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Abstract: Acoustic scene analysis has attracted a lot of attention recently. Existing methods are mostly
supervised, which requires well-predefined acoustic scene categories and accurate labels. In practice,
there exists a large amount of unlabeled audio data, but labeling large-scale data is not only costly
but also time-consuming. Unsupervised acoustic scene analysis on the other hand does not require
manual labeling but is known to have significantly lower performance and therefore has not been
well explored. In this paper, a new unsupervised method based on deep auto-encoder networks and
spectral clustering is proposed. It first extracts a bottleneck feature from the original acoustic feature
of audio clips by an auto-encoder network, and then employs spectral clustering to further reduce the
noise and unrelated information in the bottleneck feature. Finally, it conducts hierarchical clustering
on the low-dimensional output of the spectral clustering. To fully utilize the spatial information
of stereo audio, we further apply the binaural representation and conduct joint clustering on that.
To the best of our knowledge, this is the first time that a binaural representation is being used
in unsupervised learning. Experimental results show that the proposed method outperforms the
state-of-the-art competing methods.
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1. Introduction

Acoustic scene analysis, has received a lot of research attention recently [1,2], which aims to
recognize acoustic environments [3,4]. It finds applications in many audio devices, such as cars,
robots, context-aware mobile devices, and intelligent monitoring systems. Conventional acoustic
scene analysis was mainly supervised, and was named acoustic scene classification. A challenge
named detection and classification of acoustic scenes and events, which focuses on the acoustic scene
classification, has been launched for several years as well. The supervised methods classify audio
segments or frame-level features into predefined acoustic environments using a classifier, such as the
support vector machine [5], Gaussian mixture model [6], or deep convolutional neural network [7,8].

With the rapid development of multimedia technologies, a large number of unlabeled, real-world
audio data points are being collected everyday. Analyzing the unlabeled data effectively is an important
and challenging problem. However, the effectiveness of supervised acoustic scene classification relies
heavily on the quality of manually-labeled data. It is known that labeling large-scale unlabeled
acoustic data manually for the classifier training is time-consuming and expensive. Moreover, manual
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labels cannot be always accurate, which brings new challenges into the model training procedure [9].
In addition, the semantic labeling of acoustic scenes is also challenging, since the predefined categories
may contain a hierarchical structure, and a real-world acoustic scene may contain multiple labels
or unclearly-defined scenarios [1]. Unsupervised learning provides a solution to the aforementioned
problems, as it does not require predefined label set and manually-labeled training data. In unsupervised
learning, clustering is the method to group a set of data so that data in the same cluster are more similar
than to those in other groups. It is usually used to analyze the statistic characteristics of the data.

In recent years, few clustering methods have been developed [10,11]. However, unsupervised
acoustic scene analysis has not been well studied yet. Traditional methods partition audio clips into
a set of acoustic scenes by a clustering algorithm, such as spectral clustering [12], co-clustering [13],
or hierarchical clustering [14]. Because the acoustic features of the audio are usually high dimensional,
it is difficult to apply a clustering algorithm directly to large-scale audio data. To deal with this problem,
it is necessary to first reduce the dimensions of the features by a dimensionality reduction method. For
example, Li et al. first used sparse subspace clustering (SSC) with a random sketching method to reduce
the dimensions of some features for a low computational cost, and then adopted an online low-rank
subspace clustering (OLRSC)-based algorithm for the acoustic scene clustering [15]. They further
improved the performance using a joint clustering algorithm, named joint OLRSC (JOLRSC) [9], which
takes both the original feature and the feature in the low-rank subspace as the input of the clustering.

In this paper, we propose an unsupervised acoustic scene analysis algorithm based on auto-encoder
networks, named joint auto-encoder network with spectral clustering (JAESC), for stereo audio clips.
Specifically, JAESC first extracts a high-dimensional binaural representation containing spatial
information from the stereo audio clips. Then, the auto-encoder network is used to extract a low
dimensional bottleneck feature from a high-dimensional acoustic feature and large-scale data via a
so-called bottleneck architecture. Finally, we conduct joint clustering for the final partition. The main
contributions of our paper are summarized as follows:

• The auto-encoder network extracts bottleneck features in an unsupervised way for a compact
audio representation;

• The binaural representation is applied to utilize the spatial information of stereo audio for the
unsupervised acoustic scene analysis;

• A joint clustering algorithm with the binaural representation is proposed for multi-channel
audio data.

The proposed method has been compared with the state-of-the-art methods [9,15]. Experimental
results on the TUT Acoustic Scenes 2017 data show that the proposed method outperforms the other
methods significantly.

2. The Proposed Method

As shown in Figure 1, the proposed method includes three successive modules: a binaural
representation (BR), an ensemble of auto-encoder networks (AEs), and a backend containing
spectral clustering (SC) with agglomerative hierarchical clustering (AHC). Specifically, the binaural
representation first expands each stereo audio clip into four channels named left, right, average,
and side channels, and then extracts Mel-frequency cepstral coefficients (MFCC) from the four
channels. Subsequently, four AEs are trained, each for a single channel. Four bottleneck features
are extracted from the ensemble of AEs individually. These features are further transformed into
four low-dimensional vectors by the Laplacian eigen-decomposition of SC. Finally, an AHC-based
joint clustering with the four low-dimensional vectors is conducted. We present the method in detail
as follows.

2.1. Binaural Representation

A stereo audio recording s consists of a left-channel recording sl and a right-channel recording
sr. It is believed that the two channels of a stereo audio recording have complementary information.
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Traditional approaches transform the stereo audio into monaural audio by simply averaging the
signals of the two channels; i.e., sa = (sl + sr)/2. This preprocessing decreases the signal-to-noise
ratio, particularly in a situation in which the sound source or the microphone array is moving. To
utilize the complementary information of the two channels of stereo audio, a binaural representation
has been used in supervised acoustic scene classification [16]. Here, we apply it into unsupervised
acoustic scene clustering.
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Figure 1. Block diagram of the proposed system, where the term “BR” refers to binaural representation,
“AE” refers to an auto-encoder, “SC” refers to spectral clustering, “AHC” is short for agglomerative
hierarchical clustering, and Ns is the number of acoustic scenes for clustering.

The binaural representation contains four channels, which are the left channel sl , right channel
sr, average channel sa, and side channel ss respectively, where ss = sl − sr records the arrival time
difference between the sound waves recorded by the two microphones. We denote the binaural
representation as sb = {sl , sr, sa, ss}. Then, MFCCs are extracted from the four channels respectively,
and we denote them as Ω.

2.2. Auto-Encoder Network

An auto-encoder network is a powerful unsupervised dimensionality-reduction technique.
Different from handcraft features, an auto-encoder network can learn an internal representation
automatically by the optimization method. As illustrated in Figure 2, a deep auto-encoder network
consists of two modules, an encoder and a decoder. The encoder fE produces a low-dimensional
representation x from the high-dimensional input ω; i.e., x = fE(ω). Then the encoded vector x is fed
to the decoder fD to reconstruct the original input ω as faithfully as possible; i.e., ω̂ = fD(x), where
ω̂ is an estimate of ω [17]. The network is trained by minimizing the loss L(ω, ω̂) between ω and ω̂.
Thus, it does not need manual labels of training data during the network training. There is an overlap
between the encoder and decoder, named the bottleneck, which is the narrowest hidden layer of the
entire network. The output of the bottleneck is called the bottleneck feature, i.e., x, which used as a
compact representation of ω [18].

Our auto-encoder network consists of five fully connected layers. Table 1 shows the detailed
architecture of the network. Specifically, we expand each input frame with adjacent frames by a
contextual window and reduce the dimensionality of the input with a discrete cosine transform so as
to avoid overfitting. Batch-normalization layers are added for the rapid and stable convergence of the
network training. Mish [19] is used as the activation function which is represented as:

f (z) = z tanh(ln(1 + ez)). (1)

This state-of-the-art activation function leads to a faster convergence rate and better performance
than conventional activation functions. Note that the activation function at the bottleneck layer is still
the sigmoid function, which is designed to produce a reasonable probability distribution.
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Figure 2. Block diagram of the auto-encoder network.

Table 1. Architecture of the deep auto-encoder network. Dense refers to fully connected layers.
The numbers 576, 500, and 40 are the numbers of neurons. BN refers to batch normalization layer. Mish
and sigmoid are activation functions.

Input: Original Features-576

Encoder
Dense-500-BN-Mish
Dense-500-BN-Mish
Dense-40-Sigmoid

Decoder
Dense-500-BN-Mish
Dense-500-BN-Mish

Dense-576

Output: Reconstructed features

We set the dimensions of both the input layer and output layer of the auto-encoder NI to 576.
The neuron number of the bottleneck NB is set to 40, and the neuron numbers NH of all other hidden
layers are set to 500 respectively. Finally, we average the 40-dimensional frame-level bottleneck features
of each audio clip in dimensions for a segment-level feature x.

2.3. Spectral Clustering

Spectral clustering first learns a new representation of the input data points by conducting
Laplacian eigen-decomposition to the affinity matrix of the data, and then conducts clustering on the
new representation [20]. Differently from common clustering algorithms that operate in the original
data space, spectral clustering focuses on the correlation between the data points in a kernel-induced
feature space. Therefore, it leads to good clustering accuracy and robustness to noise. We present its
usage in our system as follows.

Suppose that xn denotes the feature of the nth audio recording, and X denotes the set of the
feature vectors for spectral clustering; i.e., X = {x1, ..., xN}, where N is the number of the audio
recordings. In our system, we first use Gaussian kernel to construct an affinity matrix A:

Akl = exp
(
−d(xk, xl)

2

2εσkσl

)
, 1 ≤ k, l ≤ N, (2)

where d(xk, xl) is the Euclidean distance between xk and xl ; σk and σl are two scaling factors for the
feature vectors xk and xl respectively; and Akl denotes an element of A at the kth row and lth column.
The scaling factor σk is defined in a nonparametric way:

σk = Σxl∈Xl 6=k d(xk, xl)/(N − 1), (3)
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which is the average distance between xk and all remaining points. ε is a tunable global scaling factor
to control radial ranges. We searched ε through a set of values and found the system has the best
performance when it is set to 20 in this work.

Subsequently, a standard procedure of spectral clustering is carried out. Specifically, we first
create a normalized Laplacian matrix L, as follows:

L = D−1/2 AD1/2, (4)

where D is a diagonal matrix in which Dii equals to the sum of all elements of the ith column of
A. Decomposing the normalized Laplacian matrix L with eigenvalue decomposition produces the
eigenvalues {λn}N

n=1 and their corresponding eigenvectors {νn}N
n=1 of L. We choose the eigenvectors

that correspond to the largest Nc eigenvalues to form a matrix V = [ν1, ν2, ..., νNc ] ∈ RN×Nc , where Nc

is the number of clusters. Then, we generate a matrix Y by renormalizing each row of V:

Yij =
Vij

(ΣjV2
ij )

1/2
, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc. (5)

Finally, the jth row of Y is a new representation of the ith audio clip produced by spectral
clustering, which is used as the input of the joint clustering.

2.4. Joint Clustering

Differently from the joint clustering proposed by Li et al. [9], which concatenates original acoustic
features and their low-rank representations as the input of AHC for unsupervised acoustic scene
clustering, here we adopt joint clustering with the binaural representation, which simply concatenates
the four low-dimensional representations produced by the four spectral clustering as the input of AHC.

3. Experiments

3.1. Datasets

We conducted experiments on the TUT Acoustic Scenes 2017 dataset [21]. The dataset
contains 4680 real-world stereo audio clips recorded from 15 different acoustic scenes, such as train,
cafe/restaurant, office, home, forest path, lakeside beach, library, grocery store and so on. Each scene
consists of 312 stereo audio recordings. Each recording is 10 seconds long and the sampling frequency
of audio is 44.1 kHz.

3.2. Comparison Methods and Parameter Setting

The proposed method was compared with the state-of-the-art JOLRSC method [9]. In the JOLRSC
method, the MFCC feature was extracted and flattened, and then fed into the online low-rank subspace
clustering (OLRSC). Specifically, both the original feature and the feature in the low-rank subspace are
used for joint clustering.

To investigate the effects of the binaural representation and the auto-encoder-based monaural
system on performance separately, we further studied the average-channel component of JASEC,
named monaural auto-encoder network with spectral clustering (MAESC). MAESC first extracts MFCC from
only average channel; then uses an auto-encoder network to extract a bottleneck feature; and finally
adopts spectral clustering and AHC for clustering. We compared MAESC with SSC [15] and OLRSC [9],
since all of them operate on the average channel of the stereo audio clips.

For a fair comparison, we adopted the same data preprocessing and feature extraction procedure
as that in [9,15]. Specifically, the audio clips were resampled to 16 kHz. The frame length was set to
256 and the hop size was set to 160. We extracted 12-dimensional MFCCs and their one order and first
and second difference coefficients, which formed 36-dimensional features.
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3.3. Evaluation Criteria

We adopted clustering accuracy (ACC) and normalized mutual information (NMI) [22] as the
evaluation criteria, which are two standard metrics for unsupervised clustering. ACC is the highest
classification accuracy among all candidate classification accuracies produced from any possible
permutation mappings, where the optimal permutation mapping is found by the Hungarian algorithm.
NMI was proposed to overcome the permutation mapping problem between the ground-truth labels
and the predicted labels. Note that NMI has a strong one-to-one association with classification accuracy.
The detailed formula is shown in [22]. The higher the ACC and NMI scores are, the better the clustering
quality is.

3.4. Main Results

Because the comparison of SSC, OLRSC, and JOLRSC methods in [9,15] used the TUT Acoustic
Scenes 2017 dataset as well, we simply copied their results from them. The comparison results are
presented in Table 2. Since only the performance on ACC were reported in [9,15], we report the ACC
comparison results accordingly. From the Table 2, we observe that the proposed MAESC has a better
performance than SSC and OLRSC, which manifests that the deep auto-encoder network is a more
powerful dimensionality reduction method than the low-rank subspace method in OLRSC.

Table 2. Performances of the other methods on the TUT Acoustic Scenes 2017 dataset.

Methods SSC [15] OLRSC [9] MAESC (Ours) JOLRSC [9] JAESC (Ours)

ACC (%) 25.31 43.64 45.60 45.84 49.47

With joint clustering, we also observe that the proposed JAESC also outperforms the JOLRSC
method, which proves that the proposed joint clustering scheme is also more efficient than that adopted
by JOLRSC. Specifically, JOLRSC conducts joint clustering on the original feature and its low-rank
subspace feature in subspace. Once the original feature of high dimensionality is used for clustering,
computational cost will rapidly increase. On the contrary, the proposed JAESC conducts joint clustering
on four low-dimensional features, which leads to a lower computational cost than JOLRSC.

As aforementioned, two channels of stereo audio have complementary information to some extent.
It can be utilized by binaural representation and joint clustering. To further study the complementary
information between the four channels of the binaural representation, we present the results of
each channel in Table 3. We can find that four channels of binaural representation yield different
performances because they contain different information. The average channel (i.e., MAESC) leads
to the best performance among the four channels. The results also show that jointly using all four
channels leads to significantly better performance than using any of the four channels separately in
terms of both ACC and NMI, which demonstrates that the four channels contain much complementary
information. Moreover, the result also proves that a binaural representation can boost the performance
of unsupervised tasks.

Table 3. Performances of the different channels of stereo audio with the proposed methods. “Left”,
“Right”, “Average”, and “Side” refer to four channels of binaural representation. “JAESC” refers to
joint clustering with four channels.

Left Right Average Side JAESC

ACC (%) 42.95 41.09 45.60 43.59 49.47
NMI (%) 45.13 46.00 48.01 45.40 53.20
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3.5. Effect of the Dimension of Bottleneck Feature

An auto-encoder network can compress the input feature into a low-dimensional vector, but also
loses the information to some degree, which varies with the dimensions of the bottleneck feature.
Therefore, we also study the dimensions of the bottleneck feature in Figure 3. From the figure, we see
that the proposed system shows a stable performance on both evaluation metrics, when the dimensions
of the bottleneck feature vary from 30 to 70. That shows promising practical usage.
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Figure 3. The effect of the dimensions NB of the bottleneck features produced by MAESC on the
average channel on performance in terms of ACC and NMI.

4. Conclusions

In this paper, a joint auto-encoder network with a spectral clustering algorithm for unsupervised
acoustic scene analysis is proposed. Specifically, the binaural representation is extracted from each
audio clip first. Then, four low-dimensional vectors are extracted from the binaural representation
using the deep auto-encoder network and spectral clustering. Subsequently, agglomerative hierarchical
clustering is used for joint clustering on the low-dimensional vectors to boost the performance.
From this study, we show that deep auto-encoder network is a good dimensionality reduction approach
for unsupervised acoustic scene analysis, and it is more powerful and effective than the low-rank
subspace methods. In addition, the complementary information between different channels of stereo
audio is also very useful for unsupervised tasks. In future, we will further improve our system via two
aspects: network architecture and clustering method. Since the audio are sequential data, recurrent
neural networks will be introduced due to their capability of processing sequential data. Then, other
clustering methods will be studied, such as Gaussian mixture variational autoencoders [10,11].
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