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Abstract
Currently, ECAPA-TDNN is one of the state-of-the-art deep
models for automatic speaker verification (ASV). However, it
focuses too much on local feature extraction with fixed local
ranges, without paying much attention to global feature extrac-
tion. To deal with this issue, in this paper, we propose Branch-
ECAPA-TDNN, which uses two parallel branches to extract
features with various ranges and abstract levels. One branch
employs multi-head self-attention to capture long-range depen-
dencies, while the other branch utilizes an SE-Res2Block mod-
ule to model local multi-scale characteristics. To improve the
feature fusion, we further apply different merging methods to
aggregate features from both branches. Experimental results
demonstrate that the proposed Branch-ECAPA-TDNN achieves
a relative EER reduction of 24.10% and 7.92% over ECAPA-
TDNN on the VoxCeleb and CN-Celeb datasets, respectively.
Index Terms: speaker verification, self-attention, x-vector,
Res2Net, parallel branch

1. Introduction
Automatic speaker verification (ASV) is a task of verifying
whether an utterance is pronounced by a claimed speaker. In re-
cent years, ASV has been rapidly developed [1, 2, 3], and finds
its wide applications in intelligent housing systems, voice-based
authentication, bank trading and remote payment. In general,
the state-of-the-art research on ASV contains two components.
The first one is the embedding extractor [4, 5, 6], which aims
to extract speaker embeddings with a fixed-dimension from ut-
terances to represent the acoustic characteristics of speakers,
where deep-learning-based embedding extractors [7] reach the
state-of-the-art performance. The other one is the scoring back-
end, which aims to calculate the similarity between two speaker
embedding vectors. The most common back-ends are the cosine
similarity scoring and probabilistic linear discriminant analysis
[8].

Convolution neural networks are the most favorite for ASV.
For example, the x-vector [4, 5] based on one-dimensional
(1D) convolution is the most prevalent embedding extractor for
ASV. Recently, various network structures have been developed
for the speaker embedding extraction, including the time-delay
neural network (TDNN) [5, 9], ResNet [10, 11, 12, 13], and
their variations [2, 14, 15, 16]. It is worthy noting that the
ECAPA-TDNN [6] and its extensions [17, 18], which integrate
the building blocks of TDNN and squeeze-and-excitation (SE)
modules [19] with Res2Block [20], achieve the state-of-the-art
performance.
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However, ECAPA-TDNN still has limitations. It mainly
focuses on local feature modeling, which lacks the ability of
global feature fusion. Its convolution kernel has a fixed size,
which makes its receptive field unable to capturing the global
temporal and frequency speaker patterns efficiently. The above
weaknesses make the extracted speaker representation do not
contain important global context information. To address this
issue, many Transformer-based models [21, 22, 23] have been
introduced, where the multi-head self-attention mechanism is
good at capturing long-range dependencies. However, we be-
lieve that the performance of the Transformer-based ASV still
has much room of improvement.

In this paper, to further address the weaknesses of ECAPA-
TDNN, we propose the Branch-ECAPA-TDNN framework. It
has two parallel branches for capturing speaker information in
both the global range and various local ranges, one of which
employs multi-head self-attention to capture long-range depen-
dencies, and the other utilizes an SE-based Res2Block (SE-
Res2Block) module to extract local relationships. In addition,
inspired by [24], we employ multiple merging mechanisms to
merge the output of the two branches for further improving
the performance of Branch-ECAPA-TDNN. Our contribution
includes:
• We proposed a new ASV model, named Branch-ECAPA-

TDNN. It extends the current state-of-the-art ECAPA-TDNN
with two branches built on convolution and self-attention op-
erators respectively for learning both local and global infor-
mation.

• We merge the branches of Branch-ECAPA-TDNN by multi-
ple merging mechanisms to mine the local and global infor-
mation in depth.

• We conducted extensive experiments on the VoxCeleb and
CN-Celeb datasets, respectively. Extensive experiments
demonstrate that the proposed method achieves a relative
EER reduction of 24.10% and 7.92% over ECAPA-TDNN
on the VoxCeleb and CN-Celeb datasets, respectively.

2. Proposed Methods
In this section, we present the framework and fundamental com-
ponents of the proposed Branch-ECAPA-TDNN.

2.1. Framework

The framework of Branch-ECAPA-TDNN is shown in Figure
1, where BN denotes Batch Normalization, FC denotes Fully
Connected Layer, and the non-linearities are Rectified Linear
Units (ReLU) unless otherwise stated. The proposed Branch-
ECAPA-TDNN framework is analogous to ECAPA-TDNN [6].
The fundamental difference lies that it employs a Branch block
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Figure 1: Architecture of Branch-ECAPA-TDNN.
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Figure 2: Architecture of the Branch block in Branch-ECAPA-
TDNN. It consists of two parallel branches. One branch uses
attention to capture global information, while the other branch
uses SE-Res2Block to extract local information.

instead of the SE-Res2Block module in ECAPA-TDNN to cap-
ture both local and global speaker characteristics. The detailed
structure of the proposed Branch block is illustrated in Figure 2.
It is composed of two parallel branches and a merging module,
where one of the branch is a self-attention branch for capturing
global features, and the other one is a SE-Res2Block branch for
extracting local features. We will introduce the three compo-
nents in the following subsections.

2.2. The attention branch for global feature modeling

In Figure 2, the left branch is the multi-head self-attention mod-
ule [25], which aims to extract the global speaker feature. We
describe the branch in detail as follows.

Let X ∈ RT×D denotes the input, where T and D repre-
sent the number of time frames and the dimension of the acous-
tic features, respectively. Assuming the number of the attention
heads of the self-attention is h, then, for each head, the input
feature X is projected into the query (Q), key (K) and value
(V ) subspaces of dimension E as follows:

Qi = XWi
Q,K

i = XWi
K ,Vi = XWi

V . (1)

where Qi, Ki and Vi denotes the query, key and value embed-
dings of the i-th attention head, respectively, all of which are in

RT×dk , Wi
j ∈ RD×dk (∀j ∈ Q,K, V , dk = E/h) are the

linear projection parameters. We compute the dot products of
the query with all keys, divide the result of each dot product
by

√
dk which is further applied with the softmax function for

obtaining an attention matrix Zi ∈ RT×dk :

Zi = softmax

(
Qi ·

(
Ki
)⊤

√
dk

)
Vi. (2)

Finally, the outputs of all attention heads are concatenated
across the subspaces and transformed to the original size by:

YA = concat
[
Z1,Z2, . . . ,Zh

]
WO. (3)

where YA ∈ RT×D , WO ∈ RE×D is a parameter matrice of
the projection layer.

2.3. SE-Res2Block for local feature modeling

In Figure 2, the right branch is a SE-Res2Block module [6],
which integrates the Res2Net [20, 15] module and the Squeeze-
and-Excitation [19] block to further represent multi-scale fea-
tures with various granularity.

First, for the Res2Net module, we divide the input feature
maps generated by 1 × 1 convolution into s subsets {xi}si=1,
where all channels have the same spatial size, and each chan-
nel occupies 1/s of the channels of the input feature maps,
i.e. xi ∈ RT×D/s. The 3 × 3 convolution, denoted by Ki,
is applied to each subset, except x1, in a hierarchical residual-
style connection. Specifically, after applying the convolution to
xi−1, the output of Ki−1 is added with xi before going through
Ki. The above process can be described formally by:

mi =





xi, i = 1;
Ki (xi) , i = 2;
Ki (xi +mi−1) , i = 3, 4, . . . , s.

(4)

This process further expands the potential receptive fields
of a layer, leading to multiple diverse feature scales. The output
of this module {m1,m2, . . . ,ms} are concatenated and then
fed into a subsequent 1 × 1 convolutional layer to generate M
for fusing the information from different scales.

Next, the output M ∈ RT×D goes through a squeeze-and-
excitation block. Specifically, the squeeze operation obtains a
squeeze vector u by performing a global average pooling:

u =
1

T

T∑

t

Mt. (5)

where Mt is the t-th frame of M. The excitation operation gets
the weight of each channel by:

q = σ (W2 (ReLU (W1u))) . (6)

where σ(·) denotes the sigmoid function, W1 ∈ RB×D , W2 ∈
RD×B , with B denoted as the number of dimensions within the
bottleneck layer.

Finally, each dimension of M, denoted as Mi, is rescaled
by:

YRi = qiMi, ∀i = 1, 2, . . . , D. (7)
where qi is the i-th element of q. We further concatenate all
YRi into a matrix YR = [YR1,YR2, . . . ,YRD].

2.4. Merging methods

In this section, inspired by [24], we employ three merging
mechanisms to fuse both the local and global features.
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Figure 3: Architecture of the proposed three merging methods. (a) The framework of the merging module. (b) The concatenation-based
merging method. (c) The depth-wise-convolution-based merging method. (d) The squeeze-and-excitation-based merging method.

2.4.1. Concatenation

As shown in Figure 3(b), we concatenate YA and YR and then
project the concatenated feature back to their original dimen-
sion:

YMerge = Concat(YA,YR)Wcon, (8)

where Wcon ∈ R2D×D is a learnable parameter matrix of the
linear projection.

2.4.2. Depth-wise convolution

As shown in Figure 3(c), we incorporate the depth-wise convo-
lution [26, 27] into the merging module, which makes it able
to use information from adjacent features when integrating fea-
tures from two branches. Specifically, we first concatenate the
outputs of the two branches, YA and YR, to obtain YC. Then
we use a depth-wise convolution to generate YD, aiming to en-
hance the spatial information exchange process. Finally, we use
a residual connection. The detailed process is as follows:

YC = Concat(YA,YR),
YD = DwConv(YC),
YMerge = (YC +YD)Wdw.

(9)

where DwConv denotes the depth-wise convolution, Wdw ∈
R2D×D is a learnable parameter matrix of the linear projection.

2.4.3. Squeeze-and-excitation operation

As shown in Figure 3(d), we add a SE module right after the
depth-wise convolution, which is similar to the squeeze-and-
excitation operation in SE-Res2Block mentioned in Section 2.3,
except that we replace the ReLU activation function in (6) with
the Swish [28] non-linear function. In the merging process, in-
troducing the SE operation can extract the global information
extensively, and enhance the output of the depth-wise convolu-
tion.

3. Experiments
In this section, we present datasets, implementation details,
evaluation protocols, and experimental results.

3.1. Dataset

The experiments were conducted on the VoxCeleb [29, 13] and
CN-Celeb [30, 31] datasets.

For the experiments on the VoxCeleb, we trained the
speaker verification models on the development set of Vox-
Celeb2 [13], which contains 1,092,009 utterances among 5,994
speakers. The development set and test set of VoxCeleb1 [29]

were used for the evaluation. There are three types of evaluation
trials, which are VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-
H.

For the experiments on CN-Celeb, we used 1,966 speakers
from CN-Celeb2 and 797 speakers from the development set
of CN-Celeb1 together as the training set, and conducted the
evaluation on the test set of CN-Celeb1.

Online data augmentation [32] was used during training.
The noise datasets in the data augmentation are from MUSAN
[33] and RIRs [34]. In addition, we applied speed perturbation
to data augmentation, where we randomly altered the speed of
an utterance at a ratio selected randomly from {0.9, 1.0, 1.1}.

3.2. Implementation details

We used WeSpeaker1 toolkit to implement the proposed Branch-
ECAPA-TDNN and replicated the baseline ECAPA-TDNN.
The input features were 80-dimensional log mel-filter banks
(Fbank) pre-emphasized by a Hamming window with a window
length of 25ms and a window shift of 10ms. All training data
were chunked into 200 frames. Each chunk was normalized by
the Cepstral mean normalization. All models were trained using
the AAM-Softmax [36] loss, where the scale was 32, the initial
margin was 0 and the final margin was 0.2. We used the margin
schedule in [37] to update the margin.

The learning rate schedule in [37], which contains warm-
up and exponential decrease strategies, was used to update the
learning rate. The initial learning rate was 0.1, and the final
learning rate was 5e-5. Following [6], we set the bottleneck
dimension B in the SE-Block to 128, the scale dimension s in
the Res2Net module to 8, and the number of nodes of the final
fully connected layer to 192.

Besides the ECAPA-TDNN baseline, we also used TDNN
[5], Extended-TDNN (E-TDNN) [9, 35] and ResNet [11] as our
baselines, whose experimental results were copied from [6].

3.3. Evaluation protocol

In the test phase, we employed cosine similarity as the scoring
criterion. The adaptive score normalization (AS-Norm) [38, 37]
was applied to normalize the scores. We used the top ntop cohort
segments for the score normalization. We adopted the standard
equal error rate (EER) and the minimum detection cost function
(minDCF) with Ptarget = 0.01 and Cmiss = Cfa = 1, as the
evaluation protocols.

1https://github.com/wenet-e2e/wespeaker

1945



Table 1: EER (%) and minDCF of the comparison methods on the VoxCeleb and CN-Celeb datasets, where the parameter C denotes the
number of filters in the convolutional layer of SE-Res2Block. The marker “(b)” “(c)” and “(d)” attached with Branch-ECAPA-TDNN
refers to the merging methods in Figure 3. The term “AS-Norm300” denotes that ntop=300 in AS-Norm.

Architecture # Params
VoxCeleb1-O VoxCeleb-E VoxCeleb-H CN-Celeb

EER minDCF EER minDCF EER minDCF EER minDCF

TDNN [5] 4.61M 2.016 0.191 1.949 0.228 3.476 0.332 9.772 0.556
E-TDNN [9] 6.80M 1.490 0.160 1.610 0.171 2.690 0.242 - -

E-TDNN (large) [35] 20.40M 1.260 0.140 1.370 0.149 2.350 0.215 - -
ResNet18 [11] 13.80M 1.470 0.177 1.600 0.179 2.880 0.267 - -
ResNet34 [11] 23.90M 1.190 0.159 1.330 0.156 2.460 0.229 - -

C=512
ECAPA-TDNN 6.19M 1.191 0.114 1.254 0.139 2.285 0.219 8.313 0.432
+ AS-Norm300 0.979 0.124 1.157 0.126 2.065 0.198 7.644 0.390

Branch-ECAPA-TDNN(b) 9.34M 0.904 0.094 1.129 0.126 2.126 0.214 7.716 0.412
+ AS-Norm300 0.862 0.103 1.058 0.125 1.957 0.193 7.215 0.371

Branch-ECAPA-TDNN(c) 9.36M 0.941 0.111 1.102 0.125 2.075 0.204 7.655 0.416
+ AS-Norm300 0.808 0.103 1.045 0.118 1.923 0.186 7.232 0.371

Branch-ECAPA-TDNN(d)
10.14M

1.016 0.104 1.095 0.126 2.065 0.205 7.910 0.415
+ AS-Norm300 0.872 0.103 1.031 0.118 1.919 0.186 7.350 0.373

C=1024
ECAPA-TDNN 14.65M 0.920 0.103 1.064 0.117 2.006 0.194 7.879 0.420
+ AS-Norm300 0.782 0.119 0.979 0.108 1.801 0.180 7.412 0.379

Branch-ECAPA-TDNN(b) 24.11M 0.808 0.091 0.982 0.107 1.853 0.182 7.339 0.397
+ AS-Norm300 0.718 0.084 0.916 0.098 1.690 0.166 6.978 0.358

Branch-ECAPA-TDNN(c) 24.13M 0.814 0.098 0.970 0.112 1.903 0.184 7.519 0.396
+ AS-Norm300 0.728 0.100 0.922 0.103 1.776 0.177 6.984 0.352

Branch-ECAPA-TDNN(d)
25.71M

0.808 0.090 0.968 0.111 1.888 0.193 7.401 0.398
+ AS-Norm300 0.755 0.104 0.899 0.107 1.741 0.179 6.922 0.357

3.4. Main results

Table 1 lists the performance of the proposed Branch-ECAPA-
TDNN and the baseline systems. From the table, we see that the
proposed method outperforms the baseline systems, which in-
dicates that the global modeling capability of Branch-ECAPA-
TDNN is significantly improved over its counterpart ECAPA-
TDNN by applying the multi-head self-attention mechanism
to extract global speaker characteristics. Moreover, although
the two branches share the same input, they focus on differ-
ent scope of the spatial relationships, thus achieving comple-
mentary advantages of each other. Specially, compared with
ECAPA-TDNN, the proposed Branch-ECAPA-TDNN achieves
up to a relative EER reduction of 24.10% on the VoxCeleb
dataset and up to a relative EER reduction of 7.92% on the
CN-Celeb dataset, without using the AS-Norm. Third, when
the parameter C increases, the complexity of the network in-
creases, which improves the performance, with a negative effect
of bringing larger parameter calculation and information redun-
dancy. Finally, the results with AS-Norm demonstrate that the
score normalization by reducing within trial variability leads to
higher performance and better calibration.

3.5. Effects of different merging mechanisms

This section discusses the effects of different merging mech-
anisms in Figure 3. Table 1 lists the comparison results of
the merging methods. From the table, we observe the fol-
lowing phenomena. First, the performance improvement of
the concatenation-based method whose architecture is drawn in
Figure 3(b), is limited at a small parameter scale C = 512.
This is mainly caused by that the concatenation-based merg-
ing simply concatenates the output information of the local and
global extractors without exchanging the information from ad-
jacent frames. However, when the parameter scale was enlarged
to C = 1024, it shows more competitive results.

Second, the performance of the proposed method is sub-

stantially improved on both datasets when adding the depth-
wise convolution to the merging module as shown in Figure
3(c), which indicates that the depth-wise convolution can effec-
tively integrate the output features of the two branches in depth.
Finally, adding SE-Block to the concatenation and depth-wise
convolution, as shown in Figure 3(d), yields substantial perfor-
mance improvement, achieving 0.899% and 6.922% EER on
the VoxCeleb-E and CN-Celeb datasets, respectively, which is
the state-of-the-art performance. This also shows that the SE
operation is capable of effectively intensifying the features pro-
duced from the depth-wise convolution, thereby improving the
efficiency of the feature fusion.

4. Conclusions
In this paper, we propose Branch-ECAPA-TDNN, a novel
speaker embedding extractor for speaker verification. Branch-
ECAPA-TDNN contains two parallel branches for extracting
features with both a global range and various local ranges,
where one branch uses the multi-head self-attention to cap-
ture long-range dependencies, and the other branch uses the
SE-Res2Block module to extract local multi-scale characteris-
tics. The local and global features rely on the merging mod-
ule, which aims to enhance capability of the depth model-
ing, and further improve model performance. We investigated
three merging methods, which are the concatenation-based,
depth-wise-convolution-based and SE-based, respectively. The
comprehensive experiments on the VoxCeleb and CN-Celeb
datasets demonstrate the effectiveness of the proposed method.
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