
= −s(xenroll,xadv) + θ. (6)

In one word, in ASV, targeted attacks are impersonation attacks,
while untargeted attacks are evasion attacks. In this article, we
discuss the tasks of both the impersonation and evasion attacks
to ASV.
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To attack a speaker identification system, a targeted attack
aims to generate an adversarial voice such that the system may
misclassify it as a target speaker; whereas an untargeted attack
aims to lead the system to wrong predictions. Because a speaker
identification system makes errors easily with the presence of
natural noise interference which is similar to the effect from
untargeted attacks, in this article, we only discuss the tasks of
the targeted attacks to CSI and OSI. Suppose the attacker aims
to make the victim model wrongly predict the r-th speaker into
the t-th target speaker. the objective of CSI is defined as:

LCSI(x
adv, {xenroll

r }Rr=1) = s(xenroll
t ,xadv)

−max{s(xenroll
r ,xadv)|∀r = 1, . . . , R, r �= t}, (7)

and the objective of OSI is defined as:

LOSI(x
adv, {xenroll

r }Rr=1) = s(xenroll
t ,xadv)

−max(max{s(xenroll
r ,xadv)|∀r = 1, . . . , R, r �= t}, θ).

(8)

where θ is a predefined threshold for the open-set problem of
OSI.

In the following, we give a brief description of existing
attackers, i.e. optimization algorithms, for the aforementioned
adversarial attack objectives. For simplicity, we will omit xenroll

from L(·) in the rest of the article, unless otherwise stated.
1) Fast Gradient Sign Method (FGSM): FGSM [28] gener-

ates an adversarial examplexadv by maximizing the lossL(xadv)
with one-step update to x:

xadv = x+ ε · sign(∇xL(x)), (9)

where ∇xL(x) is the derivative of the loss function with respect
to x.

2) Iterative Fast Gradient Sign Method (I-FGSM): I-
FGSM [48] extends FGSM to an iterative version with a small
step size α:

xadv
t+1 = Clipx,ε

{
xadv
t + α · sign

(
∇xadv

t
L
(
xadv
t

))}
. (10)

wherexadv
0 = x, t ∈ {0, 1, . . . , T} denotes the t-th iteration with

T as the maximum number of iterations, α = ε/T , and the func-
tion Clipx,ε(·) constrains the generated adversarial examples to
be within the ε-ball of x after each optimization step t, i.e.,
‖xadv

t − x‖∞ < ε.
3) Projected Gradient Descent (PGD): PGD [31] is similar

to I-FGSM, but it performs a random initialization to perturba-
tion and replaces the clip operation in (10) with the projection
function.

xadv
t+1 = Projx+S,ε

⎛
⎝xadv

t + α
∇xadv

t
L
(
xadv
t

)
∥∥∥∇xadv

t
L
(
xadv
t

)∥∥∥
2

⎞
⎠ (11)

where Projx+S,ε is the projection operator of Lp, here, we adopt
L2 norm, i.e., ‖xadv

t − x‖2 < ε.

4) Momentum Iterative Fast Gradient Sign Method (MI-
FGSM): MI-FGSM [49] integrates the momentum into I-
FGSM:

gt+1 = μ · gt +
∇

xadv
t

L(xadv
t )

∥
∥
∥
∥
∇

xadv
t

L(xadv
t )

∥
∥
∥
∥
1

,

xadv
t+1 = Clipx,ε

{
xadv
t + α · sign (gt+1)

}
.

(12)

where g0 = 0, gt is the accumulated gradient at iteration t, and
μ is the decay factor where μ = 1 in our experiments.

5) Nesterov Iterative Fast Gradient Sign Method (NI-
FGSM): NI-FGSM [45] integrates Nesterov accelerated gradi-
ent into I-FGSM:

xnes
t = xadv

t + α · μ · gt,

gt+1 = μ · gt +
∇xnes

t
L(xnes

t )
∥
∥
∥∇xnes

t
L(xadv

t )
∥
∥
∥
1

,

xadv
t+1 = Clipx,ε

{
xadv
t + α · sign (gt+1)

}
.

(13)

6) Auto Conjugate Gradient Attack: Auto conjugate gradient
attack (ACG) [33] is based on conjugate gradient descent:

yt−1 = ∇xadv
t−1

L
(
xadv
t−1

)
−∇xadv

t
L
(
xadv
t

)

βHS
t =

〈
−∇xadv

t
L
(
xadv
t

)
,yt−1

〉
〈st−1,yt−1〉

st = ∇xadv
t
L
(
xadv
t

)
+ βHS

t st−1

xadv
t+1 = Clipx,ε

{
xadv
t + ηt · sign (st)

}
(14)

where the initial conjugate gradient s0 = 0, βHS is a parameter
calculated from the past search information, the step size ηt is
dynamically adjusted and initialized by η0 = 2ε/T . Particularly,
when the number of iterations reaches a predefined value or the
loss no longer drops, η is halved.

From the above formulation, we see that ACG updates the
search points in broader directions than the steepest gradient di-
rection as that in FGSM, which may improve the transferability
of the generated adversarial examples.

IV. SPECTRUM TRANSFORMATION ATTACK BASED ON

MODIFIED DISCRETE COSINE TRANSFORM

In this section, we first present the STA-MDCT framework in
Section IV-A, and then describe the spectrum transformation in
detail in Section IV-B. Finally, in Section IV-C, we present two
implementations of STA-MDCT, one with a single attacker and
the other with an ensemble of attackers.

A. Framework of the Transfer-Based STA-MDCT Attack

Existing works usually apply loss-preserving transformations
in the time domain, which might overlook the difference between
frequency bands of speech signals, while slight variations in
frequency components could lead to distinctly different deci-
sions. Given the same input, different victim models attend to
different frequency bands and spectrum features of the input
for making a decision [27], [50]. Therefore, a perfect attacker
trained from a white-box surrogate model in the time domain
may have weak transferability to a black-box victim model that
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Fig. 1. Framework of the STA-MDCT transfer-based attack, where x is a benign voice, xadv is an adversarial voice from x, δ is the adversarial perturbation, ξ
is a random noise signal whose sample points are sampled from a Gaussian distribution N (0, σ2I), M is a random matrix whose elements are sampled from a
uniform distribution ∼ U(1− ρ, 1 + ρ), and T (x) is the spectrum transformation of x.

has different attention properties in the time-frequency domain
from the surrogate model.

To address this issue, Long et al. propose a spectrum transfor-
mation based on DCT to diversify input images. In contrast to
DCT, MDCT is more suitable for feature extraction and signal
analysis of audio signals because it avoids the time-domain
aliasing introduced by DCT. Therefore, we propose STA-MDCT
based on MDCT to explore the correlation between the vic-
tim models in the time-frequency domain. Its framework is
illustrated in Fig. 1. As shown in Fig. 1(a), a transfer-based
attacker first attacks a white-box surrogate model for generating
transferable adversarial examples, and then uses them to attack
a black-box target model. As shown in Fig. 1(b), for each opti-
mization iteration, STA-MDCT first applies a spectrum transfor-
mation T (xadv) based on MDCT and inverse MDCT (iMDCT)
toxadv, and then reallocates the energy of the frequency bands of
xadv according to the gradient information from the white-box
surrogate model for improving the transferability of xadv.

B. Spectrum Transformation

The spectrum transformation T (xadv) is defined as follows:

T (xadv) = iMDCT((MDCT(xadv) + MDCT(ξ))�M),

= iMDCT(MDCT(xadv + ξ)�M)
(15)

where ξ is a random noise signal whose sample points are
sampled from a Gaussian distributionN (0, σ2I),M is a random
matrix whose elements are sampled from a uniform distribu-
tion ∼ U(1− ρ, 1 + ρ), the operator � refers to the Hadamard
product. The key contribution of ξ and M lies in their ability

to enhance the transferability of adversarial examples. Both ξ
and M play a crucial role in manipulating the spectrum saliency
map. By leveraging ξ and M simultaneously, we can effectively
simulate a more diverse substitute model and generate transfer-
able adversarial examples. This theory was further confirmed
through the ablation study conducted in Section VII-C.

The operator MDCT(·) [51] is defined as:

XMDCT(k) =
∑W−1

n=0 x(n)h(n) cos

[
(2n+1+W

2 )(2k+1)π

2˜W

]
,

∀k = 0, 1, . . . , W
2 − 1, ∀n = 0, 1, . . . ,W − 1

(16)
and the iMDCT operator iMDCT(·) is defined as:

x(n)= 2
W h(n)

∑W
2 −1

k=0 XMDCT(k) cos

[
(2n+1+W

2 )(2k+1)π

2˜W

]
,

∀k = 0, 1, . . . , W
2 − 1, ∀n = 0, 1, . . . ,W − 1

(17)
where h(n) represents the Kaiser-bessel-derived window, W
denotes the window length of the transformation.

Note that, MDCT is a linear orthogonal lapped transform,
based on the time domain aliasing cancellation. In this article,
the adjacent frames produced by MDCT has an overlap of
50%. This enables a smooth transition between the time domain
and frequency domain, contributing to improved time-frequency
performance. Additionally, the use of the Kaiser-bessel-derived
window in MDCT is better suited to adapt to the frequency
characteristics of audio signals.
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C. STA-MDCT Implementations

Any gradient-based attackers can be applied to the proposed
STA-MDCT framework. Different from (4), the optimization
objective of STA-MDCT is formulated as:

max
xadv

L
(
xenroll, T (xadv)

)
s.t.

∥∥xadv − x
∥∥
p
< ε (18)

Its optimization iteratively operates the following three steps:
� Calculate T (xadv

t ) which is then back-propagated
through the network to obtain the gradient information
∇xadv

t
L(T (xadv

t )), where t denotes the t-th iteration.
� Average N gradients to obtain a more stable gradient

direction.
� Update the adversarial example xadv

t+1 using an attacker
algorithm, e.g. FGSM, I-FGSM, etc.

In this article, we implement two STA-MDCTs, one with
a single white-box surrogate model, and the other with an
ensemble of white-box surrogate models.

1) STA-MDCT Based on a Single Surrogate Model: We
apply I-FGSM [48] to STA-MDCT for attacking a white-box
surrogate model. The optimization algorithm is formulated as:

xadv
t+1=Clipx,ε

{
xadv
t +α · sign

(
1

N

N∑
i=1

∇xadv
t
L
(
T
(
xadv
t

)))}
(19)

Additionally, we conducted experiments combining STA-
MDCT with PGD (STA-MDCT-PGD) to confirm the effective-
ness of our proposed transformation.

2) STA-MDCT Based on an Ensemble of Surrogate Mod-
els: To improve transferability, we apply I-FGSM to STA-
MDCT for attacking an ensemble of white-box surrogate mod-
els (ensemble-STA-MDCT). The algorithm is summarized in
Algorithm 1, when there is only one white-box model, i.e.,
q = 1, it corresponds to Section IV-C1.

Note that the following STA-MDCT refers to STA-MDCT
combined with I-FGSM unless otherwise specified.

V. INTERPRETABILITY OF STA-MDCT WITH SALIENCY MAPS

In this section, we first introduce saliency maps in
Section V-A, and then apply a special saliency map, named
Layer-CAM, to interpret the effectiveness of STA-MDCT in the
time-frequency domain directly in Section V-B.

A. Saliency Maps for Speaker Recognition

When making decisions, humans tend to focus on salient
parts of an object and allocate their attention appropriately.
Class activation map (CAM) is the saliency map of an image
produced by a convolutional neural network (CNN) which em-
phasizes important regions for classifying the image. Several
CAMs have been widely used in computer vision, such as
the Grad-CAM [52], Grad-CAM++ [53], Score-CAM [54] and
Layer-CAM [55]. In speech processing, Li et al. [27] applied
CAM to speaker recognition. Their study concludes that only

Algorithm 1: STA-MDCT.

Input White-box models F = {f1, . . . , fq}, ensemble
weight w = [w1, w2, . . . , wq], the enroll utterance
xenroll, the testing utterance x to be attacked, loss
function Lfj (·) for model fj , max iterations T , max
perturbation ε, step size α, number of spectrum
transformation N , tunning factor ρ, std σ of noise ξ.

Output An adversarial example xadv.
1: xadv

0 = x;
2: for t = 0 to T − 1do
3: for all fj do
4: Get spectrum transformation output T (xadv

t ) using:
T (xadv

t ) = iMDCT(MDCT(xadv
t + ξ)�M);

5: Compute the average gradient of the N augmented
models: kfj = 1

N

∑N
i=1 ∇xadv

t
Lfj (T (xadv

t ))
6: end
7: Fuse these gradients: k =

∑q
j=1 wjkfj ;

8: Update xadv
t+1 by applying the sign gradient as:

xadv
t+1 = Clipx,ε(x

adv
t + α · sign(k));

9: end
10: xadv = xadv

T ;
11: return xadv

Layer-CAM is a valid visualization tool for speaker recognition.
This article discusses Layer-CAM as well.

Here, we make a brief description of Layer-CAM in speaker
recognition. Given a CNN-based speaker recognition system,
we denote the output feature maps of the final convolutional
layer of the CNN as A and denote the k-th feature map in A
as Ak. Suppose the predicted score of the input x for the c-th
speaker is:

yc = s(xenroll
c ,x). (20)

We calculate the gradient of yc with respect to Ak by:

wkc
ij = relu

(
∂yc

∂Ak
ij

)
. (21)

where Ak
ij is the (i, j)-th location of Ak The saliency map Zc

of the input x at the location (i, j) is:

Zc
ij = relu

{∑
k

wkc
ij ·Ak

ij

}
. (22)

At last, we normalize the saliency map Zc by:

Ẑc =
Zc −minZc

maxZc −minZc
. (23)

As illustrated in Fig. 2, given the same inputx, the saliency maps
of different models for the same speaker c significantly vary from
each other, which clearly reveals that the models have different
concerns on the same time-frequency unit. It is precisely due
to the differences in spectrum saliency maps among different
models that we are able to adjust the data distribution to alter
the spectrum saliency maps, thereby simulating more diverse
models to generate transferable adversarial examples.
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Fig. 2. Saliency maps for the speaker recognition models ResNetSE34L [56]
and ResNetSE34V2 [57]. The regions with light and warm colors are critical
regions indicating important time-frequency components in making decisions.

Fig. 3. Example of saliency maps, given the enrollment voice from the ground-
truth speaker.

B. Interpretable STA-MDCT With Layer-CAM

Based on the observation in Section V-A, if an attacker could
successfully make a victim model shift its attention to the
saliency map, then a successful attack may be made. Here we
apply it to visually explain the effects of different transfer-based
attackers on black-box victim models.

First, we select an utterance from the ground-truth speaker,
and generate its adversarial voices by applying I-FGSM and
STA-MDCT respectively to the ECAPA-TDNN [58] white-box
surrogate model. Then, we apply the adversarial voices to attack
the ResNetSE34L [56] black-box victim model. Finally, we
calculate the saliency maps of the above voices produced from
ResNetSE34 L, given the enrollment voices either from the
ground-truth speaker or from the target speaker.

Fig. 3 shows the saliency maps of the test voices, given the
enrollment voice from the ground-truth speaker. Comparing
Fig. 3(a) with Fig. 3(b), we see that the attentive region of the
saliency map of the adversarial voice generated by I-FGSM is
quite similar to that generated from the original voice, which
indicates that the transfer-based attack based on I-FGSM fails
to shift the attention of the black-box victim model. On the con-
trary, comparing Fig. 3(a) with Fig. 3(c), we see that STA-MDCT
effectively shifts the victim model’s attention from critical re-
gions to other regions, which may lead to a classification error.

Fig. 4 shows the saliency maps of the test voices, given the en-
rollment voice from the target speaker. Comparing Fig. 4(a) with
Fig. 3(a), we see that, when the victim model verifies the same

Fig. 4. Example of saliency maps, given the enrollment voice from the target
speaker.

test voice with different enrollment voices, the critical regions
are shifted significantly. Comparing Fig. 4(a) with Fig. 4(b),
we see that the attentive region of the saliency map generated
by I-FGSM is quite different from that of the original voice,
which indicates that I-FGSM fails to make the targeted attack.
On the other side, comparing Fig. 4(a) with Fig. 4(c), we see
that saliency maps of the original voice and the adversarial voice
made by STA-MDCT share similar critical regions, which may
lead to a successful targeted attack.

VI. EXPERIMENTAL SETUP

In this section, we introduce the datasets, comparison attack-
ers, evaluation metrics, and victim models.

A. Datasets

We first built four speaker recognition systems and then con-
ducted adversarial attack experiments to them. See Section VI-D
for the detailed training process of the speaker recognition
systems. The adversarial attack experiments were conducted on
the VoxCeleb [59] and LibriSpeech [60] datasets:

To attack an ASV system, we arbitrarily selected 1,000 trials,
including 40 speakers, from the Original-Clean trial list of Vox-
Celeb1, which includes 500 target trials and 500 non-target trials.
Then, an attacker transforms the clean test voices of all trials into
adversarial examples which aim to make the ASV system yield
opposite predictions from their ground-truth speaker identities.

For a speaker identification system, we first selected 10 speak-
ers randomly, including 5 males and 5 females, from the test-
other and dev-other subsets of LibriSpeech as the enrollment
speakers, each of which contains 10 utterances.

To attack the speaker identification system in the CSI setting,
we first picked 10 test speakers whose identities are the same
as the enrollment speakers. Each of the speakers contains 100
randomly selected utterances that are different from the enroll-
ment data of the speaker. Then, we conducted targeted attacks
in two scenarios: random target attack and farthest target attack.
In the case of a random target attack, an attacker randomly
picked a speaker from the 10 enrollment speakers that were
different from the ground-truth identity of the utterance as the
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target speaker. On the other hand, in the farthest target attack, the
target speaker was chosen to be farthest in the embedding space
from the ground-truth speaker. Finally, it performed the targeted
attack by generating an adversarial example from the clean test
utterance, which aims to make the victim system wrongly predict
the speaker’s identity as the targeted label.

To attack the speaker identification system in the OSI setting,
we arbitrarily chose 10 test speakers that were different from
the enrollment speakers from the train-other-500 subset of Lib-
riSpeech. Each of the speakers contains 100 randomly selected
utterances. As mentioned earlier, we conducted random target
attacks and farthest target attacks.

B. Comparison Adversarial Attackers

The parameter setting of the proposed STA-MDCT was that
N = 20, ρ = 0.75, and σ = 44 in all experiments unless other-
wise stated.

We compare the proposed method with FGSM [28], I-
FGSM [48], PGD [31], MI-FGSM [49], NI-FGSM [45] and
ACG [33], see Section III-B for the descriptions of the com-
parison methods. All comparison methods were performed in
their best settings or recommended default settings. That is, the
maximum perturbation ε = 40, the iteration T = 10, and the
step size α = ε/T = 4.

Both the white-box surrogate speaker recognition models and
black-box victim models were selected from ResNetSE34 L,
ECAPA-TDNN, ResNetSE34V2, and RawNet3.

C. Evaluation Metrics

The attacking effect of an attacker to a victim speaker recog-
nition system was evaluated in terms of the targeted attack
success rate (TASR), false acceptance rate (FAR), equal error
rate (EER), identification error rate (IER) and normalized min-
imum detection cost function (minDCF) with Ptar = 0.05 and
Cmiss = Cfa = 1, produced from the victim system, where TASR
refers to the proportion of the generated adversarial voices that
are recognized as the targeted labels, and IER is the proportion of
the input voices that are misclassified by the model. The higher
the evaluation scores are, the better the attacking effect is.

To measure the stealthiness of the adversarial examples, we
used signal-to-noise (SNR), perceptual evaluation of speech
quality (PESQ) [61], and the standard L2 norm. SNR is defined
as SNR = 10 log10(Px/Pδ) where Px and Pδ are the signal
power of the benign voice x and the power of the perturbation
δ respectively. PESQ first applies an auditory transformation
to obtain the loudness spectra of the benign voices and the
adversarial voices and then compares both loudness spectra to
obtain a metric score with a value in the range of [−0.5, 4.5],
see [61] for the details. Larger SNR, higher PESQ and smaller
L2 indicate better stealthiness.

D. Victim Speaker Recognition Systems

First, we trained four representative speaker recognition sys-
tems, which are the ResNetSE34L [56], ECAPA-TDNN [58],
ResNetSE34V2 [57] and RawNet3 [62] respectively, on the

TABLE I
PERFORMANCE OF THE SPEAKER RECOGNITION MODELS WITHOUT

ATTACKERS

development set of VoxCeleb2 [63]. Then, we applied the
speaker recognition systems as the victim models for the tasks
of the adversarial attack to ASV, CSI, and OSI, respectively.
The parameter settings of the victim models are summarized as
follows.

ResNetSE34 L adopts attentive average pooling and uses
Angular Prototypical as the loss function [56]. ECAPA-TDNN
adopts attentive statistical pooling and AAM-Softmax [64].
ResNetSE34V2 uses attentive statistical pooling and takes the
joint loss of the Angular Prototypical loss and softmax loss.
RawNet3 uses attentive statistical pooling and AAM-Softmax.

In respect of the input acoustic features, RawNet3 uses raw
waveforms as its input. The other three models first extract spec-
trograms with a hamming window of width 25 ms and step size
10 ms and then apply log Mel-filterbanks to the spectrograms,
followed by cepstral mean and variance normalization (CMVN).

To justify the advantage of the victim models, we evaluated
them on the VoxCeleb1 Original-Clean trial list which contains
37,000 trials from 40 speakers. The evaluation metrics include
EER, minDCF, and IER. Table I summarizes the speaker recog-
nition performance of the models. From the table, we see that
the models achieve the state-of-the-art performance.

Note that, the optimal decision thresholds θ were determined
when the models were evaluated on the VoxCeleb1 Original-
Clean trial list. They were fixed thereafter, e.g. when we applied
the attackers to the victim models.

VII. RESULTS OF ADVERSARIAL ATTACKS TO SPEAKER

VERIFICATION

In this section, we first report the comparison results between
the STA-MDCT and the comparison attackers with a single
white-box surrogate ASV model in Section VII-A, and with an
ensemble of white-box surrogate models in Section VII-B. Then,
we study the effects of the hyperparameters of STA-MDCT
on performance in Section VII-C, and the effect of the SNR
budget in Section VII-D, given a single white-box surrogate
ASV model.

A. Results With a Single White-Box Surrogate ASV Model

Table II lists the comparison result between the single-model
attackers and the proposed STA-MDCT on the ASV task.
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TABLE II
PERFORMANCE OF THE COMPARISON ATTACKERS THAT USE THE SAME WHITE-BOX SURROGATE MODEL, ON THE ASV TASK IN TERMS OF EER (%), TASR (%),

FAR (%), AND MINDCF

From the comparison, we see that the proposed method con-
sistently outperforms the comparison attackers. For example,
the proposed STA-MDCT achieves relative EER improvement
of 42.56%, 44.18%, and 31.1%, respectively, over MI-FGSM,
NI-FGSM and ACG. Meanwhile, MDCT is more suitable for
frequency characteristics of audio signals than DCT. Particu-
larly, adversarial examples generated with the ECAPA-TDNN
surrogate ASV model tend to have better transferability to other
black-box victim ASV models. Although adversarial examples
generated with RawNet3 yield poor transferability to other vic-
tim models, the contrary transfer direction works fine, which
indicates that adversarial examples generated from spectrum
features are better than those generated from raw waves.

We should note that Table II also lists the result of the
white-box attacks in gray color, where the surrogate model
and victim model are the same. From the result, we see that
the attack performance of the proposed method is slightly
weaker than ACG and NI-FGSM. It can be explained that
the proposed STA-MDCT, which improves the generalization
ability of the adversarial examples to new black-box vic-
tim models, reduces the overfitting phenomenon of the ad-
versarial examples to the surrogate models where they are
generated.

Furthermore, we compared the attack algorithms in a sce-
nario where the False Rejection Rate (FRR) as a constant. The
experimental results in Table III demonstrate that the proposed
STA-MDCT achieves the highest FAR in the black-box transfer
attack scenario.

TABLE III
IMPACT OF TRANSFER-BASED ATTACKS ON THE FALSE ACCEPTANCE RATE

(FAR) AT AN FRR OF 5% USING A SINGLE SURROGATE MODEL

RESNETSE34 L

Here we need to emphasize the reason why the EER values
in Table II can be over 50% as follows. In adversarial attacks on
ASV, we conducted evasion and impersonation attacks. When
calculating the EER, we took into account both of these sce-
narios. Therefore, in an ideal situation where all attacks are
successful, the EER can be close to 100%. We can also explain
it using formulas:

FRR =
FN

FN + TP
, FAR =

FP

FP + TN
(24)

where FN, TP, TN, and FP represent False Negative, True
Positive, True Negative, and False Positive, respectively. (FN
+ TP) represents the number of target trials, while (FP + TN)
represents the number of non-target trials, corresponding to
evasion and impersonation attacks, respectively. The error rates
for both types of attacks range from 0% to 100%. Therefore,
the Equal Error Rate (EER) also falls within the range of 0% to
100%.
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Fig. 5. Histograms of the similarity scores of the trials before and after the attacks, where the dashed lines represent the respective thresholds. Left: Adversarial
impersonation on non-target trials. Right: Adversarial evasion on target trials.

In addition to EER and attack success rate, we also eval-
uated the impact of the adversarial attacks by measuring the
changes in similarity scores between the target and non-target
trials. The experimental results, shown in Fig. 5, demonstrate
the effectiveness of the ECAPA-TDNN white-box surrogate
model in generating adversarial examples to attack the black-box
ResNetSE34 L model. The EER before the attack was 2.179%
with a threshold of 0.051, respectively. After the MI-FGSM
attack, the EER increased to 40.2% with a threshold of 0.043.
Furthermore, the STA-MDCT attack resulted in an EER of
58.8% with a threshold of 0.038. Fig. 5 also illustrates the impact
of the adversarial impersonation on increasing the similarity
scores of non-target trials, and the impact of the adversarial
evasion on decreasing the similarity scores of target trials.
Notably, our proposed STA-MDCT achieves significant attack
effectiveness in both of the attack scenarios.

B. Results With an Ensemble of White-Box Surrogate ASV
Models

Crafting adversarial examples from an ensemble of surrogate
models has been shown to be an effective way of improv-
ing the transferability of an attacker. Here we conducted an
experimental comparison of the attackers with an ensemble
of surrogate models that were selected from the four ASV
models. The weights of the selected surrogate models were
set equal. From the results in Table IV, we observe that our
method achieves the highest EER and TASR in all black-box
attack scenarios. For instance, the proposed method with the
ensemble of the ResNetSE34 L and ResNetSE34V2 surrogate
models achieves an EER of 61.6% on the ECAPA-TDNN
victim model, which is absolutely 10% higher than the re-
sult of the corresponding single white-box surrogate model in
Table II.

C. Ablation Study

In this subsection, we investigate the effects of the hyperpa-
rameters of STA-MDCT, including the maximum iterations T ,
number of spectrum transformation N , standard deviation σ of
noise ξ, and tuning factor ρ. For tuning each hyperparameter,
we fixed the others to their default values. We crafted adversarial
examples from the ECAPA-TDNN white-box surrogate model,
and applied them to attack the remaining three black-box victim
models. The results are summarized in Fig. 6, where a higher
EER signifies improved attack performance, while increased
SNR and PESQ values indicate enhanced imperceptibility of
the adversarial examples. Detailed analysis is provided below.
Note that we also show the result of the white-box attack as a
reference.

1) Effect of the Maximum Iterations T : From Fig. 6(a), we
see that when T = 1, the EER and PESQ produced by the pro-
posed method are far from satisfactory; as T increases, both the
transferability and the SNR/PESQ of the adversarial examples
improves, with a negative effect of the increased computational
cost. To balance the two factors, we set T = 10 as the default.

2) Effect of the Spectrum TransformationN : From Fig. 6(b),
we see that whenN = 1, a single spectrum transformation yields
the worst transferability; the transferability of the adversarial
examples is improved when N increases, and tends to be in-
creased slowly when N exceeds 20. This phenomenon indicates
that the proposed spectrum transformation can effectively nar-
row the gap between the white-box surrogate model and the
black-box victim models. To balance the computational cost,
we set N = 20 in this article.

3) Effect of the Standard Deviation σ: From Fig. 6(c), we see
that the larger σ is, the higher the magnitude of the adversarial
noise will be. Therefore, the EERs of the black-box victim mod-
els first increase dramatically, and then drop slightly; the highest
EERs appear around σ = 44. On the other side, as σ increases,
the SNR of the adversarial examples decreases continuously; the
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TABLE IV
PERFORMANCE OF THE COMPARISON ATTACKERS THAT USE THE SAME ENSEMBLE OF WHITE-BOX SURROGATE MODELS, ON THE ASV TASK IN TERMS OF EER

(%), TASR (%), FAR (%), AND MINDCF

Fig. 6. Effects of the hyperparameters of STA-MDCT on performance in terms of EER (solid line), SNR (dashed line), and PESQ (dotted line). ECAPA-TDNN
is used as the white-box surrogate model. The marker “*” indicates the white-box attack.

PESQ first decreases substantially, and then gradually increases.
To balance the above three factors, we choose σ = 44 in this
article.

4) Effect of the Tuning Factor ρ: From Fig. 6(d), we see that,
as ρ increases, the EER curves of the black-box victim models

gradually reach the peak at around ρ = 0.75. As ρ continues to
increase, the EER curves decrease due to the excessive spectral
transformation. On the other side, the SNR and PESQ are
increased constantly with the increase of ρ. Consequently, we
choose ρ = 0.75 in this article.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on February 27,2024 at 14:29:25 UTC from IEEE Xplore.  Restrictions apply. 



1542 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 7. Performance of the comparison methods with respect to the SNR budget. The black-box victim model is ResNetSE34 L. The white-box surrogate model
is ECAPA-TDNN.

D. Effect of the SNR Budget on Performance

All of the above experiments were conducted by setting the
perturbation level ε = 40, where the SNRs of the adversarial
examples were around 33 dB. In this section, we study the attack
effect under the situation that the SNR is controlled to be larger
than a given threshold b, named the SNR budget. To generate a
large number of adversarial examples with various SNR levels,
we set ε to a wide range of {5, 10, 20, 30, 40, 50}. The white-
box surrogate model was ECAPA-TDNN. The black-box victim
model was ResNetSE34 L.

To study the effect of the SNR budget b on performance, we
count the EER and minDCF statistics of the impersonation at-
tacks and evasion attacks separately as in [16], [65]. Specifically,
given an original trial set O = {(xenroll

i ,xtest
i ) | i = 1, 2, . . . , I}

and its corresponding adversarial trial set A = {(xenroll
i ,xadv

i ) |
i = 1, 2, . . . , I}. Supposepadv = [padv,1, . . . , padv,I ]

T is a vector
describing the SNRs of the adversarial trials. For a given SNR
budget b, we can obtain a mixed trial set M(b) whose elements
are defined by:

ti =

{
(xenroll

i ,xadv
i ), if padv, i ≥ b and i ∈ G

(xenroll
i ,xtest

i ), otherwise

∀i = 1, . . . , I.

where G is defined as the set of non-target trials when the task is
the impersonation attack to ASV, and defined as the set of target
trials when the task is the evasion attack to ASV. Finally, the
EER and minDCF are calculated from the mixed trial set M(b).

Fig. 7 shows the EER and minDCF of the victim model with
respect to the SNR budget b, where we have separately summa-
rized the impersonation and evasion attacks. From the figure, we
can observe that (i) as the SNR budget bdecreases, the EER of the
victim model increases for all comparison attackers; (ii) when
the SNR budget is below 40 dB, the proposed method achieves
a significantly higher EER than the other comparison methods;
(iii) when the SNR budget is above 40 dB, the proposed method
achieves an EER comparable to I-FGSM, and outperforms the
other comparison methods. The experimental phenomena in
minDCF are similar to those in EER.

Additionally, we also analyzed the PESQ of the successful
attacks of the above adversarial examples. Fig. 8 shows the
number of the successful adversarial attacks in different PESQ
ranges, where the adversarial attacks that were not successful
in deceiving the target victim model were discarded. From
the figure, we see that the PESQ of the successful adversarial
examples generated by the proposed method is higher than all
comparison methods, which provides strong evidence that the
adversarial perturbations generated by the proposed method are
more imperceptible to human.

E. Research on Robustness of Victim Models

In order to study the robustness of the victim models and
verify the effectiveness of our proposed method, we perform
Specaugment [66] and adversarial training [67] on part of the
victim models and attack them in the ASV scenario. The EER
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Fig. 8. Histograms of the adversarial examples that can successfully deceive
the target victim model in terms of PESQ. The symbol “#i” refers to the range
“[i, i+0.5)” in PESQ.

TABLE V
EFFECT OF SPECAUGMENT ON MODEL ROBUSTNESS

TABLE VI
EFFECT OF ADVERSARIAL TRAINING (I-FGSM ADVERSARIAL TRAINING) ON

MODEL ROBUSTNESS

before and after specaugment of ResNetSE34 L was 4.242% and
2.179%, respectively. The EER before and after ECAPA-TDNN
adversarial training was 1.172% and 3.5%, respectively. We
used I-FGSM adversarial training. Each mini-batch carried out
an iteration of adversarial examples, during which adversarial
examples were generated and used to update model parameters.

TABLE VII
PERFORMANCE OF THE COMPARISON ATTACKERS ON THE CSI TASK IN TERMS

OF IER (%) AND TASR (%), WHERE THE AVERAGE SNR OF ADVERSARIAL

EXAMPLES IS 33.5 DB

TABLE VIII
PERFORMANCE OF THE COMPARISON ATTACKERS ON THE OSI TASK IN TERMS

OF IER (%) AND TASR (%), WHERE THE AVERAGE SNR OF ADVERSARIAL

EXAMPLES IS 33.5 DB

The experiments in Tables V and VI indicate that specaugment
and adversarial training can significantly enhance model robust-
ness. Furthermore, our algorithm consistently outperforms other
baselines.

VIII. RESULTS OF ADVERSARIAL ATTACKS TO SPEAKER

IDENTIFICATION

Tables VII and VIII list the performance of the comparison
attackers in the CSI and OSI scenarios, respectively, where
we combine each attacker with the single white-box surrogate
model ECAPA-TDNN, and then apply the generated adversarial
examples to the other three black-box victim systems. From the
tables, we see that, when the SNR budget is controlled to be the
same around 33.5 dB, the proposed STA-MDCT achieves better
attack performance in terms of IER and TASR, as well as higher
PESQ than the comparison methods. It’s worth noting that the
farthest target attack proves to be quite challenging. In addition,
the black-box attack performance of all comparison methods
is generally poor. It may be caused by the following reasons.
First, the dataset used to attack the black-box victim models is
different from that of the white-box surrogate model. Second,
attacking speaker identification refers to many enrolled speaker
identities, making the attack more challenging than attacking
ASV. Besides, compared to attacking a CSI system, attacking
an OSI system not only needs to maximize the confidence score
for determining an adversarial voice to a target label but also has
to make the score exceed the predefined threshold θ.
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IX. CONCLUSION

In this article, we propose a spectrum transformation attack
method based on a modified discrete cosine transform. It first
applies MDCT to the input voices and then slightly modifies the
energy of the frequency bands of the transformed voices in the
time-frequency domain for capturing the salient regions of the
adversarial noise that are critical to a successful attack. Different
from existing transfer-based attackers, STA-MDCT generates
adversarial examples in the time-frequency domain, which im-
proves the transferability and efficiency of the adversarial attack.
Moreover, we also interpret the effectiveness of transfer-based
attacks by Layer-CAM. The transferability of transfer-based
attackers is observable directly from the critical attention regions
of saliency maps. The comprehensive experiments on the ASV,
OSI, and CSI tasks demonstrate the effectiveness of the proposed
method.
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