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Abstract—Acquisition device clustering based on speech
recordings is a critical problem in the field of speech forensic,
especially for mobile phone clustering (MPC). Previous studies on
mobile phone recognition or clustering can be categorized mainly
to two approaches. One approach utilizes handcraft features such
as Mel-frequency cepstral coefficients (MFCCs), while the other
uses learned features from neural networks. In this paper, we
propose a hybrid system for MPC. Specifically, we first extract
supervectors from MFCCs by a Gaussian mixture model and ob-
tain the deep bottleneck features by a deep auto-encoder network.
Then, we feed the two features to spectral clustering respectively,
which outputs two low-dimensional vectors by the Laplacian
eigen-decomposition of the spectral clustering. Finally, we fuse
the two vectors and conduct clustering on the fused feature by
k-means. The performance of the proposed method is evaluated
on a public corpus—MOBIPHONE. The results show that the
proposed method is effective, and moreover, the supervectors and
deep bottleneck features provide complementary information of
the intrinsic characteristics of the speech recordings recorded by
the mobile phones.
Index Terms—Acquisition device recognition, auto-encoder

network, spectral clustering, Gaussian mixture model.

I. INTRODUCTION

The information acquired from portable acquisition devices,

e.g. mobile phone, has a huge potential in many applications,

such as forensic evidence [1], [2], information security, robots

and etc. Because the acquisition devices do not have the same

frequency characteristics due to their electronic components

and structures [3], each acquisition device provides its unique

intrinsic characteristics in the acquired speech recordings,

which can be used to identify itself [4]. This paper takes

mobile phones as the representative acquisition devices, and

their identification problem is addressed by mobile phone

clustering (MPC) [5], [6].

Most previous studies on mobile phone recognition are

supervised. Specifically, various audio features such as Mel-

frequency cepstral coefficients (MFCCs) are first extracted [3],

[7]–[10], and then, a classifier such as support vector machine

[3], [4], [7] is trained for each acquisition device to identify

other speech recordings. They all assume that the categories

and numbers of mobile phone were known as a priori, which

faces the following problems. First, the categories and numbers

of mobile phones are not always available in practice. In

addition, the categories of mobile phones increase rapidly,

which makes it difficult to identify new mobile phones that is

not in the categories of the training data. Moreover, in some

real-world applications such as the information forensic, only

the speech recordings are required to be identified and there is

no need to recognize the specific identities of the acquisition

devices [5]. In such cases, the mobile phone recognition

problem becomes a clustering problem that does not need

the prior information of the mobile phones and pre-trained

classifiers.

Due to the above problems, Li et. al [5] conducted the first
study on the MPC problem. They first extracted frame-level

bottleneck features from a deep neural network (DNN), and

then trained a Gaussian mixture model (GMM) on the bottle-

neck features for segment-level deep Gaussian supervectors.
Finally, spectral clustering was applied to the supervectors

for MPC. The work was not exactly an unsupervised method

since label information was utilized when training the DNN.

To remedy this problem, in [6], they further applied auto-

encoder network to replace DNN, which caused the system

to be completely unsupervised.

Most previous work on the acquisition devices clustering

problem focused on extracting a good acoustic feature or de-

veloping a powerful clustering algorithm. Inspired by the work

on acoustic scene analysis [11] where the handcraft features

and deep representations learned by neural networks possessed

complementary information, in this paper, we propose a hybrid

system for MPC. We first extracted acoustic features from each

recordings, and then trained a deep auto-encoder networks

(DAE) and a Gaussian mixture model-universal background

model (GMM-UBM) to extract deep representations and

Gaussian supervectors respectively. Those two features are

complementary in representing the intrinsic characteristics left

behind by mobile phones in speech recordings. Finally, we

combined the two features by spectral clustering, and further

clustered the output features of the spectral clustering by k-
means for MPC. The main contributions of this paper include:

• the exploration of an effective unsupervised method to

fuse different types of feature;

• the evaluation of its effectiveness on MPC;

• the performance evaluation of the proposed method on a

public corpus of speech recordings acquired by mobile

phones.

The rest of this paper is organized as follows. Section 2
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describes our method. Section 3 presents the experiments in

detail. Finally, we conclude our work in Section 4.

II. METHODS

The block diagram of the proposed method for MPC is

shown in Fig. 1, where Np is the number of mobile phones for

clustering. The system includes three modules: auto-encoder

network, GMM-UBM and spectral clustering. In the figure,

the inputs are speech recordings and the first step is to

extract the MFCC features from each speech recording, and

then feeds the MFCC features into the auto-encoder and

GMM-UBM respectively to extract bottleneck features and

Gaussian supervectors, which are further transformed into low-

dimensional vectors by the Laplacian eigen-decomposition of

the spectral clustering. Finally, we concatenate the two low-

dimensional vectors and conduct clustering on the combined

feature by k-means algorithm. We present the system in detail
as follows.

Np

Fig. 1. Block diagram of the proposed method. Np is the number of mobile
phones for clustering

A. Auto-encoder network

As illustrated in Fig. 2, the deep auto-encoder network

consists of two building blocks—an encoder and a decoder.

The encoder fE compresses the high-dimensional input ω into
a low-dimensional representation x, i.e. x = fE(ω). Then, the
decoder fD tries to reconstruct the original data ω from the

encoded vector x as faithfully as possible, i.e. ω̂ = fD(x)
[12], where ω̂ is an estimate of ω. The network is trained to
minimize the loss L(ω, ω̂) between ω and ω̂, and therefore,
does not need the label information during the training. The

output x of the bottleneck layer, which is the narrowest hidden
layer, of the deep auto-encoder network is used as a compact

representation of the original high-dimensional inputs [13].
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Fig. 2. Block diagram of the bottleneck feature extraction.

Our deep auto-encoder network adopts a similar structure

and parameter setting from [6]. The difference is that we add

a batch-normalization layer into our network, and do not pre-

train the network with restricted Boltzmann machines, which

leads to a simpler training process than the method in [6] and

yields similar performance. To model the dynamic properties

of the mobile phones and avoid overfitting, we expand each

input frame with adjacent frames by a contextual window and

reduce the dimensionality of the input with discrete cosine

transform. We set the dimensions of the input and output layers

of the auto-encoder, denoted both as NI , to 624; we set the

neuron number of the bottleneck layer Nb, i.e. the dimension

of bottleneck feature, to 39 [6], and the neuron numbers of all

other hidden layers to 500.

Finally, we average the frame-level bottleneck features of

each speech recording in dimension for a segment-level feature

of the recording. We denote the segment-level features as the

bottleneck features of the speech recordings.

B. GMM-UBM

Motivated by [5], [14], we use the supervectors of the

speech recordings extracted from GMM-UBM to represent the

unique characteristics of the mobile phones [5]. Specifically,

we first train a UBM from the MFCCs of all speech record-

ings. Suppose θUBM = {wm, μm,Σm}Mm=1 represents the
parameters of a UBM with M Gaussian mixture components,

where wm, μm, and Σm represent the weight coefficient,

mean vector and covariance matrix of the mth Gaussian

mixture component, respectively. We first train the parameters

by the expectation-maximization algorithm from all speech

data. Then, we adapt a GMM θGMM = {w′
m, μ′

m,Σ′
m}Mm=1

for each speech recording from the UBM by the maximum

a posteriori (MAP) algorithm. Finally, we extract M mean

vectors from each adapted GMM and concatenate the mean

vectors successively as the supervector x of the corresponding
speech recording. The length of the supervector is M ×Nmel,

where Nmel is the dimensionality of the MFCC feature.

C. Spectral clustering

Spectral clustering conducts Laplacian eigen-decomposition

to the affinity matrix of the input features to produce a new

representation of the input features, and then does clustering

on the new representation [15]. It has been proven to be

effective in MPC [5], [6]. We present the usage of the spectral

clustering in our system in detail as follows.

Suppose that xn denotes a feature vector of the nth speech
recording, which can be either a bottleneck feature or a

Gaussian supervector, and X denotes the set of the feature

vectors for clustering, i.e. X = {x1, ..., xN}, where N is

the total number of the feature vectors. We first construct an

affinity matrix A. It can be either a Gaussian kernel or a cosine
kernel [16]. The cosine kernel is defined as

Akl =
〈xk, xl〉
|xk||xl| , 1 ≤ k, l ≤ L. (1)
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We also implement a Gaussian kernel [5] as

Akl = exp

(
−d(xk, xl)

2

2σkσl

)
, 1 ≤ k, l ≤ L (2)

where d(xk, xl) is the Euclidean distance between xk and xl,

and σk (or σl) is a scaling factor for the feature vector xk (or

xl). The scaling factor σk is defined in a nonparametric way

by the nearest neighbor optimization:

σk = Σxl∈close(xk)d(xk, xl)/Q, (3)

where close(xk) denotes the set containing the Q nearest

neighbors of xk. We set Q = 5 in this study. Then, we create
a normalized Laplacian matrix L by

L = D−1/2AD1/2, (4)

where D is a diagonal matrix whose element Dii is the sum of

all elements of the ith row of A. Decomposing L by eigenvalue
decomposition produces the eigenvalues {λn}Nn=1 and their
corresponding eigenvectors {sn}Nn=1 of L. We choose the
eigenvectors that corresponds to the largest Nc eigenvalues

to form a matrix S = [s1, s2, ..., sNc
] ∈ RN×Nc , where Nc

is the number of clusters. Then, we generate a matrix Y by

renormalizing each row of S,

Yij =
Sij

(ΣjS2ij)
1/2

, 1 ≤ i ≤ N, 1 ≤ j ≤ Nc. (5)

The jth row of Y is a new representation of the ith speech
recording produced by spectral clustering, and the speech

recordings is partitioned with the new representation into Nc

clusters by k-means algorithm.

D. Fusion strategies

Motivated from a discussion on feature fusion strategies

for supervised acoustic scene analysis [11], we first tried to

concatenate the bottleneck features and Gaussian supervectors

as the input of spectral clustering. However, we found that

the system with the concatenated acoustic feature did not

lead to better performance than the systems with the two

features separately, which was quite different from its super-

vised counterpart. The reason led to this poor performance

is that supervised learning focuses on finding classification

hyperplanes among different categories, and hence would

discard characteristic information of the samples. In contrast,

unsupervised learning focuses on the measurement of the

distances between the samples in a feature space. Therefore,

some feature fusion approaches that are suitable to supervised

learning may be unsuitable to unsupervised learning.

In this paper, an effective feature fusion strategy is proposed.

We first feed the bottleneck features and Gaussian supervectors

into the Laplacian eigen-decomposition module of two spectral

clusterings respectively, which outputs two low-dimensional

vectors. Then, we concatenate the two low-dimensional vec-

tors as the input of k-means for MPC.

III. EXPERIMENTS

A. Experimental settings

We evaluated the proposed method on a public corpus of

speech recordings, MOBIPHONE, which is a popular corpus

used in the previous studies [8]. It was acquired by 21
different mobile phones from 7 brands viz. HTC, LG, Nokia,
Sony Ericsson, Apple, Samsung, and Vodafone. The sampling

frequency of the audio data is 16 kHz. The dataset includes 24
speakers (12 males and 12 females) randomly chosen from the
TIMIT database. Each speaker consists of 10 utterances. Each

utterance is about 3 seconds long. The contents of the first two

utterances are the same for all speakers, and the contents of the

remaining utterances are different. To summarize, the dataset

contains 5040 speech recordings with 240 speech recordings

per mobile phone.

We first removed the silence segments of the speech record-

ings by an energy-based voice activity detection algorithm.

Then, we extracted 13-dimensional MFCCs and their delta

and double-delta coefficients from the non-silence segments,

which amounted to 39-dimensional acoustic features, where

a 30-millisecond Hamming window with a half overlap was

applied to the feature extraction. The number of the mixture

components of the GMM M was set to 256.

We measured the clustering quality between the produced

clusters and the ground truth categories in terms of normalized

mutual information (NMI) [17] and clustering accuracy (ACC).
Let nij be the number of the speech recordings in cluster i
acquired by mobile phone j, n·j be the total number of speech
recordings acquired by mobile phone j, and ni· be the total
number of speech recordings in cluster i, then we have:

N =

Nc∑
i=1

Np∑
j=1

nij , ni· =
Np∑
j=1

nij , n·j =
Nc∑
i=1

nij . (6)

NMI was proposed to overcome the label indexing problem
between the ground-truth labels and the predicted labels. It is

one of the standard evaluation metrics of unsupervised learn-

ing. Note that NMI has a strong one-to-one correspondence
with classification accuracy. The NMI score is defined as

NMI =

∑Nc

i=1

∑Ns

j=1 nij log(
N×nij

ni·×n·j
)√

(
∑

i ni· log ni·
N )(

∑
j n·j log

n·j
N )

. (7)

The ACC is defined as the maximal classification accuracy
among all possible permutation mappings,

ACC =

[
N∑
i=1

δ(yi,map(ci))

]
/N, (8)

where yi and ci denote the true label and predicted cluster
label of the ith speech recording respectively. δ(y, c) is a
function that is equal to 1 if y = c, and 0 otherwise. map(·)
is a function that finds the optimal matching between the true

labels and each permutation of the predicted cluster labels by

the Hungarian algorithm. The higher the NMI and ACC scores
are, the better the clustering quality is.
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B. Main results

We first evaluated several common features adopted in

the previous studies respectively, i.e. MFCCs [3], Gaussian

Supervector (GS) [7], I-Vector (IV) [18], deep bottleneck

features (DBF) from deep auto-encoder networks [6]. We

also implemented deep representation (DR) [6], which is

the state-of-the-art method for MPC. In [6], the authors

first extracted a bottleneck feature for each recording by a

deep auto-encoder. Then, they trained a GMM-UBM on the

bottleneck features, and extracted a new high-dimensional

feature, named deep representation, from the GMM-UBM for

each recording. Finally, they conducted spectral clustering with

the deep representation. In our system, we extracted features

from the auto-encoder network and GMM-UBM respectively

in parallel, and focus on developing an advanced fusion

strategy of the features in an unsupervised way. For a fair

comparison, we set the similar modules of our system and the

system in [6], including the GMM-UBM, deep auto-encoder,

spectral clustering, etc., with the same parameter settings,

even though the parameter settings may not be optimal to our

system. Here, we just present the result of fusing the Gaussian

supervetors and deep bottleneck features so as to show the

complementarity of the features.

TABLE I
PERFORMANCE OF THE COMPARISON METHODS. THE TERM “GS” IS

SHORT FOR GAUSSIAN SUPERVECTOR. THE TERM “DBF” IS SHORT FOR
DEEP BOTTLENECK FEATURES FROM DEEP AUTO-ENCODER NETWORKS.

MFCC I-vector GS DBF DR Fusion
NMI 82.08 90.80 90.25 91.5 93.96 94.70
ACC 72.81 88.69 88.69 87.8 93.73 94.46

As shown in Table I, the proposed method obtains the

best performance in terms of both NMI and ACC. The result
manifests that the handcraft feature and the deep representation

from the deep auto-encoder provides complementary informa-

tion, and our fusion method can boost the performance by

utilizing the complementary information together.

Although the performance of the competing DR systems is

quite close to our method, we find in our experiment that its

performance is not robust since the deep auto-encoder and

GMM-UBM is cascaded. Specifically, it achieves the best

performance when the input of the GMM-UBM, which is

the output of the deep auto-encoder, follows the Gaussian

assumption of the GMM-UBM. However, the true hypothesis

of the Gaussian assumption made on the output of the deep

auto-encoder is not guaranteed. We find empirically that the

output distribution of the deep auto-encoder is non-Gaussian in

most types of hidden neurons, which limits the upper-bound

performance and real-world applications of the comparison

system. On the contrary, the auto-encoder and GMM-UBM

of our system run in parallel without interaction. Thus, our

method is simpler and more robust than the DR system.

C. The effects of different fusion strategies

To show the effectiveness of the proposed fusion strategy,

we compare the following three fusion strategies, which are

the strategies of (i) concatenating the Gaussian supervector

and bottleneck feature for the input of the spectral clustering,

(ii) averaging the two affinity matrices produced from the

Gaussian supervector and bottleneck feature respectively, and

(iii) the proposed one. We denote the three strategies as

Fusion-1, Fusion-2 and Fusion-3.

Fig. 3 shows the performance of the competing fusion

methods. From the figure, we find that Fusion-1 does not

show performance improvement over the systems that adopt

the individual feature only. This is mainly caused by the fact

that the Gaussian supervector and bottleneck feature are not in

the same density space, hence concatenating them forcefully

breaks the continuity of their density spaces. We also see that

the other two fusion methods are both effective, while the

proposed Fusion-3 is slightly better than Fusion-2.

Fig. 3. NMI and ACC comparison (in percent) of different fusion systems.

IV. CONCLUSIONS

In this paper, we propose a hybrid MPC system for clus-

tering the acquired speech recordings of mobile phones. For

each speech recording, the system first extracts a Gaussian

supervector from the GMM-UBM and a deep bottleneck

feature from the deep auto-encoder networks, and then projects

the two features into two low-dimensional representations by

the Laplacian eigen-decomposition of the spectral clustering

respectively. Finally, it concatenates the two low-dimensional

representations as the final representation of the speech record-

ing for clustering. The experimental results show the pro-

posed hybrid method slightly outperforms the state-of-the-

art baseline, and performs more stable than the latter. From

this study, we also show that the handcraft features such

as MFCCs and the deep representation from neural network

are complementary in unsupervised learning. In addition, we

explore different unsupervised feature fusion schemes on the

MPC task, and find that conducting the feature fusion after the

Laplacian eigen-decomposition achieves the best performance.
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