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Abstract—Recently, supervised speaker-independent speech
separation methods, such as deep clustering and permutation
invariant training, have demonstrated better performance than
conventional unsupervised speech separation methods. However,
their performance drops sharply in reverberant environments. To
solve the problem, we propose a multi-channel speech separation
algorithm that fully explores spatial information. It first extracts
a spatial feature, named interaural phase difference (IPD), as one
of the input features of the single-channel deep clustering algo-
rithm. Then, it uses the deep clustering as the noise estimation
component of the deep-learning-based beamforming. The novelty
of the proposed algorithm lies in that it extends the spatial-
feature-based deep clustering to a multichannel algorithm which
boosts the performance by exploring spatial information at both
the input and output of deep clustering. Its advantages have
two aspects. First, the spatial feature IPD significantly improves
the robustness of deep clustering in reverberant environments.
Second, the deep-clusteing-based beamforming, which is a linear
algorithm, suffers less nonlinear distortions than the single-
channel deep clustering. We have compared the proposed algo-
rithm with the single-channel deep clustering algorithm, spatial-
feature-based multi-channel deep clustering with IPD, and deep-
clustering-based beamforming without IPD in reverberant envi-
ronments. Experimental results show that the proposed algorithm
performs significantly better than the comparison methods.

Index Terms: speaker-independent speech separation, deep
clustering, time-frequency masking, beamforming.

I. INTRODUCTION

Speech separation separate the overlapped speech of multi-
ple speakers to multiple speech streams, each of which belong-
ing to a single speaker. This paper focuses on deep learning
based supervised speech separation [1]. According to the
number of microphones, speech separation techniques can be
divided into two categories—single-channel speech separation
and multi-channel speech separation [2]. According to whether
the speakers are predefined or known as a prior, speech separa-
tion techniques can be divided into three categories—speaker-
dependent [3], target-dependent [4], and speaker-independent
[5]–[7]. If all test speakers are known in the training stage,
then the separation model can be trained speaker-dependently.
If only a target speaker is known in the training stage, then the
separation model can be trained target-dependently. If all test

speakers are unknown in the training stage, then the separation
model must be trained speaker-independently. In practice,
speaker- and target-dependent models usually produce better
performance than speaker-independent models, while speaker-
independent models require the minimal prior knowledge. See
[1] for an overview of recent supervised speech separation
methods. This paper focuses on developing multi-channel
speaker-independent speech separation methods.

Speaker-independent speech separation was first developed
as single-channel methods. It can be categorized to two main
streams—permutation invariant training (PIT) [5] and deep
clustering [6], [7], both of which solve the speaker permutation
problem well. Specifically, given a frame or an utterance of a
pair of speakers at each epoch, PIT calculates the local mean
squared errors (MSE) of all permutations of the training speak-
ers at either the frame-level or the utterance-level, and pick the
locally optimal permutation corresponding to the minimum
MSE to train the separation network. Deep clustering uses a
bi-directional long short-term memory network (BLSTM) to
produce an embedding vector for each time-frequency pair
of a mixture spectrogram. The Frobenius norm between the
affinity matrix of the embedding vectors and the affinity matrix
of the ideal speaker assignment (also known as the ideal
binary mask) is used as the training objective. The main idea
behind the training objective is that the within-class distance
between the embedding vectors is minimized, and meanwhile
the between-class distance is maximized. Although the two
algorithms are effective in clean environments, they suffer
significant performance degradation in adverse environments.

One way to improve the performance of speaker-
independent speech separation in adverse environments is to
incorporate spatial information. Several multi-channel speaker-
independent speech separation methods have been proposed.
They are mainly deep-clustering-based algorithms, which can
be categorized to two representative types—beamforming [8]
and spatial feature extraction [9]. Deep-clustering-based beam-
forming first takes deep clustering as the noise estimator to
generate speaker masks. Then, for each speaker, it uses the
masks to estimate a spatial convariance matrix which is further
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applied to estimate the coefficients of the beamformer, such as
the minimum variance distortion-less response (MVDR) beam-
former [9] and the maximum signal-to-noise ratio (max-SNR)
beamformer [10], [11]. Spatial-feature-extraction-based deep
clustering concatenates spatial and spectral features [3], [12],
[13] together as the acoustic feature for the model training
of deep clustering, where the spatial feature is collected by a
microphone array. The filters produced by the beamforming
methods are linear ones, therefore, they suffer less nonlinear
distortions than the spatial feature extraction methods. On the
other side, the beamforming methods are less robust than the
latter in reverberant environments [14]. To summarize, how
to combine the advantages of the two types of multi-channel
speech separation methods is an interesting problem.

In this paper, we propose a multi-channel speaker-
independent algorithm by combining the above two kinds
of multi-channel methods for improving the performance of
speech separation in reverberant environments. The algorithm
first concatenates a spatial feature, named interaural phase
difference (IPD), with the magnitude spectrogram of the short-
time Fourier transform coefficients as the acoustic feature for
training deep clustering. Then, it uses the deep clustering as
the noise estimator for the deep-clustering-based beamform-
ing. The novelty of the algorithm is that it explores spatial
information at both the input and output of deep clustering
instead of at one side. Theoretically, the deep-clustering-
based noise estimator provides high-quality estimated masks,
which is the key requirement for improving the performance
of beamforming in reverberant environments. Empirically, it
outperforms both the deep-clustering-based beamforming [8]
and the spatial-feature-extraction-based deep clustering [9] by
at least 10% absolute improvement in terms of short-time
objective intelligibility (STOI) in reverberant environments.

The rest of the paper is organized as follows. We describe
the proposed algorithm in Section 2. Speech separation exper-
iments are presented in Sections 3. Section 4 concludes this
paper.

II. METHOD

As illustrated in Fig. 1, our algorithm consists of two
components—spatial-feature-based deep clustering and deep-
clustering-based beamforming.

A. Signal Model

All speech separation methods throughout the paper operate
in the frequency domain on a frame-by-frame basis. Suppose
that a physical space contains U speakers and a microphone
array of P microphones. If the U speakers talk simultaneously,
then the physical model for the received signals by the
microphone array is assumed to be

y(t, f) =
U∑

u=1

cu(f)su(t, f) + hu(t, f) + n(t, f) (1)

where su(t, f) is the short-time Fourier transform (STFT)
value of the clean speech of the u-th speaker at time t and
frequency f , cu(f) is the time-invariant acoustic transfer
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Fig. 1. The diagram of the proposed algorithm

function from the u-th speaker to the array which is a P -
dimensional complex number:

cu(f) = [cu,1(f), cu,2(f), . . . , cu,P (f)]
T (2)

cu(f)su(t, f) and hu(t, f) are the direct sound and early and
late reverberation of the u-th speech source signal, and n(t, f)
and y(t, f) are the additive noise and received signal at time
t and frequency f respectively:

n(t, f) = [n1(t, f), n2(t, f), . . . , nP (t, f)]
T (3)

y(t, f) = [y1(t, f), y2(t, f), . . . , yP (t, f)]
T . (4)

B. Spatial Feature Based Deep Clustering

In the training stage, we first extract P STFT spectrograms
from the audio recordings, denoted as {yi,1, yi,2, . . . , yi,P }ni=1,
where i is a time-frequency (T-F) index (t, f), n is the total
number of the T-F units of a STFT spectrogram, and yi,p
denotes the i-th T-F unit of the p-th spectrogram. Then, we
extract a log-magnitude spectrum by

zi,p = log |yi,p| (5)

and a spatial feature IPD by

θi,p,q = ∠yi,p − ∠yi,q. (6)

To handle the 2π ambiguity, we further transform IPD by a
cosine function so as to unwrap the phase values into the range
[−1, 1] [9]:

δi,p,q = cos(θi,p,q). (7)

Finally, the input acoustic feature of deep clustering at the i-th
T-F unit is:

mi = [yi,1, . . . , yi,p, . . . , yi,P , δi,1,1, . . . , δi,p,q, . . . , δi,P,P ]
T

(8)
However, if we take into account of all pairs of the mi-

crophones in the array, then mi is too high-dimensional. In
practice, we partition the microphone array into P/2 pairs, and
train a deep clustering model for each channel. Suppose we
are to train a deep clustering model for the p-th channel, and
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suppose the p-th channel and the p′-th channel falls into the
same pair. Then, the input feature of the p-th deep clustering
model is:

mi,p = [yi,p, δi,p,p′ ]T (9)

Deep clustering learns a k-dimensional embedding vector vi,p

from mi,p by a BLSTM model gp(·):
vi,p = gp(mi,p) (10)

It minimizes the following cost function:

Jp = ||VT
p Vp −BT

p Bp||2F (11)

where ‖ · ‖F denotes the Frobenius norm operator, Vp =
[v1,p, . . . ,vn,p] is an n × k embedding matrix, and Bp =
[b1,p, . . . ,bn,p] is an n×U ground-truth indicator matrix with
bi,p = [bi,p,1, . . . , bi,p,u, . . . , bi,p,U ]

T defined as:

bi,p,u =

{
1, if the T-F unit is dominated by speaker u.

0, otherwise.
(12)

where c is the number of speakers.
In the test stage, we use k-means clustering to partition

the embedding vectors into U clusters, which generates U
estimated binary masks for each channel:

M̂p,u(t, f) =

{
1, if the (t, f)-unit is assigned to speaker u.

0, otherwise.
(13)

C. Deep Clustering Based Beamforming

Deep clustering based beamforming finds U linear estima-
tors {wu(f)}Uu=1 to filter y(t, f) by the following equation:

x̂u(t, f) = wH
u (f)y(t, f), ∀u = 1, . . . , U (14)

where (·)H is the conjugate transpose operator and x̂u(t, f)
is an estimate of the direct speech of the u-th speaker at the
reference microphone of the array. We take MVDR as the
beamformer, which derives the following solution:

wu(f) =
Φ̂

−1

ūū (f)ĉu(f)

ĉHu (f)Φ̂
−1

ūū (f)ĉu(f)
(15)

where Φ̂ūū(f) is an estimate of the spatial covariance matrix
of the interference of the u-th speaker, and ĉu(f) is the first
principal component of Φ̂ūū(f):

Φ̂ūū(f) =
1∑

t ηu(t, f)

∑

t

ηu(t, f)y(t, f)y(t, f)
H (16)

ĉu(f) = principal
(
Φ̂ūū(f)

)
(17)

where ηu(t, f) is defined as the product of individual estimated
T-F masks:

ηu(t, f) =
P∏

i=1

M̂p,u(t, f) (18)

III. EXPERIMENTS

A. Experimental Settings

1) Datasets: We focused on 2-speaker speech separation
problems. To simulate real-world environments, we generated
a scenario for each training or test mixture. Each scenario
needs to simulate a room in which a microphone array and
two speakers are further generated. For each scenario, we
randomly generated a room that is 5 to 10 meters long, 5
to 10 meters wide, and 3 to 4 meters high. We randomly
generated a spherical microphone array with a radius varying
from 0.075 to 0.125 meter. The microphone array consists
of four microphones, two of which are inside the sphere and
the other two are on the surface of the sphere. Its coordinate
varies from (0.2, 0.2, 1) to (0.2, 0.2, 2) meters. We randomly
generated two speakers that are located in a circle centered at
the microphone array with a radius of 1.5 meters. The distance
between the microphone array and the speaker is at least 0.5
meter. The distance between the two speakers is at least 1
meter. All simulated environments were generated by the room
impulse response function [15].

We used the WSJ0-2mix data [6], [16]–[18] as the speech
source, and resampled the speech data to 8 kHz. We generated
three datasets for the model training, development, and test.
The training set contains 20,000 mixtures. The validation set
contains 5000 mixtures. The test set contains 3000 mixtures.
The three datasets are about 30, 10, and 5 hours long respec-
tively. For each mixture, we generated its anechoic recording
by setting T60 = 0. We further generated its reverberant
recording by selecting T60 from the range of [0.2, 0.6] second
[19].

2) Parameter Settings: We set the frame length to 32
milliseconds and frame shift to 8 milliseconds. We extracted a
129-dimensional Hamming window reweighted STFT feature
from each frame, and further transformed the STFT feature to
the feature described in (9). Figures 2 and 3 show the loga-
rithmic magnitude spectrum of a mixture and its components.

In order to prevent the clustering results biased towards
silence regions, some inactive T-F units with low energy
should not be incorporated into the model training and test
process of the spatial-feature-based deep clustering. Based
on the above analysis, we conducted an energy-based voice
activity detection on the T-F units after the feature extraction.

We built a BLSTM network that consists of four BLSTM
layers with 300 hidden units per layer for deep clustering. The
network was optimized by stochastic gradient descent. The
momentum was set to 0.9. The learning rate was set to 10−5.
To avoid the local minima of BLSTM, we added Gaussian
noise with a mean of 0 and a variance of 0.6 to the weights.
The dimension of the embedding vector was set to 40 which
yields the best performance in experience.

3) Comparison Methods: We summarize the comparison
methods as follows:

• LogMag+DC. This is a single-channel speech separation
baseline. It uses the logarithmic magnitude spectrum
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Fig. 2. Logarithmic magnitude spectrum of a mixed speech signal.

Fig. 3. Separated logarithmic magnitude spectra of the mixed speech signal
in Fig. 2.

(LogMag) as the acoustic feature to train a deep clustering
(DC) model.

• LogMag+cosIPD+DC. This is a multi-channel nonlinear
speech separation baseline. It combines LogMag and
cosIPD together as the acoustic feature to train a DC
model.

• LogMag+DC+MVDR. This is a multi-channel linear
speech separation baseline. It uses LogMag+DC as the
noise estimator of MVDR.

• LogMag+cosIPD+DC+MVDR (proposed).
The components of the comparison methods, including the
LogMag, cosIPD, DC, and MVDR, have the same parameter
setting unless otherwise stated.

4) Evaluation Metrics: We take the source distortion ratio
(SDR) as the main evaluation metric, and take the perceptual
evaluation of speech quality (PESQ) and STOI as two supple-
ment evaluation metrics.

B. Results

To demonstrate how reverberation degrades the perfor-
mance of speech separation, we evaluated the single-channel
LogMag+DC method in both the anechoic and reverberant
environments. The results are listed in Table I. From the table,
we see that the performance of LogMag+DC in the reverberant
environments is significantly lower that in the anechoic envi-
ronments, which emphasizes the importance of our research
topic— speech separation in reverberant environments.

To show the advantage of the multi-channel speech sep-
aration in reverberant environments, we evaluated Log-
Mag+cosIPD+DC, LogMag+DC+MVDR, and the proposed
LogMag+cosIPD+DC+MVDR in the reverberant environ-
ments. Table II lists the comparison results in terms of SDR,
PESQ, and STOI. From the table, we observe the following
phenomena. First, LogMag+cosIPD+DC+MVDR significantly
outperforms all comparison methods. For example, its STOI
scores are over 10% higher than the two multichannel speech

TABLE I
SDR PERFORMANCE OF THE LOGMAG+DC BASELINE. THE TERM “M+F”
MEANS THAT EACH UTTERANCE IN THE TEST CORPUS IS A MIXED SIGNAL

OF A MALE SPEAKER AND A FEMALE SPEAKER, WHERE THE SYMBOLS
“M” AND “F” REPRESENT MALE AND FEMALE SPEAKERS RESPECTIVELY.

SO AS TO THE TERMS “M+M” AND “F+F”.

Genders anechoic reverberant

M+M 3.6 1.5
F+F 3.3 1.4
M+F 3.8 2.1

TABLE II
PERFORMANCE OF THE MULTI-CHANNEL COMPARISON METHODS IN

REVERBERANT ENVIRONMENTS.

Genders SDR PESQ STOI

LogMag+DC+MVDR
M+M 8.6 1.65 0.58
F+F 8.3 1.64 0.55
M+F 8.8 1.67 0.62

LogMag+cosIPD+DC
M+M 8.9 1.68 0.63
F+F 8.5 1.67 0.61
M+F 9.2 1.72 0.69

LogMag+cosIPD+DC+MVDR
M+M 9.1 1.73 0.75
F+F 8.9 1.71 0.72
M+F 9.5 1.74 0.77

separation baselines. Second, all multi-channel methods out-
perform the single-channel LogMag+DC method significantly,
which indicates the importance of exploring spatial informa-
tion.

IV. CONCLUSIONS

In this paper, we have proposed a multi-channel speaker-
independent speech separation method by combining the
spatial-feature-based deep clustering algorithm with the deep-
clustering-based beamforming method. The algorithm first
concatenates IPD and the logarithmic magnitude spectrogram
as the acoustic feature for training deep clustering. Then, it
uses the deep clustering as the noise estimator for MVDR. The
novelty of the algorithm is that it explores spatial information
at both the input and output of deep clustering. We have
compared the proposed method with its two components
as well as the single-channel deep clustering algorithm in
reverberant environments. Experimental results show that the
proposed method significantly outperforms the comparison
methods in terms of all three evaluation metrics.
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