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A B S T R A C T

Recently, the research on ad-hoc microphone arrays with deep learning has drawn much attention, especially in
speech enhancement and separation. An ad-hoc microphone array may cover such a large area where multiple
speakers stand far apart and talk independently. Therefore, it is important to extract and trace a specific
speaker in the ad-hoc array, which is called target-dependent speech separation, aiming to extract a target
speaker from a mixed speech. However, this technique has not been explored yet. In this paper, we propose
deep ad-hoc beamforming based on speaker extraction, which is to our knowledge the first work for target-
dependent speech separation based on ad-hoc microphone arrays and deep learning. The algorithm contains
three components. First, we propose a supervised channel selection framework based on speaker extraction,
where the estimated utterance-level SNRs of the target speech are used as the basis for the channel selection.
Second, we apply the selected channels to a deep learning based MVDR algorithm, where a single-channel
speaker extraction algorithm is applied to each selected channel for estimating the mask of the target speech.
We conducted an extensive experiment on WSJ0-adhoc corpus and Libri-adhoc40 corpus. Experimental results
demonstrate the effectiveness of the proposed method in both simulation and real scenarios.
1. Introduction

Speech separation, also known as cocktail party problem, aims to
separate target speech from interference background (Wang and Chen,
2018). It is often used as the front end of speech recognition for
improving the accuracy of human–machine interaction. Conventional
speech separation technologies include computational auditory scene
analysis (Rouat, 2008), non-negative matrix factorization (Schmidt
and Olsson, 2006; Virtanen, 2007), HMM-GMM (Virtanen, 2006; Stark
et al., 2010), and minimum mean square error (Ephraim and Malah,
1985). Recently, deep learning based speech separation becomes a
new trend (Wang and Wang, 2012, 2013; Wang et al., 2014; Zhang
and Wang, 2017; Delfarah and Wang, 2019; Delfarah et al., 2020),
which is the focus of this paper. According to whether speakers’
information is known as a prior, deep-learning-based speech sepa-
ration techniques can be divided into three categories, which are
speaker-dependent (Bregman, 1994), target-dependent, and speaker-
independent speech separation. Speaker-dependent speech separation
needs to know the prior information of all speakers, which limits its
practical applications. Nowadays, the research on speech separation is
mostly speaker-independent and target-dependent.
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Speaker-independent speech separation based on deep learning
faces the speaker permutation ambiguity problem. In order to solve
this problem, two techniques have been proposed. The first one is
deep clustering (DPCL) (Hershey et al., 2016; Wang et al., 2018a;
Yang and Zhang, 2019b). It projects each time–frequency unit to a
higher-dimensional embedding vector by a deep network, and conducts
clustering on the embedding vectors for speech separation. The method
in Isik et al. (2016) implements an end-to-end training strategy of
DPCL via leveraging soft clustering, which further improves the perfor-
mance of DPCL. The second technique is permutation invariant training
(PIT) (Yu et al., 2017; Kolbæk et al., 2017; Xu et al., 2018). The network
of PIT directly estimates the speech of each speaker. For each training
mixture, it picks the permutation of the speakers that has the minimum
training error among all possible permutations to train the network.

Target-dependent speech separation based on deep learning aims to
extract target speech from a mixture given some prior knowledge on the
target speaker. The earliest speech separation method takes the target
speaker as the training target (Zhang and Wang, 2016). It has to train a
model for each target speaker, which limits its practical use. To prevent
training a model for each target speaker, speaker extraction further takes
speaker codes extracted from a speaker recognition system as part of
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Fig. 1. The scenarios of speaker extraction under traditional microphone array and DABse.
the network input (Williamson and Wang, 2017; Žmolíková et al., 2017;
Wang et al., 2018c; Xu et al., 2019; Xiao et al., 2019; Delcroix et al.,
2019; Ochiai et al., 2019).

The aforementioned methods are all single-channel methods. Al-
though they work well in clean scenarios, their performance degrades
significantly in reverberant scenarios. To improve the performance of
speech separation in reverberant scenarios, many multichannel meth-
ods were proposed in both fields of traditional algorithms and deep
learning algorithms. Traditional algorithms can be categorized into
NMF-based models (Ozerov and Févotte, 2009; Sawada et al., 2013;
Kitamura et al., 2016, 2018) and probability models (Otsuka et al.,
2013; Itakura et al., 2018) according to different source models. Be-
sides, it is impressive that Higuchi et al. (2016) pointed out that the
conventional steering vector estimators of beamforming might rely on
inaccurate knowledge like the array geometry, and then addressed this
problem by applying a complex Gaussian mixture model to estimate the
time–frequency masks for estimating the steering vector (Higuchi et al.,
2017). As for deep learning algorithms, there are currently two major
forms. The first form combines spatial features that are extracted from
microphone arrays, such as interaural time difference and interaural
level difference, with spectral features as the input of single-channel
speech separation networks (Wang et al., 2018b; Jiang et al., 2014;
Araki et al., 2015; Pertilä and Nikunen, 2015). The second form uses
a deep network to predict a mask for each speaker at each channel,
and then conducts beamforming for each speaker (Nakatani et al.,
2017). For brevity, we call this method deep beamforming. Žmolíková
et al. (2019) proposed SpeakerBeam, which addresses the target speech
extraction problem by utilizing the representation of a target speaker
with a fixed microphone array. Gu et al. (2020) also proposed a
multi-channel framework for this problem by making full use of the in-
formation of the target speaker. Some methods combined the above two
forms for boosting their advantages together in reverberant scenarios,
e.g. Yoshioka et al. (2018) and Yang and Zhang (2019a).

The aforementioned multichannel methods are only studied with
traditional fixed arrays, such as linear arrays or spherical arrays. How-
ever, for far-field speech separation problems with high reverberation,
they suffer significant performance degradation since the energy of
speech signals gradually drops during their transmission through the
air. How to maintain the estimated speech at the same high quality
throughout an interested physical space is of broad interests. Ad-hoc
microphone array, which is a group of randomly distributed micro-
phones collaborating with each other, is a solution to the problem.
Fig. 1 gives a comparison example where a target speaker extraction
problem with a fixed array is on the left and that with an ad-hoc
microphone array on the right. From the figure, we see that, compared
with the fixed array that is far from the target speaker, the ad-hoc
microphone array has several apparent advantages. First, an ad-hoc
88
microphone array may put a number of microphones around the target
speaker, which significantly reduced the probability of far-field speech
processing. By channel selection, it might be able to form a local
microphone array around the target speaker. At last, it may be able
to incorporate application devices of various physical sizes.

In literature, ad-hoc microphone arrays have consistently been an
important research topic (Jayaprakasam et al., 2017; Tavakoli et al.,
2017; Zhang et al., 2017; Koutrouvelis et al., 2018). However, they
face many practical problems due to the lack of important priors.
Recently, Zhang (2018) addresses the difficulties of ad-hoc microphone
arrays, such as lack of priors and insufficient estimation of variables,
by deep learning for the first time. The proposed method, named
deep ad-hoc beamforming (DAB), was originally designed for speech
enhancement only, which predicts segment-level signal-to-noise-ratio
(SNR) by deep neural networks for supervised channel selection. Later
on, some speech separation methods based on ad-hoc microphone
arrays were proposed. Luo et al. (2020) proposed a transform-average-
concatenate strategy for a filter-and-sum network (Luo et al., 2019) to
realize the channel reweighting/selection ability for ad-hoc microphone
arrays. Because ad-hoc microphone arrays lack the prior of the number
and spatial distribution of microphones, Wang et al. (2020) proposed
a network architecture by interleaving inter-channel processing layers
and temporal processing layers to leverage information across time and
space alternately. Wang et al. (2021) further solved the problem of
continuous speech separation by extending the method in Wang et al.
(2020). Besides, speech recognition and speaker verification with ad-
hoc microphone arrays also received much attention. Chen and Zhang
(2021) proposed Scaling Sparsemax to address the channel selection
problem of speech recognition with large-scale ad-hoc microphone
arrays. Liang et al. (2021) proposed attention-based multi-channel
speaker verification with ad-hoc microphone arrays for the missing
prior information problem.

Among the above problems, deep learning based speech separation
with ad-hoc microphone arrays has aroused our interest. And we find
that existing methods are all speaker-independent. To our knowledge,
target-dependent speech separation with ad-hoc microphone arrays are
far from explored yet. In many applications, extracting and tracking
target speech is of more interests than separating a mixture into its
components. This is particularly the case for ad-hoc microphone arrays,
where several speakers may locate far apart and talk independently.

In this paper, motivated from DAB (Zhang, 2018) for speech en-
hancement, we propose a target-dependent speech separation algorithm
with ad-hoc microphone arrays, named DAB based on speaker extrac-
tion (DABse), which aims to address a different problem from DAB.
The main problem to be solved is how to re-weight each channel in
ad-hoc microphone arrays. Here, DABse predicts the speech quality of
the target speaker received by each channel, i.e., SNR, for the weight
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Fig. 2. Diagram of the proposed DABse system.
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f each channel. However, compared with DAB, because the mixture
ontains multiple speakers, the network faces the speaker permutation
mbiguity problem during the training stage, a well-known problem
n speech separation as the aforementioned. In order to avoid this
roblem, we propose a new SNR estimation network, which adds codes
f the target speaker to the network so as to make the network focus
n the target speaker. Then, we apply a single-channel mask estimation
etwork different from that of DAB. In addition, in our work, we tested
ABse not only on simulated datasets but also on a semi-real dataset.

Our algorithm consists of three components: first, we propose a
upervised channel selection based on speaker extraction, which applies
i-directional long short-term memory (BLSTM) networks to estimate
he utterance-level SNR of the target speaker. Then, we employ the
euristic channel selection algorithms in Zhang (2018) to pick the
hannels with high SNRs. We further apply a single-channel speaker
xtraction algorithm to the selected channels for the mask estimation
roblem of the target speech. At last, we use the estimated masks to
erive a beamformer for the target speaker, such as minimum variance
istortionless response (MVDR) (Heymann et al., 2016). Experimen-
al results on both a simulated WSJ0-adhoc corpus and a semi-real
ibri-adhoc40 corpus show that the proposed DABse performs well in
everberant environments.

The rest of the paper is organized as follows. We present the deep
d-hoc beamforming system based on speaker extraction in Section 2.
n Section 3, we present the experimental results. Finally, we conclude
his study in Section 4.

. Deep ad-hoc beamforming based on speaker extraction

We build the signal model for target-dependent speech separation
ased on ad-hoc microphone arrays. Suppose that a room contains a
arget speaker, an interference speaker, and an ad-hoc array of 𝑊

microphones. Then, the mixed speech signal received by any single
microphone of the ad-hoc array can be represented as:

𝑦(𝑡) = 𝑥𝑎(𝑡) + 𝑥𝑖(𝑡) + ℎ(𝑡) (1)

where 𝑥𝑎(𝑡) and 𝑥𝑖(𝑡) are the direct speech of the target speaker and in-
terference speaker at time 𝑡, and ℎ(𝑡) is the early and late reverberation
of the speech source signal. Note that, in our signal model, we ignore
non-speech background noise.

We perform the short-time Fourier transform (STFT) to the signal
(1), which results in:

𝑌 (𝑡, 𝑓 ) = 𝑋𝑎(𝑡, 𝑓 ) +𝑋𝑖(𝑡, 𝑓 ) +𝐻(𝑡, 𝑓 ) (2)

where 𝑋𝑎(𝑡, 𝑓 ) and 𝑋𝑖(𝑡, 𝑓 ) are the time–frequency units of the direct
speech of the target speaker and interference speaker at time 𝑡 and
frequency 𝑓 respectively, 𝐻(𝑡, 𝑓 ) is the time–frequency unit of the
early and late reverberation. We can further define the direct speech
as follows:

𝑋𝑎(𝑡, 𝑓 ) = 𝑐𝑎(𝑓 )𝑆𝑎(𝑡, 𝑓 ) (3)

𝑋𝑖(𝑡, 𝑓 ) = 𝑐𝑖(𝑓 )𝑆𝑖(𝑡, 𝑓 ) (4)

where 𝑆𝑎(𝑡, 𝑓 ) and 𝑆𝑖(𝑡, 𝑓 ) are the spectra of the target and interference
89

speech at the source locations, and 𝑐𝑎(𝑓 ) and 𝑐𝑖(𝑓 ), which are complex e
numbers, are the time-invariant acoustic transfer functions from the
speech sources to the microphone of the array.

Fig. 2 describes DABse. It first picks eligible channels from ad-
hoc microphone arrays by a supervised channel selection algorithm
based on speaker extraction for a target speaker. Then, it conducts
deep-learning-based MVDR on the selected channels, where a separate
single-channel speaker extraction network is used to estimate the mask
of the target speaker.

2.1. Supervised channel selection based on speaker extraction

The main idea of the supervised channel selection based on speaker
extraction is to select the channels with high SNR of the target speaker.
The module contains two parts: a channel-weight estimation network,
and a channel selection algorithm.

2.1.1. Channel-weight estimation network
The channel-weight estimation network aims to estimate the quality

of the target speech for each channel. To make the channel-weight
estimation network independent to the topology of ad-hoc microphone
arrays, it needs to be trained in a single-channel fashion which is then
applied to each channel separately in the test stage. Here we use a
speaker extraction network to estimate the quality of the target speech,
where an auxiliary network is to extract the identity feature of the
target speaker. Fig. 3 shows the architecture of the channel-weight
estimation network.

First of all, we need to define a training target. Many objective eval-
uation metrics are suitable to be used as the training target for evaluat-
ing the speech quality. As the first work of the target-dependent speech
separation based on DAB, we take the simplest training target—a
variant of SNR:

SNR𝑢 =
∑

𝑡 |𝑥𝑎(𝑡)|
∑

𝑡 |𝑥𝑎(𝑡)| +
∑

𝑡 |𝑥𝑖(𝑡)|
. (5)

e name the variant of the SNR as the utterance-level SNR (SNR𝑢).
The network structure contains an auxiliary network and a main

etwork. Suppose each target speaker has an auxiliary speech that
s collected independently from the mixed speech 𝑦(𝑡). The auxiliary
etwork takes the magnitude spectrum of the auxiliary speech |𝐴| as
ts input for extracting the identity embedding feature of the target
peaker. It uses a BLSTM network to extract frame-level features from
𝐴|,

𝐬1,… , 𝐬𝑔 ,… , 𝐬𝐺] = 𝑓 (|𝐴|; 𝜃). (6)

here 𝜃 is the parameter of the BLSTM network, [𝐬1,… , 𝐬𝑔 ,… , 𝐬𝐺] is the
utput of the linear layer, and G represents the number of frames of the
agnitude spectrum |𝐴|. Then it uses a pooling layer to transform the

rame-level features into an utterance-level embedding vector 𝐯:

= 1
𝐺

∑

𝑔
𝑠𝑔 . (7)

The main network contains a frame-level network, a pooling layer,
nd an utterance-level network from bottom-up. The frame-level net-
ork first transforms |𝑌 | to frame-level features, denoted as [𝐳1,… , 𝐳𝑏,
, 𝐳𝐵], then concatenates each frame-level feature 𝐳𝑏 with 𝐯, and finally

xtracts a target-dependent frame-level feature from [𝐳𝑇 , 𝐯𝑇 ]𝑇 , where 𝐵
𝑏
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Fig. 3. Diagram of the SNR𝑢 estimation network.
represents the number of frames of the magnitude spectrum |𝑌 |. The
ooling layer extracts a target-dependent utterance-level embedding
rom the target-dependent frame-level features. The utterance-level
etwork is a regression network. It takes the utterance-level embedding
s the input for predicting SNR𝑢 of 𝑦(𝑡). It minimizes the mean-squared

error:

𝐽1 = ‖𝑞 − SNR𝑢
‖

2
2 (8)

where 𝑞 is an estimate of SNR𝑢 (denoted as ŜNR
𝑢

in Fig. 3), which will
be used as the channel weight for the channel-selection algorithm in
the test stage.

The main network and auxiliary network are jointly trained by back-
propagation. Both networks use mean pooling as the pooling layer,
which averages the frame-level features along the time axis for the
utterance-level embeddings.

2.1.2. Channel selection algorithms
The channel-selection algorithms in this section are used in the test

stage only. Applying the channel-weight estimation network to each
channel respectively gets a channel-weight vector 𝐪 = [𝑞1, 𝑞2,… , 𝑞𝑊 ]𝑇 .
A channel-selection algorithm takes 𝐪 as input, and outputs a channel-
mask vector 𝐩 = [𝑝1, 𝑝2,… , 𝑝𝑊 ]𝑇 . Some channel-selection algorithms
are described as follows.

• Selecting one-best channel (1-best)
This algorithm selects the channel with the highest speech quality
among the 𝑊 channels:

𝑝𝑗 =
{

1, if 𝑞𝑗 = max1≤𝑛≤𝑤 𝑞𝑛
0, otherwise ,∀𝑗 = 1,… ,𝑊 (9)

• Selecting 𝑁-best channel with predefined number (fixed-N-
best)
If the speakers are in a large room, and if the microphones are
sufficiently dispersed, then selecting a number of microphones
around the target speaker may yield better performance than
using all microphones. This channel selection algorithm first sorts
{𝑞1, 𝑞2,… , 𝑞𝑊 } in descent order, denoted as 𝑞′1 ≥ 𝑞′2 ≥ ⋯ ≥ 𝑞′𝑊 ,
and then picks the first 𝑁 channels with the highest 𝑞:

𝑝𝑗 =
{

1, if 𝑞𝑗 ∈ {𝑞′1, 𝑞
′
2,… , 𝑞′𝑁}

0, otherwise ,∀𝑗 = 1,… ,𝑊 (10)

where 𝑁 ≤ 𝑊 .
• Selecting 𝑁-best channel where number is predetermined
on-the-fly (auto-N-best)
This algorithm provides a method to determine 𝑁 automatically.
It first picks the 1-best channel by 𝑞∗ = 𝑚𝑎𝑥1≤𝑛≤𝑤𝑞𝑛, and then
calculates 𝑝𝑗 by:

𝑝𝑗 =

{

1, if 𝑞𝑗
𝑞∗

1−𝑞∗
1−𝑞𝑗

> 𝛾
,∀𝑗 = 1,… ,𝑊 (11)
90

0, otherwise
where 𝛾 ∈ [0, 1] is a tunable hyperparameter.
• Selecting soft 𝑁-best channel (soft-N-best)

Different from the auto-N-best algorithm, this algorithm
re-weights the selected channels according to the quality of the
target speech:

𝑝𝑗 =

{

𝑞𝑗 , if 𝑞𝑗
𝑞∗

1−𝑞∗
1−𝑞𝑗

> 𝛾

0, otherwise
,∀𝑗 = 1,… ,𝑊 (12)

After obtaining the channel-mask vector p, we re-weight the chan-
nels of the ad-hoc microphone array by the vector, and apply the
selected channels to the next module. For the 1-best channel selection,
we pick the signal 𝑌 (𝑡, 𝑓 ) of the best channel, and apply a nonlinear
single-channel speaker extraction algorithm to the channel. For the
other channel selection algorithms, we select N-channel signals, de-
noted as 𝐘(𝐭, 𝐟 ) = [𝑌1(𝑡, 𝑓 ), 𝑌2(𝑡, 𝑓 ),… , 𝑌𝑁 (𝑡, 𝑓 )]. After obtaining the cor-
responding estimated masks 𝐌(𝐭, 𝐟 ) = [𝑀1(𝑡, 𝑓 ),𝑀2(𝑡, 𝑓 ),… ,𝑀𝑁 (𝑡, 𝑓 )],
we apply the estimated masks to a deep learning based beamforming
algorithm.

2.2. Single-channel speaker extraction

The system diagram of the single-channel speaker extraction is
shown in Fig. 4. Given some auxiliary information of the target speech,
it estimates a ratio mask for the target speech. Then, the estimated
magnitude spectrum of the target speaker is obtained by applying the
ratio mask to the mixed speech as follows:

|�̂�𝑎(𝑡, 𝑓 )| = �̂�𝑎(𝑡, 𝑓 )|𝑌 (𝑡, 𝑓 )| (13)

where |�̂�𝑎(𝑡, 𝑓 )| is the estimated magnitude of the target speech,
�̂�𝑎(𝑡, 𝑓 ) is an estimated phase sensitive mask (PSM) (Erdogan et al.,
2015) of the target speech.

The single-channel speaker extraction encodes the auxiliary infor-
mation of the target speaker into an embedding in the same way as
that in the channel-weight estimation network. The network uses the
magnitude and temporal spectrum approximation loss (Xu et al., 2019).
This loss not only integrates the merit of PSM and signal approxima-
tion (Huang et al., 2014), but also captures the dynamic information,
i.e. the increment and acceleration, of the target speech:

𝐽2 =
1
𝑇

∑

(

∥|�̂�𝑎(𝑡, 𝑓 )|

− |𝑋(𝑡, 𝑓 )| cos(𝜃𝑦(𝑡, 𝑓 ) − 𝜃𝑥(𝑡, 𝑓 ))∥
2
𝐹

+ 𝑤𝑑∥𝑓𝑑 |�̂�𝑎(𝑡, 𝑓 )|

− 𝑓𝑑 (|𝑋(𝑡, 𝑓 )| cos(𝜃𝑦(𝑡, 𝑓 ) − 𝜃𝑥(𝑡, 𝑓 )))∥
2
𝐹

+ 𝑤𝑐∥𝑓𝑐 |�̂�𝑎(𝑡, 𝑓 )|

− 𝑓 (|𝑋(𝑡, 𝑓 )| cos(𝜃 (𝑡, 𝑓 ) − 𝜃 (𝑡, 𝑓 )))∥2
)

(14)
𝑐 𝑦 𝑥 𝐹



Speech Communication 140 (2022) 87–97Z. Yang et al.

w
𝜃
m
a
a

2

i
c
a
i
u

w
m

𝐜

Φ

𝑛
Φ

Fig. 4. Diagram of the single-channel speaker extraction network.
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here |𝑋(𝑡, 𝑓 )| is the ground-truth magnitude of the target speaker.
𝑦(𝑡, 𝑓 ) and 𝜃𝑥(𝑡, 𝑓 ) are the ground-truth phases of the spectrum of the
ixed speech and target direct speech, 𝑤𝑑 and 𝑤𝑐 are the weights,

nd 𝑓𝑑 (⋅) and 𝑓𝑐 (⋅) are two functions for calculating the increment and
cceleration respectively (Furui, 1986).

.3. Beamforming algorithm

The deep learning based MVDR (Heymann et al., 2016) is used to
ntegrate the selected channels for the target speech. It contains two
omponents—deep learning based single channel speaker extraction
nd MVDR. The deep learning based single-channel speaker extraction
n Section 2.2 is used to generate an estimation for each channel, and
ses the estimations to learn linear filters 𝑤𝑎 for MVDR. MVDR, which

is a linear beamforming algorithm, suffers less nonlinear distortions
than the single channel speaker extraction algorithm. It uses the linear
filters 𝑤𝑎 to produce the target speech by:

�̂�𝑎(𝑡, 𝑓 ) = 𝐰𝐻
𝐚 (𝑓 )𝐘(𝑡, 𝑓 ) (15)

where the symbol 𝐻 is the conjugate transpose operator, and �̂�𝑎(𝑡, 𝑓 )
is the estimated target speech.

The filter is derived by:

𝐰𝐚(𝑓 ) =
Φ̂−1

𝐢𝐢_𝐚𝐥𝐥(𝑓 )�̂�𝐚(𝑓 )

�̂�𝐻𝐚 (𝑓 )Φ̂−1
𝐢𝐢_𝐚𝐥𝐥(𝑓 )�̂�𝐚(𝑓 )

(16)

here �̂�𝐚(𝑓 ) is the first principal component of the spatial covariance
atrix of the target speaker Φ̂𝐚𝐚(𝑓 ) which is a N×N dimensional matrix:

̂𝐚(𝑓 ) = principal(Φ̂𝐚𝐚(𝑓 )) (17)

̂ 𝐚𝐚(𝑓 ) =
1

∑

𝑡 𝜂𝑎(𝑡, 𝑓 )

∑

𝑡
𝜂𝑎(𝑡, 𝑓 )𝐘(𝑡, 𝑓 )𝐘(𝑡, 𝑓 )𝐻 (18)

where 𝜂𝑎(𝑡, 𝑓 ) is derived by (Zhang, 2018):

𝜂𝑎(𝑡, 𝑓 ) =
𝑁
∏

𝑛=1
�̂�𝑎,𝑛(𝑡, 𝑓 ) (19)

where �̂�𝑎,𝑛(𝑡, 𝑓 ) is the estimated mask of the target speaker from the
th selected channel, and 𝑁 is the number of the selected channels.
̂ 𝐢𝐢_𝐚𝐥𝐥(𝑓 ) is the covariance matrix of the overall interference (Yin et al.,
2018; Taherian et al., 2020), which is derived by :

̂ ̂
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Φ𝐢𝐢_𝐚𝐥𝐥(𝑓 ) = Φ𝐲𝐲(𝑓 ) −Φ𝐚𝐚(𝑓 ) (20)
here Φ𝐲𝐲(𝑓 ) is the covariance matrix of the noisy speech, calculated
y:

𝐲𝐲(𝑓 ) =
∑

𝑡
𝐘(𝑡, 𝑓 )𝐘(𝑡, 𝑓 )𝐻 (21)

Finally, we can get the estimated target speech �̂�𝑎(𝑡) by inverse-
TFT:

̂𝑎(𝑡) = iSTFT(�̂�𝑎(𝑡, 𝑓 )) (22)

. Experiments

In this section, we present the datasets, experimental settings, and
esults in Sections 3.1, 3.2, and 3.3, respectively.

.1. Datasets

We focused on the two-speaker and three-speaker speech separation
roblem, in which one speaker was regarded as a target speaker. For
ach mixture, we randomly generated 16 microphones in a randomly
enerated room that is 5 to 15 m long, 5 to 25 m wide, and 1 to 2.5

high. Microphones and speech sources were placed randomly in the
oom. It is also necessary to mention that for each mixed speech, the
ocations of the microphones and the size of the room were randomly
enerated. Each speaker is at least 0.2 m away from the walls, and
.3 m from the microphones. We created room impulse responses
RIRs) using the method in Allen and Berkley (1979). We convolved
he clean speech signals with the RIRs and added the reverberant
ignals from both sources to produce the mixes speech. The reverberant
ondition T60 was generated from a Gaussian distribution randomly
ith a mean value of 0.25 s and a variance of 0.1 second2. Additionally,
e constrain T60 in the range of [0.1, 0.4] s. To evaluate the effect of the
umber of microphones on performance, we repeated the above process
xcept that the number of microphones was set to 8.

We first generated WSJ0-adhoc-2mix corpus1 from the WSJ0 cor-
us (Garofolo et al., 1993) at a sampling rate of 8 kHz in the aforemen-
ioned environment for 16 and 8 microphones respectively. The mixed
peech in the WSJ0-adhoc-2mix corpus contains the same content as
hat in the WSJ0-2mix corpus (Xu et al., 2019). Specifically, the original
orpus ‘𝑠𝑖_𝑡𝑟_𝑠’, composed of 50 male and 51 female speakers, was
andomly mixed to generate the training set (20 000 utterances) and

1 https://github.com/aaaceo890/distributed-multi-channel-data-generate.

https://github.com/aaaceo890/distributed-multi-channel-data-generate
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Table 1
Parameter setting of the channel-weight estimation network.

Main network

BLSTM 2 BLSTMs of 512 nodes in each direction
The feed-forward A nonlinear layer with 512 ReLUs
hidden layers A nonlinear layer with 256 ReLUs
Pooling layer Mean pooling
Output layer 1-dimensional sigmoid function

Auxiliary network

BLSTM A BLSTM of 256 nodes in each direction
The feed-forward A nonlinear layer with 256 ReLUs
hidden layers A linear layer of 30 nodes
Pooling layer Mean pooling
Initial learning rate 0.0005
Minibatch size 32
Training epochs 30–60
Optimizer Adam algorithm

validation set (5000 utterances) of WSJ0-2mix at various SNR uni-
formly chosen between 0 dB and 5 dB. Similarly, the original datasets
‘𝑠𝑖_𝑑𝑡_05’ and ‘𝑠𝑖_𝑒𝑡_05’, composed of 10 male and 8 female speakers,

ere randomly mixed to generate the test set (3000 utterances). Then,
e generated WSJ0-adhoc-3mix corpus for 16 microphones from WSJ0-
mix corpus in the same way. Because the speakers of the test set
ere different from those of the training set and validation set, our
xperimental scenario was regarded as open condition evaluation. To
tudy the effect of different gender combinations on performance, we
rouped the test set into ‘Female+Female’ (F+F), ‘Female+Male’ (F+M),

and ‘Male+Male’ (M+M) for evaluation.
Then, we evaluated our algorithm on the Libri-adhoc40 corpus

Guan et al., 2021) which was collected by adhoc microphone arrays of
0 strongly synchronized distributed nodes in a real office environment.
his dataset has strong reverberation with little additive noise. In order
o verify the generalization performance of DABse, we used Libri-
dhoc40-simu corpus (Guan et al., 2021) for the network training and
sed part of the training set of the semi-real Libri-adhoc40 corpus for
esting, which amounts to 20 000 utterances from 96 speakers as the
raining set, 4000 utterances from 91 speakers as the validation set, and
000 utterances from 65 speakers as the test set. The speakers in the
raining and validation sets were chosen from the Libri-adhoc40-simu
orpus, and the speakers in the test set from the Libri-adhoc40 corpus.

In all experiment scenarios, for the mixed speech, we set the first
peaker as the target speaker, and the other speakers as the interference
peakers. The utterance of the target speaker was regarded as the
eference speech. At the same time, we randomly selected a different
tterance of the same target speaker from the corresponding corpus as
he auxiliary information of the target speaker.

.2. Experimental settings

.2.1. DABse
We set the frame length to 32 ms and the frame shift to 16 ms. A

29-dimensional spectrum was extracted from each frame by STFT with
pre-emphasis of a normalized square root hamming window.

The parameters of the channel-weight estimation network are de-
cribed in Table 1. The parameters of the single-channel speaker extrac-
ion network were similar with those of the channel-weight estimation
etwork, except that the output layer contains 129 units for predicting
he ratio mask.

We denote DABse with a specific channel-selection algorithm as
DABse+channel-selection’, which results in the following four meth-
ds.

• DABse+1-best.
• DABse+fixed-N-best. We set 𝑁 at

√

𝑀 .
• DABse+auto-N-best. We set 𝛾 at 0.5.
• DABse+soft-N-best. We set 𝛾 at 0.5.
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Table 2
Comparison results of DABse with 16 microphones per ad-hoc microphone array and
three baselines, where the average T60 of all environments is 0.25 s.

Comparison method Gender SDR (dB) PESQ STOI

M+M 2.84 1.91 0.71
Single-channel F+F 3.65 2.00 0.74

F+M 5.45 2.18 0.77

M+M 4.65 1.96 0.75
Linear array F+F 4.02 1.91 0.74

F+M 5.61 2.13 0.79

M+M 5.47 2.20 0.79
All-channels F+F 4.17 1.92 0.78

F+M 5.68 2.14 0.80

M+M 4.84 1.98 0.78
DABse+1-best F+F 6.58 2.21 0.79

F+M 7.72 2.26 0.81

M+M 3.51 1.86 0.77
DABse+fixed-N-best F+F 5.32 2.08 0.79

F+M 7.96 2.30 0.83

M+M 5.56 2.10 0.79
DABse+auto-N-best F+F 6.66 2.23 0.81

F+M 8.47 2.34 0.84

M+M 5.17 2.06 0.76
DABse+soft-N-best F+F 6.30 2.15 0.80

F+M 8.11 2.30 0.83

Note that ‘DABse+1-best’ is a nonlinear speech separation method
while the others are linear methods.

3.2.2. Baselines
We compared DABse with two extreme DABse variants:

• Selecting one-random channel (single-channel) We randomly
select a channel from the 𝑊 channels, and then conduct single-
channel speaker extraction. This extreme case does not refer to
channel selection, and is therefore irrelevant to the number of
channels.

• Selecting all channels (all-channels) We use all channels for
the multi-channel speaker extraction, i.e.:

𝑝𝑗 = 1,∀𝑗 = 1,… ,𝑊 (23)

• Deep learning based MVDR with linear microphone array
(linear array) The method is similar with the baseline ‘all-
channels’ except that the ad-hoc microphone array is replaced
by a traditional microphone array. We choose a linear array
for the far-field multi-channel speaker extraction. We set each
linear array with 16 microphones and the distance between the
microphones to 10 cm. To evaluate its performance for two-
speaker speech extraction, we set its evaluation environment the
same as WSJ0-2mix-adhoc.

Note that ‘single-channel’ is a nonlinear speech separation method
while ‘linear array’ and ‘all-channels’ are both linear methods.

3.2.3. Evaluation metrics
The performance evaluation metrics include signal to distortion

ratio (SDR) (Vincent et al., 2006), perceptual evaluation of speech
quality (PESQ) (Rix et al., 2001), and short-time objective intelligibility
(STOI) (Taal et al., 2011). SDR is a metric similar to SNR for evaluating
the quality of enhancement. PESQ is a test methodology for automated
assessment of the speech quality as experienced by a listener of a
telephony system. STOI evaluates the objective speech intelligibility of
time-domain signals. The higher the value of an evaluation metric is,

the better the performance is.
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Table 3
Comparison results of DABse with 8 microphones per ad-hoc microphone array and
three baselines on the gender pair of F+M.

Comparison Beamforming SDR PESQ STOI
method method (dB)

Single-channel – 5.45 2.18 0.77
Linear array MVDR 3.49 1.91 0.73
All-channels MVDR 3.52 1.94 0.74
DABse+1-best – 5.69 2.05 0.76
DABse+fixed-N-best MVDR 5.79 2.28 0.77
DABse+auto-N-best MVDR 5.84 2.17 0.79
DABse+soft-N-best MVDR 6.49 2.22 0.80

Table 4
Results on different number of speakers in the mixed speech. The comparison methods
are the ‘DABse+auto-N-best’ with 16 microphones per ad-hoc microphone array and
he single-channel method on the gender pair of F+M. The average T60 is 0.25 s. The
irst two columns are the number of speakers.
Training Test Comparison SDR PESQ STOI

method (dB)

2 2 Single-channel 5.45 2.18 0.77
DABse 8.47 2.34 0.84

2 3 Single-channel 1.32 1.83 0.69
DABse 4.11 2.04 0.75

3 2 Single-channel 3.68 2.01 0.72
DABse 5.79 2.20 0.79

3 3 Single-channel 3.13 1.98 0.73
DABse 5.43 2.15 0.77

2 & 3 2 Single-channel 5.02 2.09 0.76
DABse 8.13 2.31 0.82

2 & 3 3 Single-channel 4.17 2.08 0.76
DABse 6.65 2.21 0.80

Table 5
Effect of hyperparameter 𝑁 of ‘DABse+fixed-N-best’ on the gender pair F+M.

Number of SDR PESQ STOI
selected microphones (N) (dB)

N = 2 4.42 2.11 0.78
N = 4 7.96 2.30 0.83
N = 6 7.87 2.30 0.85
N = 8 7.53 2.27 0.83
N = 10 6.97 2.24 0.81
N = 12 6.23 2.22 0.81
N = 14 6.76 2.26 0.82
N = 16 5.86 2.14 0.80

3.3. Results on WSJ0-adhoc

Table 2 lists the comparison results of the DABse variants with the
three baselines. From the table, we see that the last three channel
selection algorithms outperform the other comparison methods in most
cases. Among the three algorithms, ‘DABse+auto-N-best’ outperforms
all comparison methods, followed by ‘DABse+soft-N-best’. Although
‘DABse+fixed-N-best’ produces similar PESQ and STOI results with
‘DABse+soft-N-best’, its SDR score is poorer than the latter.

From the results listed in Tables 2 and 3, we can see that the
performance of DABse with channel selection is better than that with-
out channel selection, so we can draw a conclusion that the SNR𝑢

estimators are closely related to the performance of DABse. To be more
specific, from the Table 2, we find that even the simplest channel
selection algorithm ‘DABse+1-best’ can produce better experimental
results than all the baselines in most cases, which proves the necessity,
correctness and effectiveness of the channel selection for DABse. For
example, for the combination of F+M, ‘DABse+1-best’ achieves 2.27 dB
higher than ‘single-channel’ in terms of SDR.

3.3.1. Effect of the number of microphones in the ad-hoc microphone array
In order to explore the influence of different number of microphones

of ad-hoc microphone arrays on DABse, we conducted experiments with
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Fig. 5. Effect of hyperparameter 𝛾 of ‘DABse+auto-N-best’ and ‘DABse+soft-N-best’ on
the gender pair F+M.

ad-hoc microphone arrays of 8 microphones on the F+M combination
when 𝑇 60𝑚𝑒𝑎𝑛 was set at 0.25 s. And it is necessary to be mentioned
that we set 𝑁 at 3 (

√

8 ≈ 3) of ‘DABse+fixed-N-best’.
The results are listed in the Table 3. From the table, we can find

that it is the ‘DABse+soft-N-best’ rather than ‘DABse+auto-N-best’ that
performs the best among all comparison methods. Besides, it is obvious
that the ad-hoc microphone array with 16 microphones outperforms
that with 8 microphones.

3.3.2. Effect of DABse on different gender combinations
Table 2 lists the effect of DABse on different gender combinations.

From the table, we see that DABse and single-channel speaker extrac-
tion always achieve better performance on the gender pair of F+M. For
the same gender combinations, it seems that they perform better on F+F
han on M+M in most cases. In addition, we find that ‘DABse+1-best’

does not outperform ‘all-channels’ on M+M. The phenomena indicate
that M+M might be more difficult for single-channel speaker extraction
than the other gender combinations, and the effectiveness of DABse is
strongly affected by the single-channel speaker extraction algorithm.

3.3.3. Effect of DABse on different number of speakers
In order to explore the influence of different number of speakers

on DABse, we conducted an experiment on two-speaker and three-
speaker separation problems. We trained the DABse system with three
conditions, which are the two-speaker mixtures, three-speaker mix-
tures, and the mixtures with both two-speakers and three-speakers
respectively. Then, we compared ‘DABse+auto-N-best’ with the single-
channel method on the two-speaker and three-speaker mixed test data
when 𝑇 60𝑚𝑒𝑎𝑛 was set to 0.25 s. Table 4 lists the results on the gender
pair of F+M. From the table, we see that although the performance of
both the comparison methods drop significantly when the number of
speakers increases, DABse still outperforms ‘single-channel’ in all test
conditions.

3.3.4. Effect of hyperparameters of DABse on performance
To study how the selected number of channels 𝑁 affects the per-

formance of ‘DABse+fixed-N-best’, we conducted an experiment on
the F+M gender pair with 𝑁 selected from {2, 4, 6, 8, 10, 12, 14, 16}
espectively. From the experimental results in Table 5, we see that
he performance first gets improved and then decreased along with the
ncrease of 𝑁 , with the top SDR performance appearing at 𝑁 = 4 and
op STOI performance appearing at 𝑁 = 6, which demonstrates the
orrectness of our experimental setting, that is, setting 𝑁 at

√

𝑀 .
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Fig. 6. Comparison results between PSM and IRM for the DABse variants and the
‘single-channel’ baseline on the Libri-adhoc-simu and Libri-adhoc40 corpora.

To explore how the hyperparameter 𝛾 affects the performance of
‘DABse+auto-N-best’ and ‘DABse+soft-N-best’, we conducted an exper-
iment on the F+M gender pair with 𝛾 selected from 0.1 to 0.9. The
experimental results are shown in Fig. 5. From the figure, we see
that, when 𝛾 was set at 0.4 to 0.6, both ‘DABse+auto-N-best’ and
‘DABse+soft-N-best’ achieve top performance. Therefore, setting the
default value of 𝛾 to 0.5 is reasonable.

3.4. Results on Libri-adhoc40

In order to study whether DABse is valid in real scenarios, we
conducted experiments on the real dataset with the model trained on
the simulation dataset. In this experiment, the parameter setting of
DABse is the same as the previous experiments.

Fig. 6 shows the comparison results of the DABse variants with the
baseline of ‘single-channel’. From the bar charts, we see that DABse
with the channel selection module outperforms the baseline in all
the cases. Even the simplest channel selection method ‘DABse+1-best’
outperforms the ‘single-channel’ baseline that does not adopt channel
selection. For example, ‘DABse+1-best’ with the IRM mask achieves
nearly 6 dB higher than ‘single-channel’ on the Libri-adhoc40 corpus
in terms of SDR.

From Fig. 6, we also find that although the performance of the
DABse variants on the semi-real Libri-adhoc40 corpus is inferior to that
on the Libri-adhoc-simu corpus, it is still significantly better than the
94

‘single-channel’ baseline on both datasets. Among four DABse variants,
‘DABse+auto-N-best’ outperforms all comparison methods on the Libri-
adhoc40 corpus, followed by ‘DABse+soft-N-best’. At the same time, we
find that the results on the Libri-adhoc-simu and Libri-adhoc40 corpora
basically have the same trend. Therefore, we can conclude that the
advantage of the DABse model trained in the simulated environment
can be generalized from the simulated test environment to the semi-real
environment.

3.4.1. Effects of different masks on performance
In addition, we further compared PSM with IRM, which is defined

in Eq. (24), to study how different masks affect the performance of
DABse in both simulation and real scenarios. From Fig. 6, we see that
the DABse with the IRM mask outperforms that with the PSM mask on
the Libri-adhoc40 corpus. The same phenomenon can be found on the
Libri-adhoc-simu corpus as well. Although the ‘DABse+fix-N-best’ and
‘DABse+auto-N-best’ with the PSM masks produce better STOI results
than those with the IRM masks, their PESQ scores are much poorer than
the latter.

𝐼𝑅𝑀(𝑡, 𝑓 ) =
|𝑋𝑎(𝑡, 𝑓 )|

|𝑋𝑎(𝑡, 𝑓 )| + |𝑋𝑖(𝑡, 𝑓 ) +𝐻(𝑡, 𝑓 )|
(24)

.4.2. Effect of channel selection on performance
To demonstrate the effectiveness of the channel selection module,

e visualize an example produced from different channel selection
lgorithms in three scenarios of the Libri-adhoc40 corpus. From Fig. 7,
e see that, for ‘DABse+1-best’, the nearest microphone to the target

peaker along the speaking direction can be accurately selected. The
tatistical accuracy rate of ‘DABse+1-best’ over the entire test set can
each as high as 80.5%. For ‘DABse+fix-N-best’ and ‘DABse+auto-N-
est’, we see that a number of microphones around the target speaker
re grouped together in an ad-hoc way.

In addition, to study the accuracy of the 𝑆𝑁𝑅𝑢 estimation module,
e calculated the estimation error between the ground-truth SNR and

he estimated 𝑆𝑁𝑅𝑢 on the Libri-adhoc-simu corpus. From Fig. 8, we
ee that the percentage of the estimation error that is smaller than 0.15
eaches 91.86%. The statistical mean and variance of the estimation
rror are 0.062 and 0.004 respectively. We conjecture reasonably that,
f the 𝑆𝑁𝑅𝑢 estimation network is further improved, the channel
election algorithms may be more effective.

.4.3. Effect of different modules on performance
In order to study how different modules of the proposed sys-

em affects the performance, we conducted ablation experiments for
DABse+1-best’ on the Libri-adhoc-simu corpus. Specifically, for each

odule of the ‘DABse+1-best’, we used the ground-truth value instead
f the estimation output of the module, which yields four experimental
cenarios: ‘Oracle SNR’, ‘Oracle channel selection’, ‘Oracle mask’, and
Oracle SNR+Oracle mask’.

The results are shown in Fig. 9. From the figure, it is obvious that
he ‘Oracle SNR+Oracle mask’ variant achieves the best performance,
hich is drawn with a dashed line in the diagram. We also find that

he results of ‘Oracle SNR’ are the same as those of ‘Oracle channel
election’, which indicates that 𝑆𝑁𝑅𝑢, which is used as the criterion
or our channel selection, has strong correlation to the physical dis-
ance between the speaker and the microphones. The performance gap
etween ‘Oracle mask’ and ‘DABse+1-best’ is obviously larger than
hat between ‘Oracle SNR’ and ‘DABse+1-best’, which demonstrates
hat using an additional 𝑆𝑁𝑅𝑢 estimation network as an independent
odule is relatively better than using a single mask estimation network

n our experimental environment. Besides, we can see that ‘Oracle
ask’ is very close to the best result, so we can conclude that the

ccuracy of mask estimation network is an important factor affecting
he performance of the whole DABse system.
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Fig. 7. Visualization results of the three channel selection algorithms in three different test scenarios of the Libri-adhoc40 corpus. The dots represent microphones, the black
trumpet represents the target speaker, and the white trumpet represents the inference speaker.
Fig. 8. Histogram of the absolute estimation error between the ground-truth SNR and
the estimated 𝑆𝑁𝑅𝑢 produced by the estimation network. The horizontal axis represents
the value of the absolute error between the ground-truth value and the estimated
𝑆𝑁𝑅𝑢. The vertical axis represents the frequency statistics. The percentage score above
the histogram represents the percentage of statistics with different errors on the entire
test set.

4. Conclusions

In this paper, we have proposed deep ad-hoc beamforming based
on speaker extraction, which is the first work of the target-dependent
speech separation based on ad-hoc microphone arrays and deep learn-
ing. DABse uses the channel-weight estimation network based on
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speaker extraction to estimate the 𝑆𝑁𝑅𝑢 of the target speaker, and
then takes the 𝑆𝑁𝑅𝑢 as the channel weight for the selection of high-
quality channels, and finally takes the selected channels for the deep
learning based MVDR. The deep learning based MVDR first takes the
single-channel target-dependent speaker extraction network to estimate
the clean spectrum of the target speech at each selected channel, and
then uses the estimated spectrum to derive an MVDR filter for the final
speech separation. Because the two deep models in DABse are trained
in a single-channel fashion, it is able to handle any number of micro-
phones in the test stage. Because MVDR is a linear filter, DABse does
not suffer from nonlinear distortions. We have conducted extensive
experiments in both simulation and real scenarios where the speech
sources are located randomly in large rooms. We compared DABse
with the baselines of ‘single-channel’, ‘all-channels’ and ‘linear array’.
Experimental results demonstrate that the proposed DABse outperforms
the baselines significantly, which illustrates the effectiveness of DABse
in the adverse environments.

Our work is just the first attempt on the speaker extraction problem
with ad-hoc microphone arrays. There is still some work to figure
out. First, integrating spatial information into the training process of
the network is able to improve the performance of DABse. Another
interesting direction is to extract the target speech while the speaker is
walking, which is a common situation in our real life. In addition, the
speaker-independent speech separation with ad-hoc microphone arrays
is an important direction.
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Fig. 9. Ablation experiments for ‘DABse+1-best’ on the Libri-adhoc-simu corpora. The
term ‘Oracle’ means that we used ground-truth value instead of the estimated value
of the corresponding module of the ‘DABse+1-best’ algorithm. For example, ‘Oracle
channel selection’ means that the oracle 1-best channel is physically the closest channel
to the target speaker.
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