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Abstract

One difficult problem of keyword spotting is how to miniaturize
its memory footprint while maintain a high precision. Although
convolutional neural networks have shown to be effective to the
small-footprint keyword spotting problem, they still need hun-
dreds of thousands of parameters to achieve good performance.
In this paper, we propose an efficient model based on depth-
wise separable convolution layers and squeeze-and-excitation
blocks. Specifically, we replace the standard convolution by
the depthwise separable convolution, which reduces the num-
ber of the parameters of the standard convolution without sig-
nificant performance degradation. We further improve the per-
formance of the depthwise separable convolution by reweight-
ing the output feature maps of the first convolution layer with a
so-called squeeze-and-excitation block. We compared the pro-
posed method with five representative models on two experi-
mental settings of the Google Speech Commands dataset. Ex-
perimental results show that the proposed method achieves the
state-of-the-art performance. For example, it achieves a clas-
sification error rate of 3.29% with a number of parameters of
72K in the first experiment, which significantly outperforms the
comparison methods given a similar model size. It achieves
an error rate of 3.97% with a number of parameters of 10K,
which is also slightly better than the state-of-the-art compari-
son method given a similar model size.
Index Terms: keyword spotting, depthwise separable convolu-
tion, squeeze-and-excitation block

1. Introduction
Keyword spotting (KWS) aims at detecting predefined key-
words in an audio stream. A common approach for KWS is
based on large vocabulary continuous speech recognition [1, 2].
It costs huge memory footprint and has a high latency, so that it
is often used for the keyword search in large databases. Another
approach is based on keyword/filler hidden Markov models
(HMMs) [3], which requires a high computational cost and is
therefore difficult to be applied to on-device applications. This
paper focuses on small-footprint KWS, which requires small
memory footprint and low computational power. This kind of
technology is able to run on low-resource devices. It provides a
fully hands-free way for users to control intelligent devices.

Recently, deep neural network (DNN) based approaches
yield significant improvement over the conventional methods in
small-footprint KWS. DeepKWS [4] regards keyword spotting
as a classification problem and trains a DNN to directly pre-
dict the subword units of keywords. It achieves significant im-
provement over the HMM-based methods, e.g. [3], with small
footprint and low computational cost. Because DNN does not
consider the local temporal and spectral correlation of speech,

Sainath and Parada [5] proposed to replace DNN by convolu-
tional neural network (CNN), which results in better perfor-
mance with smaller memory footprint than DNN. However, the
size of the receptive field of CNN is usually limited, which can-
not grasp enough temporal correlation of speech. To overcome
this problem, Tang and Lin [6] proposed a residual network
(ResNet) based KWS system where they used dilated convo-
lution to enlarge the size of the receptive field exponentially
with the depth of the network. However, the ResNet based
method still needs several hundreds of thousands of parameters
to achieve the state-of-the-art performance. To further reduce
the memory footprint, a number of recent works applied time
delay neural network (TDNN), attention mechanism, and tem-
poral convolutional network (TCN) to KWS, see e.g. [7, 8, 9].
In [10], Zhang et al. adapted MobileNet [11] that was originally
designed for image classification to KWS, where MobileNet re-
duces the number of parameters and computational costs by a
so-called depthwise separable convolution structure [12]. How-
ever, if the method uses numerous ReLU activation functions
after the convolution operations, the representational ability of
the model may be hurt [13], and moreover, the method adopts a
conventional convolution structure, which is inefficient in prop-
agating gradients across layers. To summarize, although a num-
ber of new architectures have been proposed, they still needs a
lot of parameters, which does not fully meet the requirement of
modern low-resource devices.

Motivated by [6, 10, 13], we propose the depthwise sepa-
rable convolution based ResNet (DS-ResNet), which is a stack
of depthwise separable convolution layers with residual connec-
tions. This structure not only improves the representation ability
over [10] but also results in smaller memory footprint than [6].
To further improve the performance of the proposed method,
we add a squeeze-and-excitation block [14] over the output of
the bottom convolutional layer of DS-ResNet. We compared
DS-ResNet with ResNet [6], TC-ResNet [9], DS-CNN [10],
DenseNet-BiLSTM [15] and tdnn-swsa [16]. Experimental re-
sults on the Google speech commands dataset demonstrate that
DS-ResNet outperforms the comparison methods in terms of
classification errors with fewer parameters than the latter.

The remainder of the paper is organized as follows. Section
2 introduces the proposed DS-ResNet. Section 3 presents the
experimental setup and results. Section 4 concludes the paper.

2. Algorithm description
2.1. Network structure

As shown in Figure 1, our entire architecture starts with a
standard bias-free convolution layer (Conv) with weight W ∈
Rm×r×n, where m and r are the height and width of the con-
volution kernel respectively, and n is the number of filters (i.e.,
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(a) Standard convolution. (b) Depthwise convolution. (c) Pointwise convolution.

Figure 2: Comparison of three variants of the convolution operation, where we show 3 input channels, 2 output channels, and a kernel
size of 3× 3.)

Figure 1: Model architecture of the proposed DS-ResNet. The
content in the rectangle module describes a magnified residual
block of two depthwise separable convolution layers.

the number of the output channels). The model takes the out-
put of the first convolution layer as the input of a squeeze-and-
excitation layer (SE) which is used to reweight the output fea-
ture maps. Then, the output of the squeeze-and-excitation layer
is the input of a chain of residual blocks, followed by a separate
non-residual depthwise separable convolution layer (DS-Conv)
which consists of a depthwise convolution layer (depth-Conv)
and a pointwise convolution layer (point-Conv). Finally, the
output of the model is composed of an average-pooling layer
(Avg-pool) followed by a fully-connected softmax layer (Soft-
max). Additionally, a (dw, dh) convolution dilation was used to
increase the receptive field of the depthwise separable convolu-
tion layers.

2.2. Depthwise separable convolution

Depthwise separable convolution considers the channel realm
and space realm separately. It factorizes a standard convolu-
tion into two simplified steps. The first step is a spatial feature
learning step, named depthwise convolution. The second step is
a channel combination step, named pointwise convolution. The
most attractive property of the depthwise separable convolution
is its low computational cost and small amount of parameters.

Before describing the depthwise separable convolution, we
first take a look at the computational cost of a standard convo-
lution. As shown in Figure 2(a), given a Cin × Hin × Win

input feature maps of a certain convolution layer where Cin is
the number of the input channels, and Hin and Win are the spa-
tial height and width of the input feature maps, a standard con-
volution operation operates over a joint “space-cross-channels
realm” which applies Cout filters of size DK × DK × Cin to
compute the output feature maps, where DK is the spatial di-

Figure 3: The architecture of the squeeze-and-excitation block.

mension of the convolution filters, Cin is number of the input
channels, and Cout is the predefined number of the filters (i.e.,
channels of the output feature maps). The computational cost C
and amount of parameters S of the standard convolution are:

C(Conv) = Cin ×DK ×DK ×Hin ×Win × Cout (1)

S(Conv) = Cin ×DK ×DK × Cout (2)

where we assume that the stride is 1, padding mode is set to
“same”, and the size of the output feature maps is Cout×Hout×
Wout.

Different form the standard convolution which filters and
combines the input feature in one step, the filtering and combi-
nation step in the depthwise separable convolution is split into
two successive steps. First, the depthwise convolution applies
a single filter to each input channel (see Figure 2(b)). Then,
the pointwise convolution applies a 1 × 1 convolution to com-
bine the outputs of the depthwise convolution (see Figure 2(c)).
The computational cost C and amount of parameters S of the
depthwise convolution and pointwise convolution are

C(depth-Conv) = 1×DK ×DK ×Hin ×Win × Cin (3)

S(depth-Conv) = 1×DK ×DK × Cin (4)

and

C(point-Conv) = Cin × 1× 1×Hin ×Win × Cout (5)

S(point-Conv) = Cin × 1× 1× Cout (6)

respectively, where we have made the same assumption as the
standard convolution.

To show the advantage of the depthwise separable convo-
lution over the standard convolution apparently, we give an ex-
ample as follows. When we set Cout = 64 and DK = 3, the
computational cost and model size of the depthwise separable
convolution are only about 1/8 of those of the standard convo-
lution.

2.3. Squeeze-and-excitation block

Squeeze-and-excitation block is a new architectural that aims
to recalibrate the channel-wise feature responses adaptively by
modeling the interdependency between the channels[14]. As il-
lustrated in Figure 3, it consists of two successive operations—
squeeze and excitation. The squeeze operation compresses the
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Table 1: Parameter setting of DS-ResNet18, along with the
number of parameters and multiplies.

m r n dw dh #Parameters #Multiplies
Conv 3 3 64 1 1 576 2.3M
SE - - 64 - - 512 576

Res×7 3 3 64 2⌊
i
3
⌋ 2⌊

i
3
⌋ 65.4K 264M

DS-Conv 3 3 64 16 16 4672 18.9M
Avg-Pool - - 64 - - - 64
Softmax - - 12 - - 768 768

Total - - - - - 72K 285M

feature maps along the spatial dimension which extracts the
mean of the feature maps for each channel. The excitation op-
eration models the correlation between the channels, and then
generates a weight for each channel. Finally, the output of the
squeeze-and-excitation block is generated by multiplying the
input feature maps of the block with the output weights of the
excitation operation.

In our implementation, the squeeze operation is an average-
pooling layer. The excitation operation consists of two fully-
connected layers that take the rectified linear units and sigmoid
activation units as the hidden units respectively. The dimension
between the two fully-connected layers can be adjusted by a
hyperparameter α. We set α = 2−4 in this paper as [14] did.

2.4. Model implementation

In this subsection, we configure the models for the experiment.
The first model, named DS-ResNet18, achieves the highest
accuracy with a small model size. It consists of 7 residual
blocks, each of which contains 2 depthwise separable convo-
lution layers and 64 input and output channels. Because there
is an independent depthwise separable convolution layer before
the average-pooling layer, the total number of the depthwise
separable convolution layers is 15. The dilation in the ith layer
was set to 2⌊

i
3
⌋. DS-ResNet18 has roughly 72K parame-

ters. It needs 285M multiplication operations to generate an
output from an input time-frequency spectrum. The details of
the model are listed in Table 1.

To reduce the model footprint, the most efficient way is
to use fewer filters in each convolution layer. Here we re-
duced the number of the input and output channels to n = 32
for each depthwise separable convolution layer. To further re-
duce the model footprint, we further reduced the number of
the depthwise separable convolution layers to 11. When the
the number of the depthwise separable convolution layers is
less than 13, the receptive field of the entire network cannot
cover the entire input. To cover the entire input with a large
enough receptive field, we added a (2 × 2) average-pooling
layer after the squeeze-and-excitation layer. The model, named
DS-ResNet14, has roughly 15.2K parameters, and needs
15.7M multiplies to generate an output. The details of the model
are listed in Table 2.

The smallest model we have implemented contains 8 con-
volution layers. When the number of the convolution layer is
less than 10, the residual connections seem unnecessary any-
more. Therefore, we removed the residual connections. To keep
the receptive field wide enough, we added a (4 × 2) average-
pooling layer after the squeeze-and-excitation layer. This com-
pact model, named DS-ResNet10, consists of 7 separable
convolution layers without residual connections. It has about
10K parameters, and needs 5.8M multiplies to generate an out-
put. The details of the model are listed in Table 3.

Table 2: Parameter setting of DS-ResNet14.

m r n dw dh #Parameters #Multiplies
Conv 3 3 32 1 1 288 1.2M
SE - - 32 - - 128 160

Avg-Pool 2 2 32 - - - 32K
Res×5 3 3 32 2⌊

i
3
⌋ 2⌊

i
3
⌋ 13.1K 13.1M

DS-Conv 3 3 32 8 8 1312 1.3M
Avg-Pool - - 32 - - - 32
Softmax - - 12 - - 384 384

Total - - - - - 15.2K 15.7M

Table 3: Parameter setting of DS-ResNet10.

m r n dw dh #Parameters #Multiplies
Conv 3 3 32 1 1 288 1.2M
SE - - 32 - - 128 160

Avg-Pool 4 2 32 - - - 16K
DS-Conv×7 3 3 32 2⌊

i
3
⌋ 2⌊

i
3
⌋ 9.2K 4.6M

Avg-Pool - - 32 - - - 32
Softmax - - 12 - - 384 384

Total - - - - - 10K 5.8M

3. Experiments
3.1. Experimental setup

We evaluated the proposed models using Googles Speech Com-
mands Dataset version 1 [17]. The dataset consists of 64721
one-second long recordings of 30 words by thousands of differ-
ent speakers, as well as background noise samples such as pink
noise, white noise, and human-made sounds. Among the 30
words, 10 words (including “yes”, “no”, “up”, “down”, “left”,
“right”, “on”, “off”, “stop”, “go”) were used as keywords, and
the rest 20 words were used as fillers which were labeled as
“unknown”.

We followed the way in [6] to add noise and random shift
to each segment. Then, we extracted 40 dimensional Mel-
frequency cepstrum coefficient features from each frame with
a frame length of 25ms and a frame shift of 10ms. We used
the stochastic gradient descent with a momentum of 0.9 as the
optimizer of the proposed networks, and added the L2 weight
decay of 10−3 as the regularization. The batch size was set to
100. All models were trained from scratch for roughly 30000
steps. The initial learning rate was set to 0.1, and multiplied by
0.1 for every 10000 steps. The network was evaluated on the
validation set for every 1000 steps. The model that achieved
the highest accuracy on the validation set was used as the final
model. We ran all experiments for five independent times with
different random seeds, and reported the average performance.

3.2. Results of the first experiment

In the first experiment, we followed the experimental setup of
[6]. Specifically, we additionally added some silent segments
which are random noise only. We assigned the silent segments
a keyword “silence”. We randomly selected a number of seg-
ments from the keyword “unknown”, which keeps the ratio of
“silence” and “unknown” to about 10% of the total segments.
According to the SHA1-hashed name, the audio files was split
to three parts for training, validation, and test, which contain
roughly 22000, 2700, and 2700 segments, respectively.

We compared the proposed DS-ResNet with ResNet
[6], TC-ResNet [9], and DS-CNN [10]. The three mod-
els of ResNets are denoted as res15, res15-narrow,
and res8-narrow. The three models of TC-ResNets
are denoted as TC-ResNet14-1.5, TC-ResNet14, and
TC-ResNet8. The three models of DS-CNNs are denoted as
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Figure 4: Performance curves of the comparison methods.

Table 4: Comparison between DS-ResNet and ResNet. The
number after “±” is the 95% confidence interval.

Error rate #Parameters #Multiplies

res15*[6] 4.20%± 0.484 238K 894M
res15-narrow*[6] 6.0%± 0.516 42.6K 160M
res8-narrow*[6] 9.90%± 0.976 19.9K 5.65M
DS-ResNet18 3.29%± 0.195 72K 285M
DS-ResNet14 4.12%± 0.178 15.2K 15.7M
DS-ResNet10 4.76%± 0.365 10K 5.8M

DS-CNN(L), DS-CNN(M), and DS-CNN(S). See [6, 9, 10]
for the description of the aforementioned comparison mod-
els. All comparison methods followed the same settings as in
[6, 9, 10].

Figure 4 shows the comparison results in terms of the er-
ror rate (in the vertical ordinate) and model parameters (in the
horizontal ordinate). From the figure, we see that the proposed
DS-ResNet yields better performance curve than the compari-
son methods.

Table 4 lists the comparison results in terms of the er-
ror rate, model parameters, and the number of multiplication
operations per inference pass. From the table, we see that
DS-ResNet18 achieves a relative 21.7% error rate reduc-
tion over res15, with its number of parameters being only
1/3 of that of the latter. When the number of the model pa-
rameters is roughly the same, DS-ResNet14 achieves a rela-
tive 58.4% error rate reduction over res8-narrow. At last,
DS-ResNet10 reaches an error rate of 4.76% with only 10K
parameters.

3.2.1. Effect of the squeeze-and-excitation block

To investigate the effect of the squeeze-and-excitation block, we
proposed three additional variants of DS-ResNet18. The first
one, named DS-ResNet18-n, does not use the squeeze-and-
excitation block. The second one, named DS-ResNet18-d,
added the squeeze-and-excitation block after each depthwise
convolution layer. The third one, named DS-ResNet18-p,
added the squeeze-and-excitation block after each pointwise
convolution layer.

Table 5 lists the effect of the squeeze-and-excitation
block on performance. From the table, we see that
DS-ResNet18 outperforms DS-ResNet18-n, which
demonstrates the effectiveness of the block. However, adding

Table 5: Effect of the squeeze-and-excitation block with differ-
ent settings.

Error rate #Parameters

DS-ResNet18 3.29%± 0.195 72K
DS-ResNet18-n 3.45%± 0.152 71.4K
DS-ResNet18-d 3.54%± 0.191 79.6K
DS-ResNet18-p 3.67%± 0.147 79.6K

Table 6: Comparison between DS-ResNet, DenesNet-BiLSTM,
and tdnn-swsa.

Error rate #Parameters

DenesNet-BiLSTM*[15] 2.5% 250K
tdnn-swsa*[16] 4.19%± 0.191 12K
DS-ResNet18 2.32%± 0.109 72K
DS-ResNet14 2.84%± 0.257 15.2K
DS-ResNet10 3.97%± 0.154 10K

more squeeze-and-excitation blocks, as the DS-ResNet18-d
and DS-ResNet18-p did, does not lead to improved
performance.

3.3. Results of the second experiment

To further investigate the effectiveness of the proposed method,
we used the standard configuration of the dataset [15, 16],
where we used 51088 utterances for training, 6798 utterances
for validation, and 6835 utterances for testing. We compared
with DenesNet-BiLSTM [15] and tdnn-swsa [16]. All
comparison methods followed the same settings as in [15, 16].

Table 6 lists the comparison results. From the table, we see
that DS-ResNet10 is competitive with tdnn-swsa in the
low-resource condition. If we slightly relaxed the restrictions on
the model size, DS-ResNet14 achieves a relative 32.2% er-
ror rate reduction over tdnn-swsa. Finally, DS-ResNet18
achieves similar performance with DenesNet-BiLSTM, with
the number of parameters being only 1/3 of the latter.

4. Conclusions
In this paper, we have proposed the depthwise separable con-
volution based ResNet for the small-footprint keyword spotting
problem, which contains two novel components. The first com-
ponent concatenates the depthwise separable convolution with
ResNet. This concatenation significantly reduces the number
of parameters without suffering performance degradation. The
second component applies the squeeze-and-excitation block to
the output of the first convolution layer, which is able to fur-
ther improve the performance without increasing the number of
parameters dramatically. We have compared DS-ResNet with
5 referenced methods on two settings of the public available
Google Speech Commands dataset. Experimental results show
that the proposed DS-ResNet achieves the state-of-the-art per-
formance in various experimental settings.
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