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Abstract
Deep neural networks provide effective solutions to small-
footprint keyword spotting (KWS). However, most of the K-
WS methods take softmax with the minimum cross-entropy as
the loss function, which focuses only on maximizing the clas-
sification accuracy on the training set, without taking unseen
sounds that are out of the training data into account. If train-
ing data is limited, it remains challenging to achieve robust
and highly accurate KWS in real-world scenarios where the un-
seen sounds are frequently encountered. In this paper, we pro-
pose a new KWS method, which consists of a novel loss func-
tion, named the maximization of the area under the receiver-
operating-characteristic curve (AUC), and a confidence-based
decision method. The proposed KWS method not only main-
tains high keywords classification accuracy, but is also robust to
the unseen sounds. Experimental results on the Google Speech
Commands dataset v1 and v2 show that our method achieves
state-of-the-art performance in terms of most evaluation met-
rics.
Index Terms: keyword spotting, multi-class AUC optimization

1. Introduction
Keyword spotting (KWS), also known as spoken term detection
(STD), is the task of detecting some predefined keywords from
a stream of utterances. It is usually used as an intelligent a-
gent in mobile phones or smart devices. Recently, deep neural
network (DNN) based KWS has led to significant performance
improvement over conventional methods. Deep KWS [1] first
considers keyword spotting as an audio classification problem.
It trains a DNN model to predict the posteriors of predefined
keywords, in which each neuron in the softmax output layer of
the DNN model corresponds to a keyword, with an addition-
al “filler” neuron representing all other non-keyword segments.
This classification-based method achieves significant improve-
ment over the keyword/filter hidden markov models. Later on,
a number of classification-based methods [2, 3, 4, 5, 6, 7, 8]
were explored to minimize the memory footprint. However,
due to the closed nature of the softmax cross-entropy loss [9],
the aforementioned models need to collect various non-keyword
segments as training samples to achieve robust performance
in practice [1, 2, 4]. Moreover, using a single “filler” neuron
to represent all non-keyword segments ignores the diversity a-
mong these sounds, which may hurt the performance of the
model.

Recently, several works [10, 11, 12, 13, 14] introduced met-
ric learning into KWS. Metric learning adopts a ranking loss to
learn the relative distance between samples. It aims to enlarge
the inter-class variance and reduce the intra-class variance in
an embedded space of data. However, it will result in a signif-
icant performance drop if one directly applies metric learning
to KWS without considering the prior knowledge that the tar-

get keywords are predefined and fixed. To address the problem,
Huh et al. [13] proposed an angular prototypical network with
fixed target classes (AP-FC) to enhance the robustness against
non-keyword segments. However, they have to use an addition-
al support vector machine (SVM) to make the final decision.

Motivated by the works on AUC optimization [15, 16, 17,
18, 19] and open-set recognition problem [9, 20], in this paper,
we propose a new loss function, named the maximization of the
area under the receiver-operating-characteristic curve (AUC),
and a simple confidence-based decision method, which lead-
s to a robust, small-footprint, and high accuracy KWS model.
Specifically, the proposed method not only maximizes the clas-
sification accuracy of keywords, but also maximizes the AUC
score for optimizing the performance of non-keyword segments
detection. It gets rid of the constraint of the closed softmax
cross-entropy loss, i.e. the requirement that the summation of
the output probabilities over all classes should be 1. There-
fore, it is easy to detect non-keyword segments by a prede-
fined threshold. We compared the proposed multi-class AUC
loss with softmax cross-entropy loss [3], prototypical loss [13],
AP-FC loss [13], and triplet loss [14] on the Google Speech
Commands dataset v1 [21] and v2 [22]. Experimental results
demonstrate that our methods outperform the comparison meth-
ods in most evaluation metrics.

The remainder of the paper is organized as follows. Sec-
tion 2 describes existing binary AUC optimization. Section 3
introduces the proposed multi-class AUC loss. Section 4 and 5
present the experimental setup and results respectively. Section
6 concludes the paper.

2. Background
The original AUC optimization is only designed for binary-
class classification [15, 16]. Therefore, before describing the
proposed multi-class AUC loss function, we first take a look
at the existing binary AUC optimization. Given a binary-
class dataset X = {(xn, yn)}Nn=1 where yn ∈ {0, 1}, and
a binary-class neural network fθ(·) with θ being the param-
eters of the network, we define two new subsets: S+ =
{fθ(xn), ∀xn ∈ X | yn = 1} which is a set of neural net-
work output scores for the samples with yn = 1, and S− =
{fθ(xn), ∀xn ∈ X | yn = 0} which represents a set of neu-
ral network output scores for the samples with yn = 0. Cardi-
nalities of these two subsets are N+ and N− respectively. As
described in [23], for the finite set of samples X, the approxi-
mate estimate of the AUC metric is:

AUC =
1

N+N−

N+∑

i=1

N−∑

j=1

I
(
s+i > s−j

)
(1)

where I(·) is an indicator function that returns 1 if the statement
is true, and 0 otherwise, and s+i and s−j are the elements of S+
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and S− respectively. As [24] did, we relax (1) by replacing the
indicator function by a modified hinge loss function:

`′hinge(z) = max(0, δ − z)2 (2)

where z = s+i − s−j , and δ > 0 is a tunable hyperparameter
controlling the distance margin between s+i and s−j . Substitut-
ing (2) into (1) transforms the maximization problem of (1) into
the following minimization problem:

` =
1

N+N−

N+∑

i=1

N−∑

j=1

max
(
0, δ −

(
s+i − s−j

))2
(3)

which can be easily backpropagated throughout the network in
a standard procedure.

3. Algorithm description
3.1. The proposed multi-class AUC optimization

In this paper, we decompose the KWS task into a non-keyword
segments detection subtask and a closed-set classification sub-
task. Specifically, for a given input sample, we first determine
whether it belongs to the predefined keywords set. If so, then
we decide which keyword it is. Note that the two subtasks are
performed simultaneously in practice.

To formalize the task, suppose there is a dataset X =
{(xn, yn)}Nn=1 where xn ∈ RD is a high-dimensional acous-
tic feature of the n-th sample, and yn ∈ {0, 1, 2, . . . , C} is
the ground-truth label of xn. Note that, without loss of gen-
erality, we always assume that there are C + 1 categories with
class 0 representing non-keyword segments, and the other class-
es 1, 2, . . . , C representing C keywords respectively. We aim
to train a neural network fθ(·) : RD → RC . It maps the D-
dimensional input acoustic feature to a C-dimensional vector.
Each dimension of the vector represents the confidence score of
its corresponding keyword. In the test stage, we use fθ(·) to
conduct KWS by the following criterion:

ŷn =

{
argmaxc

(
[pn,c]

C
c=1

)
, if maxc

(
[pn,c]

C
c=1

)
≥ η

0, otherwise
(4)

where [pn,c]
C
c=1 = [pn,1, pn,2, . . . , pn,C ]

T is the output scores
of the neural network fθ(xn), and η is the decision threshold.
For simplicity, we denote pn = [pn,c]

C
c=1 in the remaining of

the paper.
Several studies have extended the binary AUC to a multi-

class problem [18, 19, 25, 26, 27, 28], see [19] for comprehen-
sive reviews of multi-class AUC. In this work, we propose a new
extension suitable for most multi-class classification tasks and
computationally straightforward. The key idea of this extension
is to modify the two subsets S+ and S− in the binary AUC
optimization to new forms that satisfy the multi-class AUC op-
timization problem. Specifically, for the general KWS problem
with more than one keyword, we define the subset of positive
examples as

S+ = {pn,yn , ∀xn ∈ X | yn ∈ {1, 2, . . . , C}}

and the subset of negative samples S− = S−1 ∪ S−2 with

S−1 =
{
max
c

([pn,c]c 6=yn) , ∀xn ∈ X | yn ∈ {1, 2, . . . , C}
}

where pn,yn is the score corresponding to the ground-truth la-
bel, maxc ([pn,c]c6=yn) is the maximum score in pn except

Algorithm 1 Multi-class AUC loss for KWS

Input:
a batch of acoustic features, x;
the corresponding labels, y;
the number of samples in the mini-batch, N ;
predefined hyperparameter, δ;

Output:
loss ` on the current mini-batch;

1: N+ ←∑N
n=1 I(yn 6= 0);

2: N− ← N ;
3: Init the positive subset S+ which containsN+ samples and

the negative subset S− = S−1 ∪ S−2 which contains N−

samples;
4: p← fθ(x);
5: for each yn ∈ y do
6: if yn 6= 0 then
7: add pn,yn to S+;

add the maximum score in p except pn,yn to S−1 ;
8: else
9: add the maximum score in p to S−2 ;

10: end if
11: end for
12: ` = 1

N+N−
∑N+

i=1

∑N−
j=1 max

[
0, δ −

(
s+i − s−j

)]
;

13: return `;

pn,yn , and

S−2 =
{
max
c

(
[pn,c]

C
c=1

)
, ∀xn ∈ X | yn = 0

}

represents the set of the output scores of the neural network
for the non-keyword segments in X. Algorithm 1 presents the
proposed multi-class AUC loss in detail.

In the test stage, the decision threshold η is calculated on a
validation set by:

η = −δ + 1∑N′
n=1 I(yn 6= 0)

N′∑

n=1

I(yn 6= 0) pn,yn (5)

where N ′ is the size of the validation set.

3.2. Connection to other loss functions

3.2.1. Connection to multi-class hinge loss

Under the same supposition in Section 3.1, the multi-class clas-
sification hinge loss is presented as:

`hinge =
1

NC

N∑

n=1

∑

{c|c=0,...,
C, c 6=yn}

max(0, δ − pn,yn + pn,c) (6)

The connection between the proposed multi-class AUC loss and
the multi-class hinge loss is as follows. The multi-class AUC
loss calculates the loss on the whole training set. It essential-
ly learns a rank of the training samples without resorting to a
classification-based loss explicitly. In contrast, the multi-class
hinge loss calculates the optimization objective on each sam-
ple respectively and then averages them on the entire dataset. It
needs to assign all non-keyword segments to a single class.

3.2.2. Connection to AP-FC loss

The AP-FC loss first arranges the keywords in a predefined or-
der. Then, for each mini-batch, it selects one sample from each
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keyword, followed by N0 non-keywords. Note that the first C
samples should be arranged in the predefined order of the key-
words. According to [13], we rewrite the AP-FC loss as:

`AP-FC = − 1

C

C∑

c=1

log
eSc,c

∑C
n=1 e

Sn,c +
∑N0
k=1 e

SC+k,c

= − 1

C

C∑

c=1

log(softmax(ST ))c,c (7)

with

Sn,c = w cos (en,Wc) + b, c ∈ {1, 2, . . . , C} (8)

where en is the extracted feature of the n-th sample by the neu-
ral network, Wc is the learnable class center of the c-th key-
word, and w, b are learnable parameters with w > 0.

The proposed AUC loss and AF-FC loss are similar in that
they do not assign widely distributed non-keyword segments
to a single “filler” class. However, the implementation of the
AP-FC loss has a strict constraint on the samples in each mini-
batch. Moreover, the AP-FC loss-based model still needs an
SVM back-end to make the final decision.

3.2.3. Connection to other multi-class AUC loss

The multi-class AUC optimization in [28] is a natural extension
of the binary AUC optimization. Gimeno et al. extended the
binary AUC optimization to the multi-class problem by the one-
versus-one and one-versus-rest frameworks. The one-versus-
one multi-class AUC loss is obtained by averaging the pairwise
binary AUC losses. The one-versus-rest multi-class AUC loss
decomposes the multi-class classification task toC binary tasks.
For the c-th task, the c-th class is viewed as a positive class, and
all other classes are merged into a negative class. However,
the above two methods cannot be directly used for our open-
set optimization problem, since that they need to assign non-
keyword segments to a “filler” class. In addition, it is obvious
that our proposed AUC loss is more computationally efficient
than the above two methods.

3.3. Model implementation

We use res15 [3] as the backbone network. It starts with a
bias-free convolution layer with weight W ∈ Rm×r×n, where
m and r are the height and width of the convolution kernel re-
spectively, and n is the number of the output channels. Then,
it takes the output of the first convolution layer as the input of
a chain of residual blocks, followed by a separate non-residual
convolution layer. Finally, the output of the network is obtained
by an average-pooling layer. Additionally, a (dw, dh) convo-
lution dilation is used to increase the receptive field of the net-
work, and a batch normalization layer is added after each con-
volution layer to help train the deep network. The details of the
backbone network can be found in [3].

Usually, the training samples in each mini-batch are ran-
domly sampled from the whole training set, which results in the
proportion of the keywords over non-keywords in each mini-
batch vary greatly. We denote this sampling method as random
sampler. However, the variable proportion will hinder the
convergence of the model training using the proposed method.
To overcome this problem, we use a fixed proportion
sampler, which keeps the proportion of keywords and non-
keywords consistent in each mini-batch.

4. Experimental setup
In our experiments, two popular keyword spotting datasets,
Google Speech Commands v1 (GSC v1) [21] and v2 (GSC v2)
[22], are used for evaluation. The dataset GSC v1 consists of
65K one-second-long recordings of 30 words from thousand-
s of different speakers. GSC V2 is an augmented version of
GSC v1, which contains 105K utterances of 35 words. In ad-
dition, both datasets contain several minute-long background
noise files. Both GSC v1 and GSC v2 include a “validation list”
file and a “testing list” file. We use audio files in the “valida-
tion list” and “testing list” as validation and testing data respec-
tively, and the other audio files as training data. Following pre-
vious works [3], we apply random time-shift and noise injection
to training data.

Tasks in previous works [3, 5, 7, 8] focus on discriminat-
ing the 11 keywords (“yes”, “no”, “up”, “down”, “left”, “right”,
“on”, “off”, “stop”, “go”, “silence”) and a non-keyword “un-
known”, where “silence” denotes silence segments and “un-
known” represents all other words. In their settings, all un-
known words used in the test set have been seen by the mod-
el in the training stage, which is not consistent with real-world
KWS applications. To meet the real-world KWS application-
s, in our experiments, we consider the task in [13], where ten
unknown words (“zero”, “one”, “two”, “three”, “four”, “five”,
“six”, “seven”, “eight”, “nine”) are used for testing only. We
use Total acc as our primary evaluation metric to reflect
the performance of the KWS models in real world applications.
Total acc is the classification accuracy on the test set that
contains unseen unknown words. Note that unseen unknown
words represent the ten words above that are used in testing on-
ly. We also use Closed acc and F1 score as supplement
evaluation metrics. Closed acc is the classification accuracy
on the test set that does not contain unseen unknown words. F1
score is extended to multi-class one by “macro” average. It is
calculated on the test set that contains unseen unknown words.
In addition, we plot the detection error tradeoff (DET) curve of
the non-keyword segments detection subtask.

Each model in our experiments is trained for 60 epochs,
using the Adam optimizer [29]. The initial learning rate is set
to 0.001 and reduced to 0.0001 after 30 epochs. For the soft-
max cross-entropy loss, we use a mini-batch size of 128 and
L2 weight decay of 10−5. We use the same hyperparameter-
s in [13] and [14] for the prototypical loss, AP-FC loss and
triplet loss. We use the validation set to select the best mod-
el among different epochs and evaluate the effect of the hyper-
parameter δ. We evaluate the proposed multi-class AUC loss
with the fixed proportion sampler and the random
sampler. For the fixed proportion sampler, the
number of keywords and non-keywords in each mini-batch is
set to 32 and 64, respectively; for the random sampler, the
mini-batch size is set to 128, which is the same as the other
comparison methods. The hyperparameter δ is set to 0.3 (see
Section 5.2 for the effect of δ). Following the same training
procedure, we evaluate all comparison methods for five inde-
pendent times and report the average performance.

5. Results
5.1. Evaluation of the proposed methods

Table 1 lists the comparison result between the proposed meth-
ods and the four baselines. From the table, we see that
both the two variants of the proposed multi-class AUC loss
achieve significant improvement in terms of Total acc and
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Table 1: Comparison results between the proposed multi-class AUC and four referenced methods. The subscript R indicates the
random sampler, and F the fixed proportion sampler.

Loss Back-end GSC v1 GSC v2
Total acc Closed acc F1 score Total acc Closed acc F1 score

Cross-entropy [3] - 89.96% 97.14% 0.8805 92.74% 97.46% 0.9068
Prototypical [13] - 87.89% 95.88% 0.8654 93.32% 96.55% 0.9149
AP-FC [13] SVM 91.59% 96.72% 0.8962 93.77% 97.11% 0.9188
Triplet [14] kNN 92.09% 97.28% 0.9019 94.01% 97.78% 0.9251
Multi-class AUCR - 92.16% 97.01% 0.9031 94.87% 97.39% 0.9315
Multi-class AUCF - 92.97% 97.22% 0.9115 94.71% 97.50% 0.9312

Table 2: Effect of the hyperparameter δ on performance.

AUC Cross Entropysampler 0.1 0.2 0.25 0.3 0.35 0.4 0.5

Closed acc R 94.52% 96.29% 96.53% 96.85% 96.72% 96.49% 95.54% 96.20%F 94.04% 96.54% 96.71% 96.81% 96.44% 96.53% 96.20%

F1 score R 0.9426 0.9578 0.9581 0.9615 0.9577 0.9535 0.9429 0.9513F 0.9321 0.9599 0.9613 0.9613 0.9553 0.9546 0.9508

(a) Results on GSC v1. (b) Results on GSC v2.

Figure 1: DET curves of the non-keyword segments detection
subtask.

F1 score, and achieve a competitive result with the best ref-
erenced method in terms of Closed acc. We take the re-
sult on GSC v1 as an example. Comparing to the softmax
cross-entropy loss, the multi-class AUC loss with the fixed
proportion sampler achieves 30.0% and 25.9% relative
improvement in Total acc and F1 score, respectively. It
also achieves a slightly higher Closed acc than the soft-
max cross-entropy loss. Even when compared with the triplet
loss with a complex kNN backend, the proposed method stil-
l achieves a relative improvement of 11.1% in Total acc
and 9.8% in F1 score while maintaining a similar Closed
acc.

To further investigate the effectiveness of the proposed
method, we conduct a comparison on GSC v2 using the same
settings as that on GSC v1. Experimental results again demon-
strate the superiority of our method. In addition, the result on
GSC v2 indicates that the training data of GSC v2 is responsible
for the substantial improvement in all evaluation metrics, which
is consistent with the experimental phenomenon in [22]. How-
ever, although both variants of the proposed multi-class AUC
loss achieve better results on GSC v2 than that on GSC v1, the
improvement with random sampler is more evident than
that with the fixed proportion sampler. This may be
caused by that the training data of GSC v2 contains more non-

keywords than the training data of GSC v1. In addition, we plot
the DET curves of the non-keyword segments detection subtask
in Figure 1. From the figure, we see that these curves are con-
sistent with the results presented in Table 1.

5.2. Effect of the hyperparameter δ on performance

Because there are no unseen unknown words in the validation
set, here we only use Closed acc and F1 score as the
evaluation metrics. For simplicity, we show the experimental
results on GSC v1 in Table 2 only. Note that the experimental
phenomenon on the other evaluation dataset is consistent with
that on GSC v1. From the table, we see that the performance
of the two variants of the multi-class AUC loss first increases
and then decreases along with the increase of δ, where the best
performance is achieved at δ = 0.3. It is also observed that
both the two variants of the multi-class AUC loss outperform
the cross entropy baseline in the two evaluation metrics when
0.2 ≤ δ ≤ 0.4.

6. Conclusions
In this study, we have proposed a robust and highly accurate
KWS method based on a novel multi-class AUC loss function
and a confidence-based decision method. Our KWS method not
only significantly improves the robustness of the model against
unseen unknown words by optimizing the proposed multi-class
AUC loss, but also eliminates the complex back-end processing
module by using the simple confidence-based decision method.
We compared the proposed method with four representative
methods on the two public available datasets. Experimental re-
sults show that the proposed method significantly outperforms
the four representative methods in most evaluations with small-
er model sizes and less computational complexity than the latter.
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