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Unsupervised domain adaptation (UDA) transfers knowledge from a label-rich source domain to a differ- 

ent but related fully-unlabeled target domain. To address the problem of domain shift, more and more 

UDA methods adopt pseudo labels of the target samples to improve the generalization ability on the tar- 

get domain. However, inaccurate pseudo labels of the target samples may yield suboptimal performance 

with error accumulation during the optimization process. Moreover, once the pseudo labels are gener- 

ated, how to remedy the generated pseudo labels is far from explored. In this paper, we propose a novel 

approach to improve the accuracy of the pseudo labels in the target domain. It first generates coarse 

pseudo labels by a conventional UDA method. Then, it iteratively exploits the intra-class similarity of 

the target samples for improving the generated coarse pseudo labels, and aligns the source and target 

domains with the improved pseudo labels. The accuracy improvement of the pseudo labels is made by 

first deleting dissimilar samples, and then using spanning trees to eliminate the samples with the wrong 

pseudo labels in the intra-class samples. We have applied the proposed approach to several conventional 

UDA methods as an additional term. Experimental results demonstrate that the proposed method can 

boost the accuracy of the pseudo labels and further lead to more discriminative and domain invariant 

features than the conventional baselines. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is known that machine learning benefits from manually- 

abeled data. However, manual labeling is often time-consuming 

nd laboring intensive. Moreover, it is even unlikely to obtain suf- 

cient manual labels in some scenarios. How to address the insuf- 

cient labeling problem is a key task. One of the approaches to 

ddress the problem is domain adaptation, which aims to transfer 

nowledge from a label-rich source domain to a different but re- 

ated target domain [1,2] . Based on whether the target domain is 

uman labeled, domain adaptation can be divided into two cate- 

ories [3] , which are semi-supervised domain adaptation [4,5] and 

nsupervised domain adaptation [6,7] . In this paper, we focus on 

nsupervised domain adaptation (UDA) where the target domain 

oes not have manual labels. It is not only challenging but also 

nds its applications in many real-world scenarios. 
∗ Corresponding author. 

E-mail addresses: wangjie2017@mail.nwpu.edu.cn (J. Wang), 
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In the past decades, UDA has been widely studied [8–10] . The 

ost common approach is to find a common subspace in which 

he data distributions of the source domain and target domain are 

imilar. The first issue on learning the subspace is to define a suit- 

ble distribution divergence measurement between the two do- 

ains. A common measurement is the maximum mean discrep- 

ncy (MMD) [11–13] . 

By minimizing the distribution divergence as a regularizer, 

 common subspace could be found. For example, [14] learns 

 domain-invariant projection and meanwhile minimizes the 

arginal distribution divergences between the source domain and 

he target domain. 

Recently, a new branch of the UDA research is to use the pseudo 

abels of the data in the target domain to align the distributions 

f the source and target domains [15–17] , where the pseudo la- 

els are usually obtained by a classifier trained on the source do- 

ain. For example, following [14] , the work [18] further reduces 

he marginal distribution divergence and conditional distribution 

ivergence between the source domain and the target domain it- 

ratively with the pseudo labels of the target domain [16] . learns 

oth domain invariant and class discriminative features with the 

https://doi.org/10.1016/j.patcog.2023.109379
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109379&domain=pdf
mailto:wangjie2017@mail.nwpu.edu.cn
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Fig. 1. Motivation of the proposed TSRP. Most related works focus on learning do- 

main invariance features while ignoring the intra-class similarity between target 

samples. On the contrary, TSRP aims to explore the intra-class similarity between 

the samples in the target domain to remedy pseudo labels, which in turn leads to 

better domain invariance features. 
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seudo labels. Li et al. [8] preserves the neighborhood relationship 

f samples and improves robustness against outliers by supervised 

ocality preserving projection [19] with the pseudo labels. Wang 

t al. [11] proposes a discriminative MMD to mitigate the degrada- 

ion of feature discriminability incurred by MMD. 

Although the pseudo label generation approaches have made 

ignificant contribution to UDA, there are still two issues far from 

xplored. First, the pseudo labels are mainly obtained by a good 

lignment between the source domain and the target domain, 

hile the effect of the accuracy of the pseudo labels on perfor- 

ance is not studied deeply. When the pseudo labels are gener- 

ted by a classifier trained on the source domain, which is the 

ommon way, there may be some incorrect pseudo labels in each 

ptimization iteration as shown in Fig. 1 . Due to the cumulation of 

he errors, the incorrect pseudo labels can greatly affect the final 

erformance. Second, most of the methods mainly focus on min- 

ng the source domain to improve the accuracy of the pseudo la- 

els in the target domain, however, to our knowledge, the intrinsic 

elationship between the samples in the target domain seems un- 

xplored yet. 

To address the aforementioned two issues, in this paper, we 

ropose to mine the target domain intra-class similarity to remedy 

he pseudo labels (TSRP) in the target domain for improving the ac- 

uracy of the pseudo labels. A core idea of TSRP is to use target 

imilarity to pick pseudo labels with high confidence (UTSP) by span- 

ing trees [20] . Then, the selected highly-confident pseudo-labeled 

amples as well as the source data are used to train a strong 

lassifier. The strong classifier is used to correct part of the the 

rongly-labeled target samples that have low-confident pseudo la- 

els. We call it the remedial process of the pseudo labels . Generally, 

ur method can be integrated into any methods that generate the 

seudo labels of the target domain by using the classifiers trained 

n the source domain. 

Our contribution is summarized as follows: 

• We propose TSRP to improve the accuracy of the pseudo labels 

in the target domain. TSRP iteratively exploits the intra-class 

similarity of the samples in the target domain for improving 

the generated coarse pseudo labels, and aligns the source and 

target domains with the improved pseudo labels. 
• We propose UTSP to select highly-confident pseudo-labeled 

samples. UTSP first deletes dissimilar samples, and then uses 

spanning trees to eliminate the samples with the wrong pseudo 

labels in the intra-class samples. 
• We extended four UDA algorithms [16,18,21,22] with TSRP, and 

evaluated the effectiveness of TSRP by comparing the UDA al- 

gorithms with their TSRP extensions. Experimental results on 

several benchmark datasets show that TSRP can be used as 

a term of the UDA methods for improving their generaliza- 

tion ability. Moreover, we have compared the proposed “DICD 
2 
[16] +TSRP” algorithm with a number of representative UDA al- 

gorithms [14,23–29] . Experimental results show that the inte- 

grated method behaves better than the comparison methods. 

The remainder of this paper is organized as follows. In 

ection 2 , we review some related work. In Section 3 , we propose

SRP to improve the accuracy of pseudo labels. The experimental 

esults are reported in Section 4 . Finally, we conclude this paper in 

ection 5 . 

. Related work 

Early works on UDA aim to align the marginal distributions of 

he source and target domains [24,30] . Due to the lack of labeled 

arget samples, even though the marginal distributions are per- 

ectly aligned, there is no guarantee that a good classification re- 

ult will be produced since that the conditional distribution of the 

arget domain may be misaligned with that of the source domain. 

o overcome this issue, many UDA methods resort to pseudo la- 

els of the target domain [31–33] . If the pseudo labels of the target

amples can be properly obtained, then supervised learning can be 

pplied to train a good classifier. There are two strategies to gen- 

rate the pseudo labels—hard labeling [16,18,34] and soft labeling 

35] . Because the accuracy of the pseudo labels plays an important 

ole to the quality of the classifier, we summarize some pseudo la- 

el generation and selection methods that focus on improving the 

ccuracy of the pseudo labels as follows. 

Pan et al. [36] proposes transferrable prototypical networks to 

earn an embedding space of two domains, and perform classi- 

cation at both the class level and the sample level. Zheng and 

ang [37] takes the prediction variance of two classifiers as an es- 

imation of the uncertainty of pseudo labels, which induces the 

odel to give more reliability to the samples with small prediction 

ariances. Zou et al. [38] proposes two types of confidence reg- 

larization to eliminate overconfident pseudo labels. Zhang et al. 

39] proposes to improve a label-propagation-based unsupervised 

omain adaptation algorithm via generating unlabeled virtual in- 

tances with high-confidence label predictions, named augmented 

nchors. Wang and Breckon [40] explores the structural informa- 

ion of the target domain by structured prediction, and combines 

he nearest class prototype and structured prediction to promote 

he accuracy of pseudo labels. Tian et al. [41] regards the samples 

f the same cluster in the target domain as a whole rather than in- 

ividuals. It assigns pseudo labels to the target cluster by class cen- 

roid matching. Chen et al. [42] proposed an easy-to-hard strategy 

hich divides target samples into three categories, namely easy 

amples, hard samples and incorrect-easy samples. It tends to gen- 

rate pseudo labels for easy samples and tries to avoid hard sam- 

les. The easy-to-hard strategy may be biased to easy classes. To 

ddress this issue, a confidence-aware pseudo label selection strat- 

gy was proposed in [43] . It selects samples from each class inde- 

endently by the probability of pseudo labels. In [42,43] , they use 

he distances from the target samples to the centers of the source 

amples as the selection criterion to select highly confident pseudo 

abels. In [40,41] , they iteratively generate-confident pseudo labels. 

owever, they do not consider how to correct the falsely generated 

seudo labels. 

Different from the above methods, in this paper, we propose to 

orrect the falsely generated pseudo labels by exploring the intra- 

lass similarity in the target domain. 

. Method 

In the following subsections, we give the formulation of the 

roblem and our motivation, and describe the proposed method 

n detail. 
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Fig. 2. Architecture of the proposed framework with TSRP. It conducts the outer iterations until convergence. Each loop of the outer iterations conducts the following three 

steps successively: First, a pseudo-label based unsupervised domain adaptation (UDA) method is used to learn a domain-invariant projection matrix P from both domains, 

i.e. { X S , y S } and { X T , ̂ y T } , which can obtain domain invariant features Z S = PX S and Z T = PX T . Then, a weak classifier, which is trained on the source domain { Z S , y S } , is used 

to update the pseudo labels of the target samples ˆ y T . Finally, the inner iterations are conducted until convergence, which produces the improved pseudo labels of the target 

domain ˆ y T for the next loop of the outer iterations. Each loop of the inner iterations conducts the following three steps successively: First, UTSP is proposed to partition 

the target samples into a set of samples with highly-confident pseudo labels, denoted as { Z T 
h 
, ̂ y T 

h 
} , and the rest samples with low-confident pseudo labels { Z T 

l 
, ̂ y T 

l 
} . Then, a 

strong classifier is trained with the source samples { Z S , y S } and the target samples with the highly-confident pseudo labels { Z T 
h 
, ̂ y T 

h 
} . Finally, the strong classifier is used to 

remedy/update the low-confident pseudo labels, denoted as { Z T 
l 
, ̂ y T 

l, remedy 
} . The algorithm in the red dotted box is the proposed TSRP.. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Algorithm 1: Proposed framework with TSRP module. 

Input : Labeled source samples, 
{

X 

S , y S 
}

= 

{(
x S 

i 
, y S 

i 

)}n s 

i =1 
; 

Target samples, 
{

X 

T 
}

= { x T 
j 
} n t 

j=1 
; Trust parameter: ρ; 

Output : Remedial pseudo labels of the target domain ˆ y T ; 

1 while not converged do 

2 Get the projection matrix P by a UDA method with {
X 

S , y S 
}

and 

{
X 

T , ̂  y T 
}

; 

3 Z 

S ← PX 

S ; 

4 Z 

T ← PX 

T ; 

5 Train the classifier f (·) with 

{
Z 

S , y S 
}

; 

6 ˆ y T ← f (Z 

T ) ; 

7 // TSRP start: 

8 while not converged do 

9 ({ Z 

T 
h 
, ̂  y T 

h 
} , { Z 

T 
l 
, ̂  y T 

l 
} ) ← UTSP ({ Z 

T , ̂  y T } ) ; 
10 Train a strong classifier f strong with (Z 

S , y S ) and 

(Z 

T 
h 
, ̂  y T 

h 
) ; 

11 Get the remedial pseudo labels y T 
l, remedy 

by (1); 

12 { Z 

T , ̂  y T } ← { Z 

T 
l 
, ̂  y T 

l, remedy 
} ; 

13 ˆ y T ← [ ̂ y T 
h 
, ̂  y T 

l, remedy 
] ; 

14 // TSRP end; 
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.1. Framework 

A UDA problem is formulated as follows. Given a manually la- 

eled source domain D 

S = 

{(
x S 

i 
, y S 

i 

)}n s 

i =1 
= 

{
X 

S , y S 
}

, and an unla- 

eled target domain D 

T = { x T 
j 
} n t 

j=1 
= 

{
X 

T 
}

, where x S and x T rep-

esent m -dimensional feature vectors of the samples in the source 

omain and target domain respectively, y S is the manual label in 

he source domain, n s and n t are the number of the source and 

arget samples respectively. The goal of UDA is to predict the la- 

els of D 

T . In this paper, we focus on the problem that the source

nd target domains share the same object classes. Suppose there 

re C classes in both domains. 

As summarized in Section 2 , many UDA approaches focus on 

btaining a good alignment of the source and target domains to 

enerate pseudo labels, leaving the negative effect of the falsely 

enerated pseudo labels unsolved. Because the inaccurate pseudo 

abels could result in catastrophic error accumulation during the 

earning process [40] , intuitively, if we could increase the accuracy 

f the pseudo labels, then we may get a better alignment between 

he source domain and the target domain. 

In this paper, we propose to steadily improve the accuracy of 

he pseudo labels in the target domain by iteratively exploiting 

he intra-class similarity between the target samples. An shown in 

ig. 2 . for each iteration, the proposed method runs the following 

wo steps in sequence. First, it employs a traditional UDA method 

o generate the crude pseudo labels of the target samples for the 

urrent iteration given a set of improved pseudo labels from the 

revious iteration, see Section 3.2 for the details. Then, it uses TSRP 

o improve the accuracy of the pseudo labels, see Section 3.3 for 

he details where a key component named UTSP is presented in 

ection 3.4 . The overall framework with TSRP module is summa- 

ized in Algorithm 1 . 

.2. UDA: Generating crude pseudo labels 

An existing UDA algorithm is employed to learn a projection 

atrix P that maps the samples from both domains into a shared 

atent subspace. A requirement is that P should be learned in a 

upervised manner where the remedial pseudo labels of the tar- 

et samples obtained from the previous iteration of the framework. 

ˆ  T = [ ̂  y T 
1 
, . . . , ̂  y T n t ] are treated as the labels. Various advanced UDA 

lgorithms meet this requirement, such as those [16,18,21,22] em- 

loyed in the experiments. Then, domain invariant features of the 

ource and target domains are obtained by z S 
i 

= Px S 
i 

and z T 
j 

= 
3 
x T 
j 
. Finally, a classifier f (·) is trained with 

{
Z 

S , y S 
}

where Z 

S = 

 z S 
1 
, . . . , z S n s 

] . It is then used to classify Z 

T = [ z T 1 , . . . , z 
T 
n t 

] into C y 
lasses ( C y ≤ C). The predicted labels of the target samples are de- 

oted as the crude pseudo labels ˆ y T = [ ̂  y T 
1 
, . . . , ̂  y T n t ] . 

.3. TSRP: Using target domain intra-class similarity to remedy 

seudo labels 

There may always be some incorrect pseudo labels in ˆ y T in each 

teration, especially, in the early training stage, therefore, when 

earning P with the incorrect pseudo labels, the final performance 

ay not be good due to the cumulative errors in the iterative op- 

imization process. If we could correct part of the incorrect pseudo 

abels in each iteration, then the performance might be improved 

teadily. To address this issue, a possible way is to pick the pseudo 

abels with low confidence, and conduct correction to them with a 

tronger classifier than the original classifier f (·) . 
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Fig. 3. Principle of UTSP. UTSP consists of two steps: (i) Deleting , which deletes 

the samples with low pairwise similarity scores as shown from Fig. (a) to Fig. (b), 

and (ii) spanning tree , which selects samples with highly-confident pseudo labels by 

spanning trees as shown from Fig. (b) to Fig. (c). 
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Motivated by the above analysis, TSRP aims to improve the ac- 

uracy of the crude pseudo labels by remedying the pseudo labels 

ith low confidence. Specifically, TSRP first partitions the target 

amples into two sets, one with highly-confident pseudo labels, de- 

oted as { Z 

T 
h 
, ̂  y T 

h 
} and the other one with low confident pseudo la-

els, denoted as { Z 

T 
l 
, ̂  y T 

l 
} , by exploring the intra-class similarity in

he target domain (see Section 3.4 ). Then, it trains a strong clas- 

ifier f strong (·) with { Z 

T 
h 
, ̂  y T 

h 
} and { Z 

S , y S } , and uses the classifier to

redict the labels of Z 

T 
l 

: 

ˆ 
 

T 
l, remedy 

= f strong 

(
Z 

T 
l 

)
(1) 

here ˆ y T 
l, remedy 

is the remedial pseudo labels of the target samples 

ith low confidence. Finally, we take the remedial pseudo labels 

nd the pseudo labels with high confidence together as the target 

omain pseudo labels to train P in the next iteration. 

.4. UTSP: Using target intra-class similarity to pick pseudo labels 

ith high confidence 

UTSP aims to select the target samples whose pseudo labels 

re highly-confident. It consists of two steps—deleting and spanning 

ree . Its principle is illustrated in Fig. 3 . We will present the details

f the two steps in the following subsections with a summary in 

lgorithm 2 . 

Algorithm 2: UTSP. 

Input : Domain-invariant features z T , its corresponding 

pseudo labels ˆ y T which contain C y pseudo classes; 

Output : Highly-confident samples 
{

Z 

T 
h 
, ̂  y T 

h 

}
, low-confident 

samples 
{

Z 

T 
l 
, ̂  y T 

l 

}
; 

1 for k = 1 , . . . , C y do 

2 Calculate intra-class similarity matrix S k by (2); 

3 Calculate δ by (4); 

4 Calculate adjacency matrix M k by (5); 

5 Calculate diagonal matrix D 

k by (6); 

6 Pick the root node of the spanning tree, i.e. z T k m 

, by (7); 

7 Get highly-confident and low-confident samples by the 

spanning tree; 

.4.1. Deleting 

The deleting step aims to delete the samples with small similar- 

ty for each pseudo class. In the following, we present the deleting 

tep for the k th pseudo class, ∀ k = 1 , 2 , . . . , C y . It first calculates a

airwise intra-class similarity matrix S k of the target samples by 
4

.g. cosine similarity: 

 

k 
i, j = 

{ 

0 , i = j 
〈 z Tk 

i 
, z Tk 

j 
〉 

‖ z Tk 
i 

‖‖ z Tk 
j 

‖ , otherwise 
, ∀ k = 1 , 2 , . . . , C y (2) 

here S k 
i, j 

denotes the cosine similarity between the i th sample 

nd jth sample of the k th pseudo class, i, j ∈ 

{
1 , 2 , . . . , n k t 

}
with 

 

k 
t denoted as the number of samples in the k th pseudo class, 

 t = 

∑ C y 
k =1 

n k t , and z T k denotes a target sample belonging to the k th

seudo class. Because S k is a symmetric matrix, we only keep the 

pper triangular matrix of S k , denoted as S k upper . We sort the non-

ero elements of S k upper in the ascending order: 

 

k 
rank = 

{ 

S k rank (1) 
, S k rank (2) 

, . . . , S k rank (n p ) 

} 

(3) 

here n p is the number of non-zero elements in S k upper . 

In order to select highly-confident pseudo labels in each cate- 

ory, the deleting step sets a similarity threshold δ: 

= S k rank (
 ρn p � ) (4) 

here ρ ∈ (0 , 1) is a trust parameter. Then, we can obtain a mask

atrix M 

k as follows: 

 

k 
i j = 

{
1 , S k 

i, j 
≥ δ

0 , otherwise 
(5) 

If we regard each sample z T k as a node, and take M 

k as the

djacency matrix of the undirected graph that are composed of 

he n k t nodes, then we could observe commonly that the samples 

elonging to the same ground-truth category have high pairwise 

imilarity scores in the pseudo class, on the contrary, the sam- 

les belonging to different ground-truth categories have low pair- 

ise similarity scores. Here we regard the nodes with no neigh- 

ors as the samples with low-confident pseudo labels. We delete 

hese nodes from the undirected graph. The process is illustrated 

n Fig. 3 a to b. 

.4.2. Spanning tree 

However, the samples of the k th pseudo class may be mixed 

ith samples from multiple ground-truth categories that are ge- 

metrically very similar to each other. If we only select highly- 

onfident pseudo labels by the threshold δ, some misclassified 

amples may be selected as highly-confident samples after the 

eleting step. 

To further refine the samples selected by the deleting step, we 

xplore an idea from spanning forests [20] . Specifically, we first get 

 diagonal matrix D 

k by: 

 

k 
ii = 

∑ 

j 

M 

k 
i j (6) 

he identity of the largest element of D 

k can be computed as: 

 = arg max 
i 

D 

k 
ii (7) 

he node with the maximum degree, i.e. z T k m 

, represents the most 

onfident sample in the k pseudo class, since that it has the maxi- 

um number of neighbors. 

Then, we set z T k m 

to the root node of a spanning tree and find

ts leaf nodes. We regard the samples in the same spanning tree 

s highly-confident samples of the k th pseudo class, and the sam- 

les that are not in the spanning tree as misclassified samples from 

ther ground-truth categories. This process is illustrated in Fig. 3 b 

o c. 

By pooling the highly-confident samples throughout all pseudo 

lasses, we finally get the highly-confident set { Z 

T 
h 
, ̂  y T 

h 
} and low- 

onfident set { Z 

T 
l 
, ̂  y T 

l 
} . Note that, in order to avoid a bad solution to
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Table 1 

Description of the visual cross-domain datasets in the experiments. 

Dataset Type Samples Classes Features 

CMU-PIE Face 11,554 68 1024 

MNIST Digit 2000 10 256 

USPS Digit 1800 10 256 

Office + Caltech-256 Object 2533 10 800 / 4096 

COIL20 Object 1440 20 1024 

Office-Home Object 15,588 65 2048 
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lass-imbalanced problems where a class with a small number of 

amples disappears after UTSP, we regard all samples of the pseudo 

lass satisfying n k t ≤ 3 as highly-confident samples. 

. Experiments 

In this section, we evaluate the performance of the pro- 

osed methods. The source code of TSRP is available at 

ttps://github.com/02Bigboy/TSRP. 

.1. Datasets and cross-domain tasks 

We used common cross-domain datasets [16] , including CMU- 

IE [44] , MNIST [45] , USPS [46] , Office+Caltech256 [47] , COIL20 

48] , and Office-Home [49] . The statistics of the datasets are sum- 

arized in Table 1 . The domain adaptation tasks on the datasets 

re described as follows. 

CMU-PIE is a large face dataset. It consists of more than 40,0 0 0 

ace images from 68 individuals. The face images vary widely due 

o the variations of the illumination condition, poses, and ex- 

ressions. In terms of different pose factors, we chose five sub- 

ets as in [16] : C05 (left pose), C07 (upward pose), C09 (down- 

ard pose), C27 (front pose) and C29 (right pose) to construct the 

ross-domain classification tasks. Following the experimental set- 

ing in [16] , we randomly selected two subsets as the source do- 

ain and target domain respectively for each cross-domain task, 

hich results in 20 cross-domain tasks in total, e.g. “C05 → C07 ”, 

C05 → C09 ”, ..., “C29 → C27 ” in the form of “source → target”. 

MNIST-USPS consists of two classical hand written digit image 

atasets—USPS [46] and MNIST [45] . To speed up the experimental 

omparisons as that in [18] , we randomly chose 1800 images from 

SPS and 20 0 0 images from MNIST, and rescaled the images to a 

ize of 16 × 16 , which forms two cross-domain tasks, i.e. “MNIST → 

SPS ” and “USPS → MNIST ”. 

Office+Caltech dataset is one of the most commonly used 

atasets for unsupervised domain adaptation. It consists of four 

omains: Amazon (images downloaded from online merchants, ab- 

reviated as A), Webcam (low-resolution images by a web cam- 

ra, abbreviated as W), DSLR (high-resolution images by a digital 

LR camera, abbreviated as D), and Caltech-256 (abbreviated as C). 

ere, ten common classes from all four domains were used, which 

re backpack, bike, calculator, headphone, computer-keyboard, lap- 

op, computer-monitor, computer-mouse, coffee-mug, and video- 

rojector respectively. There are 2533 images in total with 8 to 

51 images per category per domain. We extracted two kinds of 

eatures, which are the 800-dim SURF [24] and 4096-dim DeCAF6 

50] respectively. Similar to [16] , we obtained 12 cross-domain 

asks for two kinds of features, e.g. “A → C ”, “A → D ”, ..., “W → C ”

nd “W → D ”, by randomly choosing two domains from the data 

s the source and target respectively. 

COIL20 dataset consists of 1440 grayscale images with 20 ob- 

ects. Each object has 72 images of size 32 × 32 taken at pose in-

ervals of 5 degrees rotating through 360 degrees. Like [16] , we 

plit the dataset into 2 subsets: COIL1 and COIL2. COIL1 includes 

ll images at the directions of 0 ◦ to 85 ◦ and 180 ◦ to 265 ◦. COIL2
5 
ontains the images of 90 ◦ to 175 ◦ and 270 ◦ to 355 ◦. They follow

ifferent but related distributions since that COIL1 and COIL2 con- 

ist of the same objects with diverse shooting degrees. We ran- 

omly chose one as the source domain and the other as the tar- 

et domain for two cross-domain tasks, e.g. “COIL1 → COIL2 ” and 

COIL2 → COIL1 ”. 

Office-Home includes 65 object classes from four domains, i.e., 

rtistic images (A), Clipart (C), Product images (P) and Real-World 

mages (R). It has 15,588 images. Any two out of the four domains 

an formulate a domain adaptation task, which results in 12 do- 

ain adaptation tasks in total. 

Note that, the abbreviation “A” for the Office-Home dataset 

s different from that for Office+Caltech dataset. Because the ab- 

reviation of a dataset is always aligned with the name of the 

ataset in the following paper, we think that this will not cause 

onfusion, and bravely used the duplicated abbreviations. 

.2. Experimental settings 

TSRP can be used as a term of many UDA algorithms. In or- 

er to verify the effectiveness of TSRP, we integrated it into 4 

lgorithms, namely 1-nearest neighbor (NN) [21] , joint distribu- 

ion adaptation (JDA) [18] , balanced distribution adaptation (BDA) 

22] , and domain invariant and class discriminative feature learn- 

ng (DICD) [16] . NN is a standard machine learning methods. JDA 

ligns both marginal distribution and conditional distribution of of 

he source and target domains. BDA aligns the marginal distribu- 

ion and conditional distribution with different weights according 

o different tasks. DICD considers the class discrimination to learn 

oth domain invariant and class discriminative features. We de- 

ote the extended methods of the above four UDA algorithms as 

N+TSRP, JDA+TSRP, BDA+TSRP, and DICD+TSRP respectively. 

Our TSRP approach consists of two hyper-parameters: The trust 

arameter ρ , and the number of inner iterations for TSRP IT . We 

et IT = 3 as a fixed parameter for all experiments. We set ρ =
.9 for the datasets Office+Caltech-256 (SURF) and CMU-PIE, and 

= 0.85 for the other datasets. The iteration number for JDA, 

DA, DICD was set to T = 10 . For a fair comparison, the parameters

f the extended methods and the original methods were set the 

ame. The classification accuracy on the target domain was used 

s the evaluation metric. 

.3. Experimental results 

In this section, we compared the four UDA algorithms, i.e. NN, 

DA, BDA, and DICD, with their TSRP extensions on the visual 

ross-domain tasks. 

Table 2 shows the classification performance on the CMU-PIE 

ataset. From the table, we can see that, after incorporating TSRP, 

he performance of JDA, BDA, and DICD has been significantly 

mproved. To be specific, DICD+TSRP, BDA+TSRP, and JDA+TSRP 

chieve 4 . 75% , 2 . 52% , 2 . 05% absolute improvement respectively

ver DICD, BDA, and JDA in terms of average accuracy. It is worthy 

oting that, compared to DICD, DICD+TSRP obtains the best results 

n all cross-domain tasks of PIE. BDA+TSRP achieves the best re- 

ults in 17 tasks out of all 20 tasks, compared to BDA. JDA+TSRP 

chieves the best results in 15 tasks compared to JDA. In addition, 

e have also observed that the effect of NN+TSRP is worse than 

hat of NN. It may be caused by that the original data of PIE in

he source domain and target domain are quite different. There- 

ore, when NN is applied to the original data directly, the incor- 

ectly generated pseudo labels may be the majority. Eventually, the 

ajority is further enhanced after TSRP is applied. 

Table 3 lists the classification accuracy of the comparison meth- 

ds on the Office+Caltech-256 (SURF features) dataset. From the ta- 

le, we see that, after combining with TSRP, all of the four UDA 
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Table 2 

Average classification accuracy (%) of the comparison methods on the target domains of the CMU-PIE tasks. 

Tasks/Methods NN NN + TSRP JDA JDA + TSRP BDA BDA + TSRP DICD DICD + TSRP 

C05 → C07 26.09 23.51 58.81 63 . 41 58.81 64 . 52 72.99 74 . 52 

C05 → C09 26.59 22.92 54.23 56 . 92 57.11 58 . 70 72.00 76 . 16 

C05 → C27 30.67 27.31 84.50 81.98 84.50 82.31 92.22 96 . 52 

C05 → C29 16.67 14.64 49.75 54 . 47 49.94 57 . 41 66.85 71 . 32 

C07 → C05 24.49 24.10 57.62 63 . 00 57.77 64 . 02 69.93 73 . 20 

C07 → C09 46.63 41.30 62.93 62 . 93 62.93 63 . 60 65.87 67 . 83 

C07 → C27 54.07 52.42 75.82 75.52 76.06 77 . 20 85.25 86 . 42 

C07 → C29 26.53 23.28 39.89 46 . 69 42.03 46 . 69 48.71 56 . 43 

C09 → C05 21. 37 21.76 50.96 48.08 52.76 51.38 69.36 70 . 14 

C09 → C07 41.01 34.56 57.95 58 . 13 57.95 58 . 99 65.44 73 . 05 

C09 → C27 46.53 46.14 68.45 69 . 45 68.88 70 . 68 83.39 94 . 26 

C09 → C29 26.23 23.65 39.95 46 . 14 42.65 46 . 81 61.40 66 . 48 

C27 → C05 32.95 30.58 80.58 81 . 54 80.70 81 . 99 93.13 94 . 72 

C27 → C07 62.68 59.30 82.63 82.01 83.18 83 . 92 90.12 92 . 88 

C27 → C09 73.22 72.30 87.25 86.52 87.32 87.13 88.97 90 . 26 

C27 → C29 37.19 33.58 54.66 57 . 54 55.64 61 . 15 75.61 79 . 11 

C29 → C05 18.49 18.40 46.46 56 . 66 50.99 57 . 47 62.88 73 . 68 

C29 → C07 24.19 21.42 42.05 44 . 38 45.92 46 . 59 57.03 65 . 81 

C29 → C09 28.31 27.14 53.31 50.86 53.25 55 . 76 65.87 70 . 10 

C29 → C27 31.24 31.30 57.01 59 . 63 57.28 59 . 63 74.77 83 . 81 

Average accuracy 35.46 32.48 60.24 62 . 29 61.28 63 . 80 73.09 77 . 84 

Average improvement -2.98 2 . 05 2 . 52 4 . 75 

Relative improvement -3.49 5 . 16 6 . 5 17 . 65 

Table 3 

Classification accuracy (%) on the Office+Caltech-256 (surf features) tasks, where A = AMAZON, C = CALTECH, D = DSLR and W = WEBCAM. 

Tasks/Methods NN NN + TSRP JDA JDA + TSRP BDA BDA + TSRP DICD DICD + TSRP 

C → A (SURF) 23.70 23.49 44.78 46.45 46.14 48.33 47.29 47.81 

C → W (SURF) 25.76 24.75 41.69 46.10 41.69 47.46 46.44 50.85 

C → D (SURF) 25.48 24.84 45.22 49.04 47.13 49.04 49.68 50.96 

A → C (SURF) 26.00 26.63 39.36 39.63 40.61 39.72 42.39 41.76 

A → W (SURF) 29.83 30.17 37.97 43.39 40.00 39.72 45.08 49.15 

A → D (SURF) 25.48 26.75 39.49 31.85 40.13 38.85 38.85 42.04 

w → C (SURF) 19.86 18.25 31.17 31.52 32.06 33.04 33.57 32.95 

w → A (SURF) 22.96 21.92 32.78 30.48 32.99 32.15 34.13 31.94 

w → D (SURF) 59.24 59.87 89.17 89.81 89.17 90.45 89.81 89.81 

D → C (SURF) 26.27 26.09 31.52 31.43 33.39 33.57 34.64 37.04 

D → A (SURF) 28.50 29.33 33.09 32.78 33.72 34.03 34.45 35.28 

D → W (SURF) 63.39 65.08 89.49 88.47 89.49 90.51 91.19 91.19 

Average accuracy 31.37 31.43 46.31 46.75 47.21 48.07 48.96 50.06 

Average improvement 0.06 0.44 0.86 1.10 

Relative improvement 0.09 0.82 1.63 2.16 

Table 4 

Classification accuracy (%) on the MNIST+USPS tasks. 

Tasks/Methods NN NN + TSRP JDA JDA + TSRP BDA BDA + TSRP DICD DICD + TSRP 

USPS → MNIST 35.85 35.30 59.65 62.40 60.05 62.40 61.50 67.55 

MNIST → USPS 64.44 70.72 67.28 72.44 69.89 74.06 73.28 73.39 

Average accuracy 50.15 53.01 63.46 67.42 64.97 68.23 67.39 70.47 

Average improvement 2.86 3.96 3.26 3.08 

Relative improvement 5.74 10.84 9.30 9.45 

Table 5 

Classification accuracy (%) on the COIL20 tasks. 

Tasks/Methods NN NN + TSRP JDA JDA + TSRP BDA BDA + TSRP DICD DICD + TSRP 

COIL1 → COIL2 84.72 88.75 93.75 95.14 93.89 96.53 94.58 95.69 

COIL2 → COIL1 83.33 83.19 92.64 94.86 93.33 95.56 93.47 98.06 

Average accuracy 84.03 85.97 93.19 95.00 93.61 96.04 94.03 96.88 

Average improvement 1.94 1.81 2.43 2.85 

Relative improvement 12.17 26.53 38.04 47.67 
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lgorithms have been improved. Specifically, among the 12 tasks, 

ICD+TSRP, BDA+TSRP, JDA+TSRP, and NN+TSRP outperforms their 

riginal counterparts in 9, 8, 7, and 6 tasks respectively. 

Tables 4 and 5 list the classification accuracy on MNIST+USPS 

nd COIL20 datasets. From the tables, we observe that JDA+TSRP, 

DA+TSRP and DICD+TSRP outperform their original counterparts 
6

n all tasks. Particularly, DICD+TSRP achieves a relative improve- 

ent of 47 . 67% over DICD on COIL20. Table 6 shows the results on

he Office+Caltech-256 (DECAF6 features) dataset. 

We see from the table that the average accuracy of NN+TSRP, 

DA+TSRP, BDA+TSRP and DICD+TSRP is 4 . 19% , 2 . 52% , 2 . 58% , 2 . 59%

igher than that of NN, JDA, BDA and DICD respectively. Particu- 
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Table 6 

Classification accuracy (%) on the Office+Caltech-256 (decaf6 features) tasks, where A = AMAZON, C = CALTECH, D = DSLR AND W = WEBCAM. 

Tasks/Methods NN NN + TSRP JDA JDA + TSRP BDA BDA + TSRP DICD DICD + TSRP 

C → A ( DeCAF 6 ) 85.70 88 . 31 89.77 92 . 38 90.61 92 . 38 91.02 92 . 38 

C → W ( DeCAF 6 ) 66.10 80 . 68 83.73 88 . 14 84.07 89 . 83 92.20 94 . 24 

C → D ( DeCAF 6 ) 74.52 83 . 44 86.62 90 . 45 87.90 90 . 45 93.63 94 . 90 

A → C ( DeCAF 6 ) 70.35 73 . 11 82.28 84 . 24 83.17 84 . 51 86.02 87 . 89 

A → W ( DeCAF 6 ) 57.29 62 . 37 78.64 87 . 80 78.64 88 . 47 81.36 89 . 49 

A → D ( DeCAF 6 ) 64.97 70 . 06 80.25 85 . 35 84.71 90 . 45 83.44 92 . 36 

W → C ( DeCAF 6 ) 60.37 60 . 37 83.53 82.90 83.53 83 . 53 83.97 87 . 09 

W → A ( DeCAF 6 ) 62.53 66 . 91 90.19 91 . 23 90.50 91 . 44 89.67 90 . 40 

W → D ( DeCAF 6 ) 98.73 98 . 73 100.00 10 0 . 0 0 100.00 10 0 . 0 0 100.00 10 0 . 0 0 

D → C ( DeCAF 6 ) 52.09 49.24 85.13 86 . 82 85.22 86 . 82 86.11 88 . 33 

D → A ( DeCAF 6 ) 62.73 64 . 61 91.44 92 . 59 91.54 92 . 69 92.17 93 . 63 

D → W ( DeCAF 6 ) 89.15 96 . 95 98.98 98 . 98 98.98 99 . 32 98.98 98 . 98 

Average accuracy 70.38 74 . 57 87.55 90 . 07 88.24 90 . 82 89.88 92 . 47 

Average improvement 4 . 19 2 . 52 2 . 58 2 . 59 

Relative improvement 14 . 14 20 . 24 21 . 98 25 . 59 

Fig. 4. Performance summary of the domain adaptation baselines and their TSRP 

extensions on Office+Caltech-256 in terms of average classification accuracy. 
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Fig. 5. Visualization of the features produced by the comparison methods on the “A 

→ D (DeCAF6 features)” task of the Office+Caltech-256 data. Different colors repre- 

sent different categories. The source samples are marked by the symbol “o”. The 

target samples are marked by “+”. 
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arly, BDA+TSRP and DICD+TSRP outperform their original counter- 

arts on all tasks. Both JDA+TSRP and NN+TSRP outperform their 

ounterparts in 11 out of 12 tasks. In order to better show the ad- 

antage of TSRP, we further draw the average accuracy of the com- 

arison methods in Fig. 4 in the ascending order. From Fig. 4 , we

bserve an interesting phenomenon that, although DICD considers 

ore information than JDA and BDA, such as conditional distribu- 

ion alignment and discriminative learning, JDA and BDA can still 

ield better result than DICD by generating more accurate pseudo 

abels. This phenomenon indicates that the accuracy of the pseudo 

abels has an important impact on performance. It also indicates 

hat the accuracy of the pseudo labels can be improved by TSRP. 

he result also shows that TSRP can help learn better domain in- 

ariance features. 

To demonstrate how the proposed method improves the align- 

ent of the source and target domains directly, we visualize the 

epresentations produced by JDA and JDA+TSRP on the “A → D 

DeCAF6 features)” task of the Office+Caltech-256 data in Fig. 5 . 

rom the figure, we see that TSRP+JDA has a better aligned condi- 

ional distribution than JDA. 

.4. Analysis 

The results in Tables 2 to 6 have illustrated the effectiveness 

nd generalization of TSRP, which in turn demonstrates that ex- 

loring the intra-class similarity of the target domain can remedy 

seudo labels well. In this subsection, we conducted several ana- 

ytical experiments to further verify the effectiveness of TSRP. 

.4.1. Effect of UTSP on performance 

To demonstrate the effectiveness of UTSP in picking the pseudo 

abels with high confidence, we compared the performance of TSRP 

ith the proposed UTSP and a variant of UTSP that does not use 
7 
he spanning tree, denoted as UTSP_N. The result is shown in 

ig. 6 . From the figure, we can see that the TSRP without the span-

ing tree can still lead to a small improvement, while adding the 

panning tree into TSRP can produce significantly better results. 

ecause the main job of UTSP is to select highly confident pseudo 

abels, the improved performance not only supports the effective- 

ess of UTSP, but also reflects the effectiveness of the selected 

ighly confident pseudo labels in promoting the alignment of the 

omains. 

.4.2. Effect of the highly confident pseudo labels on the classifier 

To demonstrate the effectiveness of the selected highly confi- 

ent pseudo labels in improving the performance of the classifier, 

e compared the classifier (denoted as “strong classifier”) with the 

ne that is trained with the source samples (denoted as “original 

lassifier”) only. The result is shown in Fig. 7 . From the figure, we 

ee that the performance of the strong classifier is much better 

han the original classifier. It indicates that TSRP can help learn 

ood domain-invariant and discriminative features, and in turn, the 

eatures can help TSRP refine the pseudo labels, which is a co- 

romotion process. 

From Fig. 7 , we can also find that, no matter how many itera- 

ions are conducted, the baseline methods without TSRP are upper- 

ounded due to the low accuracy of the pseudo labels. On the 

ther side, the proposed methods with TSRP can break through 

uch limit. 

.4.3. Effects of hyper-parameters on performance 

Our approach consists of two hyper-parameters: The trust pa- 

ameter ρ and the number of inner iterations IT . Here we take 
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Fig. 6. Effect of UTSP on the performance of the Office+Caltech-256 datasets with respect to the optimization iterations. Different colors represent different domain adapta- 

tion tasks. The term “TSRP_N” denotes that UTSP does not contain the spanning tree step. 

Fig. 7. Effect of the strong classifier in TSRP on the performance of the Office+Caltech-256 datasets with respect to the optimization iterations. The term “TSRP_C” means 

that TSRP adopts the original classifier trained with the source data only, instead of the strong classifier. 
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ICD+TSRP as an example to study how the two hyperparame- 

ers affect the performance. The experiment was conducted on the 

asks C27 → C29 , C → W (SURF), W → C (DeCAF6), COIL2 → COIL1 

nd USPS → MNIST . The results are reported in Fig. 9 . Specifically, 

ig. 9 a shows the effect of IT when ρ was set to 0.9 and IT was

elected from { 1 , 2 , . . . , 10 } . From the figure, we see obviously that

ur approach is not sensitive to IT . Figure 9 b shows the effect of

when IT = 4 and ρ was selected from { 0 , 0 . 1 , 0 . 2 , . . . , 1 } . The re-

ult indicates that, although the the proposed method is relatively 

ensitive to the trust parameter ρ for each single task, it reaches 

he best performance on all tasks when ρ ≈ 0 . 8 . 

.5. Comparison with other domain adaptation methods 

To further illustrate the effectiveness of TSRP, we compared 

ICD+TSRP with several conventional UDA methods, which are GFK 

24] , TCA [14] , TJM [25] , TSL [26] , DTSL [27] , CDML [28] , RTML

29] , and DICD [16] , respectively. We also compared with a stan- 

ard machine learning methods, i.e., PCA [23] . In order to make a 

air comparison, the results of the comparison methods are from 

heir public codes or the original papers. Table lists the compar- 

son results on the Office+Caltech-256 (DECAF6 features) dataset. 

rom the table, we can see that DICD+TSRP achieves the best per- 

ormance in 10 out of 12 tasks, and ranks the second in the other 

 tasks. The results on the CMU-PIE and Office+Caltech-256 (surf 

eatures) datasets are listed in the supplementary material. The ex- 

erimental conclusion is similar to that on the Office+Caltech-256 

DECAF6 features) dataset ( Table 7 ). 

We also compared DICD+TSRP with three recent deep-learning- 

ased UDA methods, which are DAN [51] , JAN [52] , and DWT-MEC 
8 
53] , respectively, on the Office-Home dataset. From the compar- 

son results in Table 8 , we see that the average classification ac- 

uracy of DICD+TSRP is 2 . 8% higher than that of DICD on this 

ataset, which is similar to the phenomena on the other datasets. 

ICD+TSRP also outperforms the deep-learning-based methods. For 

xample, its average accuracy is 7 . 5% higher than JAN. 

.6. Comparison on transformed features 

In Section, we only studied the situation that the domain adap- 

ation algorithms use the original data or their deep features. In 

eal-world scenarios, domain adaptation also faces scenarios that 

he data is transformed into other formats. Here we study such 

 problem with cycle generative adversarial networks (CycleGAN) 

54] . 

Specifically, we first trained CycleGAN with both source and tar- 

et samples, which could produce two generators. One generator 

aps the source domain S to the target domain T , which yields 

ransformed samples of a source domain S T that is similar to the 

arget samples. The other generator maps the target domain T to 

he source domain S, which yields transformed samples of a target 

omain T S that is similar to the source samples. Then, for each do- 

ain adaptation task, we could at least formulate three domain 

daptation subtasks given the data representations produced by 

ycleGAN. For example, for the original task “S → T ”, the three 

ubtasks could be “S → T ”, “S T → T ”, and “S → T S ”. For the origi-

al task of “T → S”, the three subtasks could be “T → S” “T S → S”,

T → S T ” ( Table 9 ). 

We conducted an evaluation on the Office-Home dataset. Given 

he four domains of Office-Home, we trained 6 CycleGAN models, 
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Table 7 

Accuracy comparison of the proposed DICD+TSRP with representative UDA methods on the Office+Caltech-256 (Decaf6 features) dataset, where A = Amazon, 

C = Caltech, D = DSLR, and W = WEBCAM. The best result is marked in bold. The runner-up result is underlined. 

Tasks/Methods PCA GFK TCA TJM DTSL CDML RTML DICD DICD + TSRP 

C → A ( DeCAF 6 ) 88.10 87.79 89.46 89.46 91 . 54 86.24 90.62 91.02 92 . 38 

C → W ( DeCAF 6 ) 74.24 70.17 78.64 78.98 76.61 77.82 85.38 92 . 20 94 . 24 

C → D ( DeCAF 6 ) 83.44 88.54 81.53 85.35 87.90 83.74 89.32 93 . 63 94 . 90 

A → C ( DeCAF 6 ) 73.02 75.78 79.61 79.07 85.75 79.54 86 . 43 86.02 87 . 89 

A → W ( DeCAF 6 ) 57.63 76.95 73.22 76.95 73.56 76.27 80.26 81 . 36 89 . 49 

A → D ( DeCAF 6 ) 70.06 84.08 84.71 85 . 35 82.17 81.35 84 . 36 83.44 92 . 36 

W → C ( DeCAF 6 ) 63.58 75.07 78.09 76.49 72.75 77.64 83.13 83 . 97 87 . 09 

W → A ( DeCAF 6 ) 70.15 82.88 83.30 86.74 75.47 86.29 91 . 37 89.67 90 . 40 

W → D ( DeCAF 6 ) 10 0 . 0 0 10 0 . 0 0 10 0 . 0 0 10 0 . 0 0 10 0 . 0 0 98.42 10 0 . 0 0 10 0 . 0 0 10 0 . 0 0 

D → C ( DeCAF 6 ) 57.88 73.11 79.70 78.63 75.24 78.56 85.72 86 . 11 88 . 33 

D → A ( DeCAF 6 ) 68.16 85.18 88.52 89.77 84.97 89.47 91.86 92 . 17 93 . 63 

D → W ( DeCAF 6 ) 88.14 90.85 98 . 98 97.97 99 . 32 96.38 98 . 98 98 . 98 98 . 98 

Average accuracy 74.53 82.53 84.65 85.40 83.77 84.31 88.95 89 . 88 92 . 47 

Table 8 

Classification accuracy (%) of the proposed DICD+TSRP with three deep-learning- 

based UDA methods on the target domains of the Office-Home dataset. 

Tasks/Methods DAN JAN DWT-MEC DICD DICD + TSRP 

A → C 43.6 45.9 50.3 47.4 50.4 

A → P 57.0 61.2 72.1 67.8 73.5 

A → R 67.9 68.9 77.0 70.2 74.1 

C → A 45.8 50.4 59.6 56.8 60.5 

C → P 56.5 59.7 69.3 64.5 70.1 

C → R 60.4 61.0 70.2 65.3 69.7 

P → A 44.0 45.8 58.3 62.3 63.4 

P → C 43.6 43.4 48.1 49.8 50.2 

P → R 67.7 70.3 77.3 74.7 77.5 

R → A 63.1 63.9 69.3 66.3 67.2 

R → C 51.5 52.4 53.6 53.2 53.1 

R → P 74.3 76.8 82.0 77.6 79.8 

Average accuracy 56.3 58.3 65.6 63.0 65.8 

a

a

m

w

a

F

a

t

Fig. 8. Performance of TSRP with transformed features on the Office-Home dataset, 

where the transformed features are generated by CycleGAN. (a) A case study on the 

three subtasks of the “A → P” domain adaptation task. (b) The average results over 

all 36 subtasks. The subscript represents the domain generated by CycleGan. 

t

l

l

o

t

nd further extracted deep features from both the original samples 

nd the transformed samples by ResNet50. For each of the 12 do- 

ain adaptation tasks, we compared DICD+TSRP with the method 

ithout domain adaptation (denoted as ResNet50) and the domain 

daptation method DICD on the aforementioned three subtasks. 

ig. 8 reports the average results over all 36 subtasks, as well as 

 case study on the three subtasks of the “A → P” domain adap- 

ation task. From the figure, we get a shared conclusion across 
Table 9 

Accuracy comparison (%) of the proposed DICD+TSRP with representative UDA met

Tasks/Methods PCA GFK TCA TSL 

C05 → C07 24.80 26.15 40.76 44.08 

C05 → C09 25.18 27.27 41.79 47.49 

C05 → C27 29.26 31.15 59.63 62.78 

C05 → C29 16.30 17.59 29.35 36.15 

C07 → C05 24.22 25.24 41.81 46.28 

C07 → C09 45.53 47.37 51.47 57.60 

C07 → C27 53.35 54.25 64.73 71.43 

C07 → C29 25.43 27.08 33.70 35.66 

C09 → C05 20.95 21.82 34.69 36.94 

C09 → C07 40.45 43.16 47.70 47.02 

C09 → C27 46.14 46.41 56.23 59.45 

C09 → C29 25.31 26.78 33.15 36.34 

C27 → C05 31.96 34.24 55.64 63.66 

C27 → C07 60.96 62.92 67.83 72.68 

C27 → C09 72.18 73.35 75.86 83.52 

C27 → C29 35.11 37.38 40.26 44.79 

C29 → C05 18.85 20.35 26.98 33.28 

C29 → C07 23.39 24.62 29.90 34.13 

C29 → C09 27.21 28.49 29.90 36.58 

C29 → C29 30.34 31.33 33.64 38.75 

Average accuracy 33.85 35.35 44.75 49.43 

9

he tasks: A domain adaptation algorithm with the proposed TSRP 

eads to higher accuracy than the algorithm without TSRP, regard- 

ess whether the features are extracted from the original samples 

r from the transformed samples. 

Note that, although it is expected that CycleGAN may alleviate 

he domain shift problem, the transformed samples generated by 
hods on the CMU-PIE dataset. 

DTSL CDML RTML DICD DICD + TSRP 

65.87 53.22 60.12 72 . 99 74 . 52 

64.09 53.12 55.21 72 . 00 76 . 16 

82.03 80.12 85.19 92 . 22 96 . 52 

54.90 48.23 52.98 66 . 85 71 . 32 

45.04 52.39 58.13 69 . 93 73 . 20 

53.49 54.23 63.92 65 . 87 67 . 83 

71.43 68.36 76.16 85 . 25 86 . 42 

47.97 37.34 40.38 48 . 31 56 . 43 

52.49 43.54 53.12 69 . 36 70 . 14 

55.56 54.87 58.67 65 . 44 73 . 05 

77.50 62.76 69.81 83 . 39 94 . 26 

54.11 38.21 42.13 61 . 40 66 . 48 

81.54 75.12 81.12 93 . 13 94 . 72 

85.39 80.53 83.92 90 . 12 92 . 88 

82.23 83.72 89 . 51 88.97 90 . 26 

72.61 52.78 56.26 75 . 61 79 . 11 

52.19 27.34 29.11 62 . 88 73 . 68 

49.41 30.82 33.28 57 . 03 65 . 81 

58.45 36.34 39.85 65 . 87 70 . 10 

64.31 40.61 47.13 74 . 77 77 . 84 

63.53 53.68 58.80 73 . 09 77 . 84 
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Table 10 

Accuracy comparison (%) of the proposed DICD+TSRP with representative UDA methods on the Office+Caltech-256 (surf features), MNIST+USPS, and COIL20 datasets. 

Tasks/Methods PCA GFK TCA TJM DTSL CDML RTML DICD DICD + TSRP 

C → A (SURF) 36.95 41.02 38.20 46.76 51 . 25 47.82 49 . 26 47.29 47.81 

C → W (SURF) 32.54 40.68 38.64 38.98 38.64 36.91 44.72 46 . 44 50 . 85 

C → D (SURF) 38.22 38.85 41.40 44.59 47.13 43.93 47.56 4 9 . 6 8 50 . 96 

A → C (SURF) 34.73 40.25 37.76 39.45 43 . 37 41.72 43 . 68 42.39 41.76 

A → W (SURF) 35.59 38.98 37.63 42.03 36.61 38.25 44.32 45 . 08 49 . 15 

A → D (SURF) 27.39 36.31 33.12 45 . 22 38.85 35.92 43 . 86 38.85 42.04 

W → C (SURF) 26.36 30.72 29.30 30.19 29.83 31.14 34 . 83 33 . 57 32.95 

W → A (SURF) 31.00 29.75 30.06 29.96 34 . 13 32.26 35 . 28 34 . 13 31.94 

W → D (SURF) 77.07 80.89 87.26 89.17 82.80 84.84 91 . 02 89 . 81 89 . 81 

D → C (SURF) 29.65 30.28 31.70 31.43 30.11 32.63 34.58 34 . 64 37 . 04 

D → A (SURF) 32.05 32.05 32.15 32.78 32.05 29.87 33.26 34 . 45 35 . 28 

D → W (SURF) 75.93 75.59 86.10 85.42 72.20 82.34 89 . 68 91 . 19 91 . 19 

USPS → MNIST 44.95 46.45 51.05 52.25 55.50 52.25 61 . 82 61.50 67 . 55 

MNIST → USPS 66.22 67.22 56.28 63.28 52.33 63.28 69.52 73 . 28 73 . 39 

COIL1 → COIL2 84.72 72.50 88.47 91.53 88.61 88.93 91.23 94 . 58 95 . 69 

COIL2 → COIL1 84.03 74.17 85.83 91.81 89.17 87.32 90.22 93 . 47 98 . 06 

Average accuracy 47.34 48.48 50.31 53.43 51.41 51.84 56.55 56 . 90 58 . 46 

Fig. 9. Effect of the hyperparameters on five domain adaptation tasks. Different col- 

ors represent different domain adaptation tasks. 
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ycleGAN may not match the ResNet50 feature extractor, which ac- 

ounts for the performance degradation of the comparison meth- 

ds on the transformed data, compared with that on the original 

ata ( Table 10 ). 

. Conclusion 

In this paper, we have proposed to use target domain intra- 

lass similarity to remedy pseudo labels (TSRP) for improving the 

ccuracy of the coarse pseudo labels that are generated from a 

onventional UDA method, which in turn improves the discrimi- 

ant ability of the learned representation of the UDA. Specifically, 

SRP first exploits the intra-class similarity and spanning trees to 

ick samples with high confident pseudo labels. Then, it trains a 

trong classifier with both the source samples and the target sam- 

les whose pseudo labels are highly-confident. Finally, it uses the 

trong classifier to remedy the pseudo labels of the target sam- 

les with low-confident pseudo labels. Experimental results on ex- 

ensive visual cross-domain tasks have shown that applying TSRP 

o conventional UDA methods can improve the accuracy of the 

seudo labels and further lead to more discriminative and domain 

nvariant features than the conventional UDA baselines. In the fu- 

ure, we intend to extend the idea of this paper to deep domain 

daptation. 
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