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Abstract
This paper presents a new voice activity detection (VAD) frame-
work that is based on the empirical rules and statistical mod-
els. First, the VAD framework detects the candidate endpoints
efficiently in the time domain with empirical rules which are
based on the human knowledge and the nature of the speech
continuousness, and then it confirms the candidate endpoints in
the transform domain with different confirmation schemes for
beginning-point and ending-point. Particularly in the transform
domain, a new algorithm called sliding-window double-layer
confirmation (SWDC) is proposed and employed to confirm the
endpoint accurately, and sensitive data, which is used for GMM
training, are proposed for our detection scheme. The experi-
ments show that the proposed VAD framework achieves better
performances in various environmental conditions.
Index Terms: empirical rules, GMM training, SWDC, VAD

1. Introduction
Voice activity detector (VAD) refers to the classical problem
of distinguishing speech from background noise and has appli-
cations for a variety of speech communication systems, such
as speech recognition, speech coding, noisy speech enhance-
ment. The VAD strategy is becoming more and more compli-
cated in order to be robust in real world environments. In the
past few decades, many features and approaches were attempted
including short-term energy, pitch detection, zero-crossing rate,
energy-entropy feature, cepstral feature, teager energy, higher-
order statistics, order statistics filter, multiband techniques, etc.

The research of statistical model was another field. Sohn [1]
adopted the Gaussian statistical model that the discrete Fourier
transform (DFT) coefficients of speech and noise processes
were asymptotically independent Gaussian random variables,
Gazor [2] further assumed that the discrete cosine transform
(DCT) coefficients of the speech and noise processes followed
Laplace and Gaussian distributions respectively, Chang [3] an-
alyzed the Gaussian, Laplace and Gamma distributions in the
DFT domain and integrated them with goodness-of-fit (GOF)
test, Tahmasbi [4] supposed speech process, which was trans-
formed by GARCH filter, having a variance gamma distribu-
tion, and Ramirez [5] employed revised multiple likelihood ra-
tio test (MO-LRT) instead of single frame LRT [1].

Besides the algorithms mentioned above, many rules were
attempted as well, which were based on the characteristics of
the speech, the VAD detecting schemes themselves, the human
knowledge, etc. Davis [6] designed a state machine based hang-
over scheme to lower the probability of false rejections, ETSI
frame dropping (FD) VAD [7] was somewhat an assemble of

rules that were based on the continuousness of speech, Ramirez
[5] proposed the contextual multiple hypothesis which utilized
the characteristics of the empirical minimum speech length, and
Kuroiwa [8] designed a grammatical system where many hu-
man knowledge based grammars were developed.

The human knowledge based rules could not only distin-
guish the apparent noise from speech and also cover the trivial
speech period easily missed, but they are less helpful in detect-
ing the endpoints accurately; The statistical models could detect
the voice activity exactly but sometimes they are less efficient
when compared with other methods. And in the respect of ma-
chine learning methods related to VAD, the traditional schemes
prefer to use as much training data as possible, but the effective-
ness of the training data was not considered.

In this paper, we present a new VAD framework which
combines the empirical rules and statistical models together af-
ter rational feature selection, and we propose a sensitive data
based statistical model training method, which is used to im-
prove the performance of our detecting scheme correspond-
ingly. The rest of the paper is organized as follows. Section 2
presents the proposed VAD framework, followed by a presenta-
tion of the sliding-window double-layer confirmation (SWDC)
algorithm for the endpoint detection and the speech sensitive
data used for the matching training of statistical models. Sec-
tion 3 discusses the performance of the proposed VAD under
various noise conditions and compares its performance with that
of 6 other algorithms. Finally, Section 4 summarizes the find-
ings.

2. VAD framework and algorithm
2.1. VAD framework

For the framework, on one side, we employ the double threshold
energy detection algorithm [9] in time domain with the short-
term energy used as its feature; On the other side, we use the
SWDC algorithm in transform domain where the mel-frequency
cepstral coefficients (MFCC) are involved.

In this paper, we assume that there are frame based
time series [t1, t2, ..., tN ], whose short-term energy are
[E1, E2, ..., EN ], and MFCC features are [X1, X2, ..., XN ]
correspondingly.

1) Beginning-point (BP) detection scheme:

a) Candidate BP detection in time domain: This module
employs double threshold energy detection algorithm
[9] to identify apparent noise, and transfer the candidate
BP to the next module.
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b) BP confirmation in transform domain: The GMM
based SWDC algorithm is used to confirm the candi-
date BP. The algorithm will be presented in detail later.

2) Ending-point (EP) detection scheme:

a) EP range detection in time domain: The double thresh-
old energy detection algorithm is employed to find
one candidate EP, tp, and we define its neighborhood
[tp − δ, tp + δ] as the scanning range for the next mod-
ule, where δ is a constant.

b) The optimal EP detection in transform domain: The
SWDC algorithm is used to scan the range given by the
last module, and the optimal EP could be found after
the sliding-window slides over the range.

Note that our framework is easily extended, any algorithm
that is fast but maybe not robust enough, or any complex but
accurate one can be introduced into the framework, as long as
they complement each other to some extent.

2.2. Empirical rules based energy detection

The double threshold energy detection algorithm [9] is widely
used by VAD. However, the algorithm will be in trouble when
the SNR is low, so that we combine the algorithm with empir-
ical rules, which are based on our experiences and the contin-
uousness of speech process. The revised algorithm used in the
proposed framework is presented briefly as follows:

1) In BP detection, the silence threshold and the low\high en-
ergy thresholds of the current nth frame are obtained by

Esil =
1

3

n+2∑

j=n

Ej (1)

Elow = α · Esil , Ehigh = β · Esil (2)

where α, β are the energy threshold factors, which are re-
lated to signal-to-noise ratio (SNR). Given one signal seg-
ment starting from the current detecting position with a
length of fixed frame number LA, if there are several con-
secutive frames with a count LB that the energy of each
frame is higher than Elow and the ratio LB/LA is higher
than an empirical threshold ϕlow

BP , the first frame whose en-
ergy is higher than Elow, denoted as tlow, should be re-
membered; and then we detect the given segment starting
from tlow, if there are another consecutive frames with a
count LC that the energy of them are higher than Ehigh and
the ratio LC/LA is higher than another empirical threshold

ϕhigh
BP , the candidate beginning-point is detected in the seg-

ment as tlow mentioned above.

2) In EP detection, we assume that the energy of the current
frame is lower than Elow, and then in the subsequent sig-
nal segment with a length of fixed frame number LD , there
might be several frames with a count LE that the energy
of the frames is lower than Ehigh, if the ratio LE/LD

is higher than an empirical threshold ϕEP , the candidate
ending-point is detected as the current frame.

3) If the time span of the detected speech segment is shorter
than the minimum predefined speech length Γmin, the seg-
ment has little chance to be speech and should be discarded.
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Figure 1: SWDC scores (SNR = 15dB). The vertical solid lines
are the endpoints of the utterance, the transverse dotted lines
are the decision thresholds. a) LLR scores of single frame. b)
SWDC scores adopting LLR scores on the first layer and win-
dow length = 10 . c) SWDC scores adopting LLR scores on the
first layer and window length = 30 . d) SWDC scores adopting
0-1 scores on the first layer (threshold for 0-1 scores is 1.5) and
window length = 30

The revised algorithm is efficient to help covering triv-
ial speech and rejecting noise wrongly detected, but it can’t
help much detecting the endpoints accurately, especially the EP.
Therefore the SWDC algorithm is proposed to verify the candi-
date endpoints.

2.3. SWDC algorithm

In the VAD realization, SWDC is proposed for the candidate
endpoint confirmation in transform domain. It has two layers
presented as follows:

Assuming that the candidate endpoint td is to be confirmed,
the sliding window is defined as a window that is centered on
the td, with L frames on its backward and M frames on its
forward, and has a length of L+M + 1 frames totally.

1) We extract a new feature within the sliding window for the
second layer:

The GMMs are used to model the speech and the noise pe-
riod separately with MFCCs as the features. Two hypothe-
ses for each frame in the window are presented as Hi, where
i = {0, 1}, indicating speech absence and presence respec-
tively, then the probability density functions conditioned on
H0 and H1 are given by

P (Xn|Hi) =

K∑

k=1

πi,kN (Xn|μi,k,Σi,k) (3)

where Xn is the MFCC feature of the frame tn, n =
d − L, ..., d +M , K is the mixture number of the GMM.
πi,k are the mixing coefficients of the GMM under Hi,
N (Xn|μi,k,Σi,k) is the kth component of the mixture un-
der Hi and has its own mean μi,k and covariance Σi,k.

After the conditioned probability for each frame in the slid-
ing window is calculated under two different hypotheses by
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(3), the score of each frame, denoted as In, is calculated in
the following two ways:

• Log likelihood ratio (LLR) score for each frame: The
score of the nth frame in the window is given by

In � log (Λ(Xn))

= log (P (Xn|H1))− log (P (Xn|H0))
(4)

Figure 1 (a) shows the score curves for single frame.

• Zero-one (0-1) score for single frame: The hard deci-
sion on LLR score is made to achieve the 0-1 score

log (Λ(Xn))
In=1

≷
In=0

ε (5)

where ε is the threshold for the 0-1 score, and could
be assigned adaptively in the initialization of the pro-
posed VAD by adding the average value of the LLR
scores with a constant Δ.

Once the scores have been calculated, we could get a new
feature, Id= [Id−L . . . Id . . . Id+M ]T .

2) We verify the candidate endpoint td with the new feature:

Given the new feature Id, many classifiers could be de-
signed to confirm td.

Λd = f(Id) (6)

where Λd is the SWDC score of td, f(·) denotes the func-
tion of the classifier. For example, given decision threshold
η, the linear classifier could be presented as

Λd = gT
d · Id =

d+M∑

n=d−L

gnIn
Hd∈H1

≷
Hd∈H0

η (7)

where g = [gd−L, ..., gd+M ]T is the linear weight and
could be a time-variant or time-invariant vector. Other clas-
sifiers, such as SVM, could be attempted as well. Figure 1
(b)-(d) show the SWDC score curves with linear classifier
differing in sliding window length and the detection scheme
on the first layer.

In our realization of the VAD, the 0-1 score calculation
scheme is adopted on the first layer, and the simple linear clas-
sifier is used on the second layer by using g = 1/(L +M +
1) · [1, ..., 1]T with L = M . Because the SWDC is used for
both BP and EP detection, ηbegin and ηend in stead of η in (7)
is given separately.

2.4. Sensitive data based GMM training

In our framework, statistical models are used to confirm the end-
points, so that the input of the SWDC algorithm is the neigh-
borhood data of the endpoints. It’s easy to understand that there
will exist mismatching if we use all data for training. To deal
with this issue, sensitive data based GMM training is proposed.

Sensitive data is the neighborhood data of the endpoints,
and will be more matching with our detection scheme, when
compared with other parts of the speech segment.

The expectation-maximum (EM) algorithm is employed to
train the GMM, the speech part of the sensitive data is used for
speech GMM and the noise part for noise GMM. The sensitive
data based GMM not only could be trained with lighter load
than the traditional method both in the memory and in the time
complexity, but also could help to improve the performance.

3. Experiments
3.1. Databases

The TIMIT [10] speech corpus contains utterances from 8 dif-
ferent dialect regions in the USA. It consists of a training set of
326 male and 136 female speakers , and a testing set of 112 male
and 56 female speakers, each utters 10 sentences, so that there
are 4620 utterances in the training set and 1680 utterances in
the testing set totally. All recorded speech signals are sampled
at fs = 16kHz.

These TIMIT sets, after resampling from 16kHz to 8kHz,
are distorted artificially with the NOISEX corpus [11]. Firstly,
the original TIMIT and NOISEX corpora are filtered by in-
termediate reference system (IRS) [12] to simulate the phone
handset, and then the SNR estimation algorithm based on active
speech level [13] is used to add four different noise types (bab-
ble, factory, vehicle and white noise) at five SNR levels over a
range of [5, 10, ..., 25 dB]. As [14] did, the TIMIT word tran-
scription is used for VAD evaluation, and the inactive speech re-
gions, which are smaller than 200ms are set to speech. The per-
centage of the speech process is 87.78%, which is much higher
than the average level of true application environment, so that
every utterance is artificially extended at the head and the tail
respectively with some noise, whose length equals to 1/5 that
of the utterance. The percentage of the speech is, afterwards,
reduced to 62.83%, and the renewed corpora are more suitable
for VAD evaluation.

3.2. Parameter settings

The frame length is 25ms with an overlap of 10ms, the slipping
window length is 30 frames with a window shifting step size of
5 frames, the ε used in equation (5) is set in the VAD initial-
ization for each utterance by adding the average LLR score of
the first 20 frames with a constant Δ, and Δ is set to 1.5, the
scanning range for ending-point mentioned before has a radius
δ of 75 frames, the minimum legal speech length Γmin is set
to 35 frames, the other parameters related to SNR are show in
Table 2

Table 2: Parameters for VAD implementation.
SNR (dB) 5 10 15 20 25

α 1.30 1.30

β 1.90 2.50

ηbegin 0.27 0.45 0.55 0.60 0.65

ηend 0.2 0.25 0.40 0.50 0.55

In respect of GMM training, the sensitive data is defined
as the neighborhood data of the endpoints with a radius of 50
frames in the training set.

For GMM training set, we extract 231 utterances randomly
from every noise distorted corpus to form a noise-independent
corpus and then train a pair of noise-independent models (NIM)
with 5 mixtures. Note that the new noise-independent corpus
has 4620 utterances totally, which has an equivalent utterance
number with each former noise distorted corpus. We do this
mainly because that the application environment is unknown.
Our experiments proved that the performances of the proposed
VAD changed slightly with different GMM mixture numbers
and the application environments even when the noise type was
known and the noise-dependent models (NDM) were used.
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Table 1: Performances of different VAD (%).
G.729B AFE WF AFE FD Sohn Ramirez Tahmasbi Proposed

Noise type RC FA RC FA RC FA RC FA RC FA RC FA RC FA
Babble 81.58 44.57 95.35 25.65 99.99 79.89 85.78 20.93 90.93 16.40 84.28 20.56 96.23 13.67

Factory 78.81 42.03 94.15 19.66 99.98 74.68 84.41 21.35 90.11 16.02 85.64 21.39 96.10 10.45

Vehicle 74.77 37.62 91.46 19.66 99.98 71.55 86.23 10.68 93.10 5.60 85.80 14.74 95.94 4.81

White 72.32 38.07 90.95 5.75 99.94 70.81 87.03 8.18 93.47 4.56 87.06 11.39 95.86 4.29
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Figure 2: Fscore values in different noise conditions.

3.3. Results and analysis

For comparison, besides the proposed VAD with 5 mixture
NIM, the G.729B VAD [15], the VAD from ETSI AFE ES 202
050 for DSR [7], which are the VAD for noise estimation (AFE
WF VAD) and for frame dropping (AFE FD VAD), the Sohn
VAD [1], the Ramirez VAD [5] and the Tahmasbi VAD [4] are
also tested and compared against the proposed VAD. For sim-
plicity, the mean values of the recall probability (RC) and the
false alarm probability (FA) are averaged over different SNR
levels under the same type of noise and are shown in Table 1.

As can be seen, firstly, the G.729B, the AFE WF and AFE
FD VAD, which are the open sources, have relatively compara-
ble performances with the Sohn, Ramirez, Tahmasbi VAD, this
conclusion is identical with [14][1][5], etc. Secondly, the RCs
of the proposed framework are more desirable than the others,
while the FAs keep in a lower level.

To evaluate the performances in general, the harmonic
mean Fscore of the precision rate (PR) and the RC, which
is employed here from [14], is calculated as follows

Fscore =
2 ·RC · PR

RC + PR
(8)

The higher the Fscore is, the better the VAD performs. Figure
2 shows the results in terms of Fscore in various noise con-
ditions. It shows that the curves yielded by the proposed VAD
are higher than the others, and is robust to SNR. Note that the
proposed VAD also has a relatively high-efficiency due to its
simple energy based algorithm in time domain.

4. Conclusions
This paper presents an efficient and robust VAD framework that
is based on empirical rules and statistical models, and the frame-
work can be easily extended. One new algorithm called SWDC
is proposed and employed to confirm the endpoint accurately,

and sensitive data based GMM training are proposed for our
special detection scheme. The experiments show that the pro-
posed VAD scheme achieves better performances in various en-
vironments.
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