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Nonnegative matrix factorization (NMF) based topic modeling methods do not rely on model- or data-
assumptions much. However, they are usually formulated as difficult optimization problems, which
may suffer from bad local minima and high computational complexity. In this paper, we propose a deep
NMF (DNMF) topic modeling framework to alleviate the aforementioned problems. It first applies an
unsupervised deep learning method to learn latent hierarchical structures of documents, under the
assumption that if we could learn a good representation of documents by, e.g. a deep model, then the
topic word discovery problem can be boosted. Then, it takes the output of the deep model to constrain
a topic-document distribution for the discovery of the discriminant topic words, which not only improves
the efficacy but also reduces the computational complexity over conventional unsupervised NMF meth-
ods. We constrain the topic-document distribution in three ways, which takes the advantages of the three
major sub-categories of NMF—basic NMF, structured NMF, and constrained NMF respectively. To over-
come the weaknesses of deep neural networks in unsupervised topic modeling, we adopt a non-
neural-network deep model—multilayer bootstrap network. To our knowledge, this is the first time that
a deep NMF model is used for unsupervised topic modeling. We have compared the proposed method
with a number of representative references covering major branches of topic modeling on a variety of
real-world text corpora. Experimental results illustrate the effectiveness of the proposed method under
various evaluation metrics.

� 2022 Published by Elsevier B.V.
1. Introduction

Topic modeling extracts salient features and discovers struc-
tural information from a large collection of documents [1,2]. This
paper focuses on discussing the nonnegative matrix factorization
(NMF) based topic modeling [3–7]. NMF topic modeling usually
decomposes the document-word representation of documents into
a topic-document matrix and a word-topic matrix. Existing decom-
position methods usually have the following two major problems.
First, it is challenging to discover common patterns or topics in the
documents and organize them into hierarchy [8,9]. Second, the
topic-word distribution do not meet human interpretation of doc-
uments [10,11]. For example, traditional topic modeling may lose
smaller subject codes, i.e. sub-topics, in the tails of large topics,
which leads to the inability of describing topic dimensions in terms
of the human interpretable objects of topics, and simultaneously
loses all latent sub-structure within each topic [10]. Deep learning,
which learns hierarchical data representations, provide one solu-
tion to the aforementioned problems. However, existing deep
learning methods for topic modeling are mostly supervised, and
fall into the category of probabilistic topic models [12,13]. To our
knowledge, unsupervised deep NMF topic modeling seems unex-
plored yet, due to maybe the high computational complexity of
deep unsupervised NMF [14,15] as well as the lack of supervised
information of data.
1.1. Contributions

In this paper, we aim to explore an unsupervised deep NMF
(DNMF) framework to address the above challenges. Because mod-
eling topic hierarchies of documents and discovering topic words
simultaneously is a complicated optimization problem, we propose
to solve the two problems in sequence, under the assumption that,
if the representation of documents is good enough, then the overall
performance can be boosted [16]. The proposed method contains
the following novelties:
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� An unsupervised deep NMF framework is proposed. It first
learns the topic hierarchies of documents by an unsupervised
deep model, whose output is used to constrain the topic-
document matrix. Then, it produces a good solution to the
topic-document matrix and word-topic matrix by NMF under
the constraint. It can have many implementations by incorpo-
rating different NMF methods and deep models. Unlike conven-
tional NMF topic modeling methods that make predefined
assumptions, DNMF alleviates the weaknesses of NMF, e.g.
non-unique factorization, by deep learning. To our knowledge,
this is the first work of unsupervised deep NMF for topic
modeling.
� Three implementations of DNMF that reach the state-of-the-art
performance are proposed. The three algorithms fall into the
three major subclasses of NMF technologies [17], denoted as
basic DNMF (bDNMF), strutured DNMF (sDNMF), and con-
strained DNMF (cDNMF) respectively. Specifically, bDNMF takes
the output of the deep model as the topic-document matrix
directly to generate the word-topic distribution. sDNMF takes
the output of the deep model as the intrinsic geometry of the
topic-document distribution, which is used to mask the topic-
document matrix. cDNMF takes the output of the deep model
as a regularization of the topic-document distribution. The con-
vergence of the proposed algorithms is theoretically proved.
� Because the representation of documents in topic modeling is
usually sparse and high-dimensional, existing deep neural net-
works can easily overfit to the documents. Although some
methods reduce the dimension of the documents by discarding
low-frequency words, their performance suffers from the com-
promise [18]. To address the problem, this paper applies multi-
layer bootstrap networks (MBN) to learn the topic hierarchies of
documents. MBN contains three simple operators—random
resampling, stacking, and one-nearest-neighbor optimization.
To our knowledge, this is the first time that a non-neural-
network unsupervised deep model is applied to topic modeling,
which outperforms conventional shallow topic modeling meth-
ods significantly.

We have compared the proposed DNMF variants with 9 repre-
sentative topic modeling methods [19,1,20,21,3,5,4,22,23] covering
probabilistic topic models [19,1,20,21], NMF methods [3,5,4,22],
and deep topic models [23]. Empirical results on the 20-
newsgroups, topic detection and tracking database version 2
(TDT2), and Reuters-21578 corpora illustrate the effectiveness of
DNMF in terms of three evaluation metrics. Moreover, the hyper-
parameters of the DNMF variants have stable working ranges
across all situations, which facilitates their practical use.

In this paper, we first introduce some related work and prelim-
inaries in the following two subsections, then present the proposed
DNMF framework and its three implementations in Section 2. Sec-
tion 3 presents the experimental results. Finally, Section 4 con-
cludes our findings.

1.2. Related work

According to the mathematical formulation and assumptions,
topic modeling methods can be generally categorized into proba-
bilistic topic modeling and NMF topic modeling. Probabilistic topic
modeling assumes the observed document-word representation
interact with latent variables in a specific probabilistic relation-
ship. A recent development of probabilistic topic modeling is deep
probabilistic topic modeling, which models the interaction between
latent variables and document-words by deep probabilistic mod-
els. On the other side, NMF topic modeling formulates topic mod-
eling as a matrix factorization problem, which factorizes a
document-word matrix into a topic-document matrix and a
158
word-topic matrix. Particularly, the problem of learning the
topic-document matrix has been developed independently as a
document clustering problem.

In this subsection, we summarize existing topic modeling meth-
ods and their related topics. Specifically, we first review probabilis-
tic topic modeling and deep probabilistic topic modeling methods.
Then, we review NMF topic modeling methods. Particularly, we
review unsupervised deep learning based document clustering inde-
pendently. Finally, we review a related topic to NMF, named deep
NMF, as a supplement to the above overview.

1.2.1. Probabilistic topic modeling
Topic models were originally formulated as unsupervised prob-

abilistic models [1,24,25,20]. A seminal work of probabilistic topic
models is latent Dirichlet allocation (LDA) [1]. It models a docu-
ment as a multinomial distribution over latent semantic topics,
and models a topic itself as a multinomial distribution over words.
The document-dependent topic embedding, governed by a Dirich-
let prior, is estimated in an unsupervised way and then adopted as
the low-dimensional feature for document classification and
indexing. Later on, hierarchical tree-structured priors such as
nested Dirichlet processing [24,26] or nested Chinese restaurant
process [27,26] were applied to discover the hierarchy of topics
and capture the nonlinearity of documents. However, the hierar-
chical probabilistic models suffer from conceptual and practical
problems. For example, their optimization problem is NP-hard in
the worst case due to the intractability of the posterior inference
[28]. Existing methods have to resort to approximate inference
methods, such as variational Bayes and Gibbs sampling which is
also difficult to carry out [29]. Besides, because the exact inference
is intractable, the models can never make predictions for words
that are sharper than the distributions predicted by any of the indi-
vidual topics. As a result, the hypothesis of probability distribu-
tions are unable to be applied to all text corpora [30]. Moreover,
there is a lack of justification of the Bayesian priors as well [31].
Recently, a geometric Dirichlet means algorithm [32], which builds
upon a weighted k-means clustering procedure and is augmented
with a geometric correction, overcomes the computational and sta-
tistical inefficiencies encountered by probabilistic topic models
based on Gibbs sampling and variational inference. However, the
learned topic polytope is largely influenced by the performance
of the clustering algorithm.

Deep probabilistic topic modeling: Another solution to the opti-
mization difficulty of the hierarchical probabilistic models is to
integrate the perspectives of the probabilistic models and deep
neural networks. The integrated methods, named deep neural topic
models, introduce neural network based priors as alternatives to
Dirichlet process based priors [33–36]. This integrates the power-
fulness of neural network architecture into the inference of the
probabilistic graph models, which makes the models not only
interpretable but also powerful and easily extendable. However,
they still fail to consider the veracity of the Bayesian hypothesis.
The problem of component collapsing may also lead to bad local
optima of the inference network in which all topics are identical.

1.2.2. NMF topic modeling
To deal with the optimization difficulty of the hierarchical

probabilistic models, a large effort has been paid on polynomial
time solvable topic modeling algorithms, many of which are for-
mulated as separable nonnegative matrix factorization (NMF)
methods [3–7]. They find the underlying parameters of topic
models by decomposing the document-word data matrix into a
weighted combination of a set of topic distributions [37]. A
key problem in the context of NMF research is the separability
issue, i.e., whether the matrix factors are unique [38]. When
one applies NMF to topic modeling, the separability assumption



J. Wang and X.-L. Zhang Neurocomputing 515 (2023) 157–173
is equivalent to an anchor-word assumption which assumes that
every topic has a characteristic anchor word that does not
appear in the other topics [3–6]. However, because words and
terms have multiple uses, the anchor word assumption may
not always hold. How to avoid the unrealistic assumption is a
key research topic. One solution explores tensor factorization
models with three- or higher-order word co-occurence statistics.
However, such statistics need many more samples than lower-
order statistics to obtain reliable estimates, and separability still
relies on additional assumptions [22], such as consecutive words
being persistently drawn from the same topic. Another recent
solution is anchor-free correlated topic modeling (AnchorFree)
with second-order co-occurrence statistics. However, an assump-
tion called sufficiently scattered condition is still needed to be
made, though the assumption is much milder than the anchor-
word assumption. Besides the problem of making additional
assumptions to the data, NMF is also formulated as a shallow
learning method with no more than one nonlinear layer, which
may not capture the nonlinearity of documents and the hierar-
chy of topics well.

Unsupervised deep learning for document clustering: Document
clustering and topic modeling are two closely related tasks
[16]. Unsupervised topic modeling projects documents into a
topic embedding space, which promotes the development of
document clustering. Recently, many works focused on learning
the representations and topic assignments of documents simul-
taneously by deep neural networks [18,39,40]. However, current
deep learning methods for document clustering do not show
advances over the shallow learning methods, such as NMF-
based topic modeling. We conjecture that existing methods
may not be good at dealing with sparse and high-dimensional
representations of documents. As a compromise, they reduce
the dimension of the sparse data by discarding the low-
frequency words, which may significantly lose useful informa-
tion. To deal with the aforementioned problems, here we
develop deep models that are able to outperform conventional
shallow models without discarding the low-frequency words.
Note that, although some deep learning based topic models
apply word embeddings [41] to deep topic models [42,43], it
may not be unsuitable to compare them with the conventional
topic modeling methods that work with the term frequency-
inverse document frequency (TF-IDF) statistics.
1.2.3. Deep NMF methods
The aforementioned NMF topic models are all shallow models,

which is not powerful enough to grasp the nonlinearity of docu-
ments. In the NMF research community, a lot of efforts have been
paid on the multilayered NMF algorithms with applications to
image processing [44,45], speech separation [46], community
detection [47], etc. The basic idea is to factorize a matrix into mul-
tiple factors, where the factorization can be either linear or nonlin-
ear. If the factorization is nonlinear, then the method is called a
deep NMF. For example, deep semi-NMF [14] factorizes the basis
matrix into multiple factors with the optimization criterion of min-
imum reconstruction error, where it does not require the factor-
ized weight matrix to be nonnegative anymore. Deep
nonnegative basis matrix factorization [15] conducts deep factor-
ization to the coefficient matrix with different regularization con-
straints on the basis matrix. However, because the bag-of-words
representation of documents is high-dimensional and sparse, the
application of the aforementioned idea to topic modeling is com-
putationally high and may also suffer from overfitting. To our
knowledge, no deep NMF topic modeling methods have been pro-
posed yet.
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1.3. Preliminaries

1.3.1. Notations
We first introduce some notations here. Regular letters, e.g.

d;M; t, and 0, indicate scalars. Bold lower-case letters, e.g. d, indi-
cate vectors. Bold capital letters, e.g. D;C, and W, indicate matrices.
The bold digit 0 indicates an all-zero vector or matrix. The operator
T denotes the transpose. The notation ½C�ij indicates the elements of
the matrix C at the ith column and jth row. The operator � is the
Hadamard multiplication. The operator Trð�Þ denotes the trace of
matrices.

1.3.2. Background
In topic modeling, given a corpus of N documents with K topics

and a vocabulary of V words, denoted as fdngNn¼1 where

dn ¼ ½dn;1; . . . ; dn;V �T with dn;v as the frequency of the vth word in
the vocabulary that appears in the nth document. we aim to learn
a topic-document matrix W ¼ ½wk;n� 2 RK�N

þ and a word-topic
matrix C ¼ ½cv ;k� 2 RV�K

þ from the document-word matrix

D ¼ ½d1; . . . ;dN� 2 RV�N
þ , where the notation k 6 K is the topic index,

wk;n is the topic label which describes the probability of the nth
document belonging to the kth topic, and cv ;k is the probability of
the vth vocabulary that appears in the kth topic. The task of topic
modeling is to find an approximate factorization:

D � CW ð1Þ
NMF measures the distance between D and CW by the squared

Frobenius norm, and formulates the topic modeling problem as the
following optimization problem:

ðC;WÞ ¼ arg min
CP0;WP0

kD� CWk2F ð2Þ

where the nonnegative constraints make the solution interpretable.
Under the anchor-word assumption, the word distribution C is
enforced to be a block diagonal matrix, which guarantees a consis-
tent solution [28,48]. However, the anchor-word assumption is
fragile in practice. Recently, many methods have been proposed
to overcome this assumption [22,49].

2. Deep NMF topic model

In this section, we first present the DNMF topic modeling
framework in Section 2.1, then implements three DNMF topic
modeling methods named bDNMF, cDNMF, and sDNMF respec-
tively in Section 2.2, and finally introduce the unsupervised deep
model in Section 2.3.

2.1. The framework of DNMF topic modeling

Traditional NMF topic modeling aims to learn a document rep-
resentation by linear NMF essentially. In order to capture the man-
ifold structure or topic hierarchies of documents, a natural way is
to extend NMF into a deep NMF framework. Here we propose a
DNMF framework which constrains the topic-document matrix
by an unsupervised deep model with multiple layers of nonlinear
transforms:

D � CW
subjectto gðWjf ðDÞÞP 0;C P 0;W P 0

ð3Þ

where f ð�Þ is the unsupervised deep model and gð�Þ is a discrimina-
tor used to constrain W by f ð�Þ. f ð�Þ performs like a prior that con-
strains the solution of W and C to be interpretable and
discriminant, which is the fundamental difference between DNMF
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and conventional NMF topic models. gð�Þ is a manually-designed
metric function used to build the connection between W and
f ðDÞ. As will be shown later in Section 2.2, it has dramatically differ-
ent formats for different deep topic models. The framework is illus-
trated in Fig. 1. It minimizes the reconstruction error between D and
CW in terms of the squared Frobenius norm.

A direct thought to solve problem (3) is to optimize f ðDÞ;W, and
C alternatively until convergence. However, it is too costly to train
a deep model in a single iteration. In practice, we take the follow-
ing optimization algorithm to solve problem (3):

� Pretrain f ðDÞ first by an unsupervised deep model.
� Optimize W and C alternatively with f ðDÞ fixed until
convergence.

The effectiveness of the above algorithm relies on the assump-
tion that, if a high-quality f ðDÞ is obtained as a prior, then the solu-
tion of C and W is also boosted.

The difference between the proposed topic modeling method
and existing deep NMF methods [14,15] is that the proposed
method takes the deep model f ð�Þ as an additional constraint of
W, while the methods in [14,15] decomposes W directly into a
hierarchical network. It is easy to see that the proposed framework
can employ various unsupervised deep models to bring additional
information into the matrix decomposition problem for specific
applications. It is easy to constrain W flexibly as we will do in Sec-
tion 2.2, which brings advanced NMF methods into the proposed
framework. It also can either employ a pretrained deep model or
conduct joint optimization of the deep model and the matrix
decomposition. On the contrary, although [14,15] can be applied
to topic modeling, the computational complexity of their multilay-
ered matrix decomposition is too high to be applied to topic mod-
eling in practice. To our knowledge, they were not applied to topic
modeling yet.

2.2. DNMF implementations

In this subsection, we first introduce three DNMF implementa-
tions that extend the three sub-categories of NMF [17] to their
deep versions respectively, and then discuss the connection
between the three implementations. Note that, besides the novelty
of the DNMF framework, cDNMF and sDNMF are also fundamen-
tally new even without the deep model f ðDÞ.

2.2.1. Basic DNMF topic modeling
.

Algorithm1: bDNMF.

Many NMF topic modeling methods introduce polytope to
interpret the geometry of documents [50,51], i.e.
½D�ij ¼

PK
k¼1½C�ik½W�kj. A standard NMF topic modeling can always
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find an infinite solutions of C and W that satisfy D � CW. To pre-
vent such infinite solutions, various constraints have to be added.
One of the simplest constraint is to provide one of the two factors
beforehand, e.g.W. However, it seems not easy to find a satisfiedW
beforehand in history. Fortunately, deep learning provides such an
opportunity. We conjecture bravely that, if a good topic-document
matrix W could be learned beforehand by deep learning, then the
problem of finding the other factor C can be greatly simplified,
which motivates bDNMF.

Given a latent document topic proportions f ðDÞ from a deep
model, bDNMF interprets the documents by

½D�ij ¼
XK
k¼1
½C�ik½f ðDÞ�kjfori ¼ 1; . . . ;V ; j ¼ 1; . . . ;N: ð4Þ

It is a special case of the framework in Fig. 1 where gð�Þ is simply
defined as W� f ðDÞ ¼ 0. Solving the factorization (4) in the NMF
framework results in the following optimization problem:

min
CP0;f ð�Þ

DF ½DjjCf ðDÞ� ð5Þ

where DF ½DjjCf ðDÞ� denotes the Frobenius norm of NMF with Cf ðDÞ
being an approximation of D:

DF ½DjjCf ðDÞ� ¼ D� Cf ðDÞk k2F ð6Þ
We solve bDNMF in two steps. First, we generate the sparse rep-

resentation of documents f ðDÞ by a deep model. Then, problem (5)
is formulated as a nonnegative least squares optimization problem,
which can be solved by gradient descent algorithms or multiplica-
tive update rules [52]. Here we prefer multiplicative update rules,
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since they do not have tunable hyperparameters. As we can see,
when f ðDÞ is given, problem (5) satisfies the following first-order
Karush–Kuhn–Tucker (KKT) optimality conditions:

C P 0
@DF ðDjjCf ðDÞÞ

@C P 0

C� @DF ðDjjCf ðDÞÞ
@C ¼ 0

8><
>: ð7Þ

which guarantees that the solution of (5) converges to a stationary
point.

The multiplicative update rules are described as follows. Let W
be the Lagrange multiplier of the constraint C P 0, the Lagrangian
J B for (5) is

J B ¼ TrðDDTÞ � 2TrðDf ðDÞTCTÞ
þTrðCf ðDÞf ðDÞTCTÞ þ TrðCWÞ

ð8Þ

The partial derivative of J B with respect to C is

@J B

@C
¼ �2Df ðDÞT þ 2Cf ðDÞf ðDÞT þW ð9Þ

By the KKT condition C�W ¼ 0, we derive

2C� ðCf ðDÞf ðDÞTÞ � 2C� ðDf ðDÞTÞ þ C�W ¼ 0 ð10Þ
Therefore, the multiplicative update rules for C can be inferred

as follows:

½C�ðtþ1Þij  ½C�ðtÞij
½Df ðDÞT �ij
½Cf ðDÞf ðDÞT �ij

ð11Þ

where the superscript (t) denotes the tth iteration of the multiplica-
tive update rules. bDNMF is summarized in Algorithm1. It imple-
ments gðW; f ðDÞÞ by simply setting W ¼ f ðDÞ. The main merit of
bDNMF is that it can easily get the global optimum solution of C
given W fixed, which avoids the non-unique solution of the NMF
topic modeling in a simple way. Its effectiveness is largely affected
by f ðDÞ. In practice, we implement f ðDÞ as semantic topic labels,
which is obtained by the deep-learning-based document clustering.

2.2.2. Structured DNMF topic modeling
Although bDNMF is simple, it reduces NMF with only one vari-

able when f ðDÞ is given, which limits the flexibility of C. To solve
the problem, sDNMFmodifies the regular factorization formulation
(2) by a new discriminator W ¼ f ðDÞ � T instead of taking
W ¼ f ðDÞwhere T is a new variable. Its objective function is formu-
lated as follows:

min
CP0;TP0;f ð�Þ

DFðDkCðf ðDÞ � TÞÞ

¼ min
CP0;TP0;f ð�Þ

kD� Cðf ðDÞ � TÞk2F
ð12Þ

Algorithm2: sDNMF.
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Like bDNMF, we solve sDNMF by first generating f ðDÞ by a deep
model, which formulates problem (12) as an alternative least
squares optimization problem. As we can see, when f ðDÞ is given,
problem (12) satisfies the following first-order KKT optimality
conditions:

C P 0;T P 0
@DF ðDkCðf ðDÞ�TÞÞ

@C P 0

C� @DF ðDkCðf ðDÞ�TÞÞ
@C ¼ 0

@DF ðDkCðf ðDÞ�TÞÞ
@T P 0

T� @DF ðDkCðf ðDÞ�TÞÞ
@T ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð13Þ

which guarantees that the solution of (12) converges to a stationary
point.

Let U and V denote the Lagrange multipliers of C and T respec-
tively. Then, minimizing (12) is equivalent to minimizing the
Lagrangian JS:

JS ¼ DFðDkCT; f ðDÞÞ þ TrðUCTÞ þ TrðVTTÞ ð14Þ
Taking partial derivatives in (14) derives

@JS
@C ¼ 2Cðf ðDÞ � TÞTðf ðDÞ � TÞ

�2DTðf ðDÞ � TÞ þ U
ð15Þ

@JS
@T ¼ 2ððf ðDÞ � TÞCCTÞ � f ðDÞ

�2ðf ðDÞ � DCTÞ þ V
ð16Þ

Combining with the KKT conditions, we obtain the update rules:

½T�ðtþ1Þij  ½T�ðtÞij
½ðDCTÞ � f ðDÞ�ij

½ððf ðDÞ � TÞCCTÞ � f ðDÞ�ij
ð17Þ

½C�ðtþ1Þij  ½C�ðtÞij
½ðf ðDÞ � TÞTD�ij

½ðf ðDÞ � TÞTðf ðDÞ � TÞC�ij
ð18Þ

sDNMF is summarized in Algorithm2. It promotes the effectiveness
of C by introducing the internal variable T to bridge the gap
between f ðDÞ and C.

2.2.3. Constrained DNMF topic modeling

Algorithm3: cDNMF.

bDNMF and sDNMF intrinsically assumes that each document con-
tains only one topic, which may not be true. To overcome the weak-
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ness of bDNMF and sDNMF, we propose cDNMF which introduces
f ðDÞ as a regularization onW instead of maskingW by f ðDÞ directly.

Specifically, we implement the discriminator gðW; f ðDÞÞ as a
real-valued regression response of the semantic topic labels f ðDÞ:

min
T2RK�K ;WP0

kf ðDÞ � TWk2F ð19Þ

where T denotes a linear transform of W. To further constrains the
word-topic matrix C for highly meaningful topic words, we propose
a word-word affinity regularization XðCÞ:
XðCÞ ¼ kCCT � DDTk2F ð20Þ
which encodes the word-word semantics from the shared knowl-
edge between the documents into C. To our knowledge, this is the
first time that such a regularization is introduced to the NMF topic
modeling.

Substituting (19) and (20) into the DNMF framework derives
the objective of cDNMF:

min
TP0;CP0;WP0;f ð�Þ

DFðDjjCW;T; f ðDÞÞ ð21Þ

where

DFðDjjCW;T; f ðDÞÞ
¼ kD� CWk2F þ k1kf ðDÞ � TWk2F þ k2XðCÞ ð22Þ

with k1 and k2 as two hyperparameters.
Like bDNMF, we solve cDNMF by first obtaining f ðDÞ from a

deep model, and taking f ðDÞ as a constant of (21). Then, we opti-
mize (21) for C;W, and T by the alterative least squares optimiza-
tion algorithm. When f ðDÞ is given, problem (21) satisfies the
following first-order KKT optimality conditions:

C P 0;W P 0;T P 0
@DF ðDjjCW;T;f ðDÞÞ

@C P 0

C� @DF ðDjjCW;T;f ðDÞÞ
@C ¼ 0

@DF ðDjjCW;T;f ðDÞÞ
@W P 0

W� @DF ðDjjCW;T;f ðDÞÞ
@W ¼ 0

@DF ðDjjCW;T;f ðDÞÞ
@T P 0

T� @DF ðDjjCW;T;f ðDÞÞ
@T ¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð23Þ

which guarantees that the optimization of (21) converges to a sta-
tionary point. LetW;Q , and P be the Lagrange multipliers of the con-
straints C P 0;W P 0 and T P 0, respectively. The Lagrangian J C of
(21) is

JC ¼ TrðDDTÞ � 2TrðDWTCTÞ þ TrðCWWTCTÞ
þk1Trðf ðDÞf TðDÞÞ � 2k1Trðf ðDÞWTTTÞ
þk1TrðTWWTTTÞ þ k2TrðDDTDDTÞ
�2k2TrðDDTCCTÞ þ k2TrðCCTCCTÞ
þTrðCWÞ þ TrðWQ Þ þ TrðTPÞ

ð24Þ

The partial derivatives of J C with respect to C;W and T are

@JC
@C ¼ �2DWT þ 2CWWT � 4k2DD

TCþ
4k2CC

TCþW
ð25Þ

@JC
@W ¼ �2CTDþ 2CTCW� 2k1T

T f ðDÞþ
2k1T

TTWþ Q
ð26Þ
162
@J C

@T
¼ �2k1f ðDÞWT þ 2k1TWWT þ P ð27Þ

Using the KKT conditions C�W ¼ 0;W� Q ¼ 0 and T� P ¼ 0
we get the following update rule for C:

½W�ðtþ1Þij  ½W�ðtÞij
½CTD�ij þ k1½TT f ðDÞ�ij
½CTCW�ij þ k1½TTTW�ij

ð28Þ

½C�ðtþ1Þij  ½C�ðtÞij
½DWT �ij þ 2k2½DDTC�ij
½CWWT �ij þ 2k2½CCTC�ij

ð29Þ

½T�ðtþ1Þij  ½T�ðtÞij
½f ðDÞWT �ij
½TWWT �ij

ð30Þ

cDNMF is summarized in Algorithm3. Its merit over bDNMF and
sDNMF is that cDNMF avoids the assumption that each document
contains only one topic. However, it has two tunable hyperparam-
eters. As we know, there is no way to tune the hyperparameters
in unsupervised topic modeling. To remedy this weakness, we take
the document clustering result f ðDÞ as the pseudo labels for tuning
the hyperparameters.

2.3. Deep unsupervised document clustering

In Section 1.2, we have summarized the recent progress of
unsupervised deep learning methods for document clustering. To
our knowledge, the advantage of the deep learning based docu-
ment clustering over conventional document clustering methods
is not apparent in general. The following explanation may be
account for the phenomenon. The bag-of-words model usually
generates a very high-dimensional sparse feature for documents,
e.g. over tens of thousands of dimensions. It is known that very
high-dimensional sparse data may cause current deep neural net-
works easily overfit and lead to high computational complexity. A
conventional compromise approach is to reduce the data to a low-
dimensional representation (e.g. 2000 dimensions) by (i) maintain-
ing only high-frequency words, or (ii) using some linear
dimensionality-reduction methods like PCA. However, the compro-
mise hurts the discriminability of documents. As we know, many
informative words may not be high frequency.

In this section, we propose a novel unsupervised deep learning
based document clustering method, named MBN, to handle the
high-dimensional sparse feature of documents directly and
efficiently.

2.3.1. Algorithm description of MBN
MBN consists of L gradually narrowed hidden layers from

bottom-up. Each hidden layer consists of M k-centroids clusterings
(M 	 1), where parameter k at the l-th layer is denoted by
kl; l ¼ 1; . . . ; L. Each kl-centroids clustering has kl output units, each
of which indicates one cluster. The output layer is linear-kernel-
based spectral clustering [53]. We take the output of the spectral
clustering as f ðDÞ.

MBN is trained simply by stacking. To train the l-th layer, we
simply train each kl-centroids clustering as follows:

� Random sampling of input. The first step randomly selects kl
documents from Xðl�1Þ ¼ ½xðl�1Þ1 ; . . . ; xðl�1ÞN � as the kl centroids of

the clustering. If l ¼ 1, then Xðl�1Þ ¼ D.
� One-nearest-neighbor learning. The second step assigns an
input document xðl�1Þ to one of the kl clusters by one-nearest-
neighbor learning, and outputs a kl-dimensional indicator vec-

tor h ¼ ½h1; . . . ;hkl �T , which is a one-hot sparse vector indicating
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the nearest centroid to xðl�1Þ.

The output units of all kl-centroids clusterings are concatenated

as the input of their upper layer, i.e. xðlÞ ¼ ½hT
1; . . . ;h

T
M�

T
. We use

cosine similarity to evaluate the similarity between the input and
the centroids in all layers.

As described in [54], each layer of MBN is a histogram-based
nonparametric density estimator, which does not make model
assumptions on data; the hierarchical structure of MBN captures
the nonlinearity of documents by building a vast number of hierar-
chical trees on the TF-IDF feature space implicitly.

2.3.2. Network structure of MBN
The network structure of MBN is important to its effectiveness.

First of all, we should set the hyperparameter M to a large number,
which guarantees the high estimation accuracy of MBN at each
layer. Then, to maintain the tree structure and discriminability of

MBN, we should set fklgLl¼1 carefully by the following criteria:

k1 ¼ N=2b c; kl ¼ dkl�1b c ð31Þ

kL is set to guarantee that at least a document per
class is chosen by a random sample in probability

ð32Þ

where d 2 ½0;1Þ is a user defined hyperparameter with 0:5 as the
default.

As analyzed in [54], the hyperparameter d controls how aggres-
sively the nonlinearity of data is reduced. If the data is highly non-
linear, then we set d to a large number, which results in a very deep
architecture; otherwise, we set d to a small number. MBN is rela-
tively sensitive to the selection of d. As will be shown in the exper-
iment, setting d ¼ 0:5 is safe, though tuning d may lead to better
performance.

The criterion (32) guarantees that each kL-centroids clustering
is a valid one in probability. Specifically, for any kL-centroids clus-
tering, if its centroids do not contain any document of a topic, then
its output representation has no discriminability to the topic. To
understand this point, we consider an extreme case: if kL ¼ 1, then
the top hidden layer of MBN outputs the same representation for
all documents. In practice, we implement (32) by:

kL �
30d NNz

e; if D is strongly class imbalanced

1:5K; otherwise

(
ð33Þ
Table 1
Topic words discovered by bDNMF and AnchorFree on a 5-topic subset of TDT2 corpus. T

AnchorFree

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

netanyahu asian bowl tornadoes economic
israeli asia super florida indonesia
israel economic broncos central asian
palestinian financial denver storms financial
peace percent packers ripped imf
arafat economy bay victims economy
palestinians market green tornado crisis
albright stock football homes asia
benjamin crisis game killed monetary
west markets san people currency
talks stocks elway damage billion
bank currency diego twisters fund
prime prices xxxii nino percent
london dollar nfl el international
minister investors quarterback deadly government
yasser index sports storm bank
ross billion play counties korea
withdrawal bank yards weather south
madeleine growth favre funerals indonesian
13 indonesia pittsburgh toll suharto
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where Nz is the size of the smallest topic. If Nz is unknown, we sim-
ply set kL to a number that is significantly larger than the number of
topics, e.g. 300 or so.

To summarize, there are two different points between the MBN
here and that in [54]. First, the random feature selection step in
[54], which is used to improve the estimation accuracy, has been
removed here. The main reason for this modification is that the
similarity measurement between the documents are cosine simi-
larity. If the random feature selection step is used, then the cosine
similarity measurement will be violated. Second, we use spectral
clustering to replace the original PCA in [54]. This modification
improves the performance slightly.

2.4. Discussions

The DNMF variants are new in the NMF study even without the
deep model. First, the structured NMF component of sDNMF is dif-
ferent from existing structured NMF models. For example, nons-
mooth NMF [55] incorporates a smooth factor to make the basis
matrix and coefficient matrix (i.e. the topic-document matrix and
word-topic matrix respectively in topic modeling) sparse, and rec-
onciles the contradiction between approximation and sparseness.
Some other structured NMF methods [56,57] adopt a global cen-
troid for each basis vector to capture the manifold structure. How-
ever, sDNMF takes the sparse representation of documents as a
mask of the basis matrix. Second, although it is common to add
regularization terms into the objective function of NMF, we did
not observe the term (20) in the study of NMF. Although some sim-
ilar form to (19) has been proposed in [58] for hyperspectral
unmixing, they learn the representation of data by a shallow
model. Therefore, the objective function of cDNMF is fundamen-
tally new to our knowledge.

Because sDNMF and cDNMF are non-convex optimization prob-
lems, we take the alternative iterative optimization algorithm to
solve them. The convergence of the algorithm is guaranteed by
the following theorem:

Theorem 1. The objective values of sDNMF and cDNMF decreases
monotonically and converges to a stationary point.
Proof 1. See Appendix A for the proof of Theorem 1 where we take
cDNMF as an example. The proof can be applied to sDNMF too
he topic words in bold denotes overlapped words between topics.

bDNMF

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

netanyahu asian bowl florida nigeria
israeli percent super tornadoes abacha
israel indonesia broncos tornado military
palestinian asia denver storms police
peace economy packers killed nigerian
albright financial green victims opposition
arafat market game damage nigerias
palestinians stock bay homes anti
talks economic football ripped elections
west billion elway nino arrested
benjamin crisis san el lagos
madeleine imf team weather democracy
london japan sports twisters sani
ross spkr diego storm sysciviliantem
withdrawal currency coach rain protest
process markets play stories protests
prime dollar win deadly presidential
yasser south teams struck abachas
secretary government season residents violent
13 prices fans california nigerians
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whose objective value is non-increasing under the update rules
(18) and (17). h
3. Experiments

In this section, we compare the proposed DNMF with nine topic
modeling methods on three benchmark text datasets.
3.1. Data sets

We conducted experiments on the 20-newsrgoups, top 30 lar-
gest topics of TDT2, and top 30 largest topics of Reuters-21578 doc-
ument corpora. 20-Newsgroups consists of 18,846 documents with
a vocabulary size of 26,214. This data set has 20 categories, each of
which contains around 1,000 documents. The top 30 largest topics
of TDT2 consists of 9,394 documents with a vocabulary size of
36,771 words. The top 30 largest topics of Reuters-21578 contains
8,293 documents in total with a vocabulary size of 18,933 words.

For TDT2 and Reuter-21578, we randomly selected 3 to 25
topics from the top 30 largest topics respectively for evaluation.
For 20-newsgroups, we randomly selected 3 to 20 topics respec-
tively for evaluation. For each comparison, we reported the average
results over 50 Monte-Carlo runs. The indices of the topics of the
50 independent runs on TDT2 are the same as those at http://
www.cad.zju.edu.cn/home/dengcai/Data/TextData.html. We
extracted TF-IDF statistics from the bag-of-words model of the
documents, and took cosine similarity to measure the similarity
of two documents in the TF-IDF space.

3.2. Comparison algorithms

The hyperparameters of DNMF in all experiments were set as
follows: M ¼ 400; d ¼ 0:5; k1 ¼ 1, and k2 ¼ 1, unless otherwise sta-
ted. We compared DNMF with four probabilistic models
[19,1,20,21], four NMF methods [3,5,4,22], and one deep learning
based topic model [23] with their optimal hyperparameter set-
tings. They are listed as follows:

� Probabilistic latent semantic indexing (PLSI)[19].
� Latent Dirichlet allocation (LDA)[1].
� Laplacian probabilistic latent semantic indexing (LapPLSI)
[20].
� Locally-consistent topic modeling (LTM) [21].
� Successive projection algorithm (SPA)[3].
� Successive nonnegative projection (SNPA) [5].
� A fast conical hull algorithm (XRAY)[4].
� Anchor-free correlated topic modeling (AchorFree) [22].
� Deep Poisson factor modeling (DPFA) [23]: it is a deep learn-
ing based topic model built on the Dirichlet process. We set its
DNN to a depth of two hidden layers, and set the number of the
hidden units of the two hidden layers to K and dK=2e respec-
tively. We used the output from the first hidden layer for clus-
tering. The above setting results in the best performance.

3.3. Evaluation metrics

We evaluated the comparison results in terms of clustering accu-
racy (ACC), coherence, and similarity count (SimCount). Clustering
accuracy applies the hungarian algorithm1 to solve the permutation
problem of predicted labels.2 Coherence evaluates the quality of a
1 http://www.cad.zju.edu.cn/home/dengcai/Data/code/hungarian.m.
2 http://www.cad.zju.edu.cn/home/dengcai/Data/code/bestMap.m.
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single topic by finding how many topic words belonging to the topic
appear across the documents of the topic [48]:

CohðmÞ ¼
X

v1 ;v22m
log

freqðv1; v2Þ þ e
freqðv2Þ ð34Þ

where v1 and v2 denote two words in the vocabulary, freqðv1;v2Þ
denotes the number of the documents where v1 and v2 co-
appear, freqðv2Þ denotes the number of the documents containing
v2, and e ¼ 0:01 is used to prevent the input of the logarithm oper-
ator from zero. The higher the clustering accuracy or coherence
score is, the better the topic model is. Because the coherence mea-
surement does not evaluate the redundancy of a topic, we used sim-
ilarity count to measure the similarity between the topics. For each
topic, similarity count is obtained simply by counting the number of
the overlapped words in the leading Kwords. The lower the similar-
ity count score is, the better the topic model is.

3.4. Main results

We listed the top 20 topic words of a 5-topic modeling problem
as an example in Table 1. From the table, we see that the topic
words of the second and fifth topics produced by AnchorFree have
an overlap of over 50%. Some informative topic words discovered
by bDNMF, such as the words on anti-government activities or vio-
lence in the fifth topic, were not detected by AnchorFree. The above
phenomena are observed in the other experiments too. We conjec-
ture that the advanced experimental phenomena are caused by the
fact that bDNMF not only avoids making additional assumptions
but also benefits from the high clustering accuracy of the deep
model. We show the latent representation of the documents in
20-newsgroups learned by MBN in Fig. 2. From the figure, we see
that the latent representation has strong disriminability which
may lead to high performance of DNMF.

Table 2 shows the comparison results on the 20-newsgroups
corpus. From the table, we see that the DNMF variants achieve
the highest clustering accuracy among the comparison methods.
For example, the clustering accuracy of DNMF is more than 5%
absolutely higher than that of the runner-up method, i.e. LTM,
when the number of the topics is 20 and between 4 and 15, and
is at least 1% higher than the latter in the other cases. Particularly,
DNMF is significantly better than the NMF methods. The relative
improvement of DNMF over NMF tends to be enlarged when the
number of the topics increases, which demonstrates the effective-
ness of the deep architecture of DNMF. In addition, the single-topic
quality produced by sDNMF ranks the third in terms of coherence,
which is inferior to AnchorFree and DFPA. The similarity count
scores produced by sDNMF and cDNMF rank behind LTM and are
Fig. 2. Visualizations of 20Newsgroups produced by DNMF.

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/code/hungarian.m
http://www.cad.zju.edu.cn/home/dengcai/Data/code/bestMap.m


Table 2
Performance of the comparison algorithms on 20-newsgroups.

#topics PLSI LDA LapPLSI LTM SPA SNPA XRAY AnchorFree DFPA bDNMF sDNMF cDNMF

ACC 3 0.4243 0.8134 0.7596 0.8955 0.4279 0.4275 0.4086 0.8763 0.8402 0.9101 0.9101 0.9101
4 0.3671 0.7291 0.7094 0.8287 0.3311 0.3312 0.3279 0.8360 0.8050 0.8916 0.8916 0.8916
5 0.3403 0.7013 0.6442 0.8389 0.2897 0.2900 0.2796 0.7618 0.7882 0.8689 0.8689 0.8689
6 0.3216 0.6622 0.6078 0.8229 0.2585 0.2585 0.2523 0.7095 0.7582 0.8549 0.8549 0.8549
7 0.3200 0.6462 0.6017 0.7881 0.2436 0.2437 0.2399 0.7132 0.7388 0.8266 0.8266 0.8266
8 0.3075 0.6178 0.5758 0.7744 0.2202 0.2203 0.2128 0.6888 0.7114 0.8056 0.8056 0.8056
9 0.3113 0.6021 0.5433 0.7207 0.2126 0.2123 0.1962 0.6622 0.6897 0.7662 0.7662 0.7662
10 0.3111 0.5915 0.5279 0.7107 0.2066 0.2069 0.1957 0.6431 0.6664 0.7584 0.7584 0.7584
15 0.3212 0.5187 0.4799 0.6328 0.1757 0.1756 0.1591 0.5208 0.5754 0.6860 0.6860 0.6860
20 0.3603 0.4900 0.4354 0.5996 0.1469 0.1475 0.1071 0.4465 0.5233 0.6502 0.6502 0.6502

rank 9.2 6.9 8 4.1 10.5 10.3 12 5.8 5.2 1 1 1
Coherence 3 �963.64 �603.30 �725.59 �636.46 �558.28 �558.28 �980.59 �572.86 �534.39 �667.66 �635.60 �694.15

4 �1008.22 �634.13 �732.05 �677.52 �613.12 �613.12 �1076.65 �573.30 �585.47 �666.69 �659.37 �702.69
5 �995.86 �651.71 �739.20 �704.39 �618.71 �618.71 �1085.22 �565.88 �562.91 �676.85 �650.67 �716.23
6 �1003.28 �678.72 �743.40 �753.48 �650.35 �650.35 �1115.20 �538.75 �588.59 �710.18 �679.94 �765.19
7 �994.24 �686.47 �754.92 �741.03 �709.04 �709.04 �1156.77 �544.18 �587.15 �695.82 �664.72 �744.81
8 �1015.14 �702.15 �779.04 �778.82 �697.90 �697.90 �1215.27 �566.80 �592.84 �704.10 �677.69 �771.84
9 �1020.01 �716.64 �773.21 �790.30 �725.18 �725.18 �1200.38 �562.41 �605.59 �711.80 �674.26 �771.47
10 �1008.06 �729.28 �789.99 �799.53 �766.64 �766.64 �1236.49 �571.91 �616.24 �721.11 �688.32 �794.68
15 �1001.83 �762.76 �843.94 �854.70 �816.32 �816.32 �1335.53 �575.56 �640.45 �749.68 �713.89 �866.38
20 �911.33 �759.13 �856.07 �855.94 �901.74 �901.74 �1141.56 �596.09 �676.11 �789.63 �716.90 �937.74

rank 10.9 5 9 8.4 4.7 4.7 12 1.4 1.8 5.8 4.1 9.2
SimCount 3 332.26 9.42 453.02 0.40 5.46 5.46 4.38 10.42 21.6 3.52 2.08 2.78

4 333.08 14.56 488.92 1.04 12.16 12.16 8.16 21.32 38.36 7.12 4.24 4.80
5 319.66 22.34 430.96 1.60 13.24 13.24 13.32 32.22 64.22 10.08 4.98 5.98
6 295.40 33.12 432.10 2.32 19.74 19.74 17.68 53.12 95.66 16.50 7.74 8.48
7 317.60 37.22 388.34 4.28 22.28 22.28 22.92 76.14 124.12 23.44 11.68 14.60
8 309.00 42.50 319.68 5.18 24.08 24.08 31.92 112.14 160.72 30.52 15.24 15.32
9 324.14 50.48 386.22 6.44 28.12 28.12 40.52 142.02 193.12 41.10 21.42 20.48
10 323.34 66.38 278.66 9.18 23.58 23.58 46.80 195.76 224.76 51.02 25.44 21.82
15 352.90 116.20 186.22 19.56 21.46 21.46 106.06 598.82 365.64 111.12 53.48 36.20
20 396.00 196.00 139.00 26.00 15.00 15.00 211.00 1235.00 496.12 189.96 89.44 56.82

rank 10.9 8 11 1.2 4.1 5.1 6.2 9.6 10.2 5.7 3 3

Table 3
Performance of the comparison algorithms on TDT2.

#topics PLSI LDA LapPLSI LTM SPA SNPA XRAY AnchorFree DFPA bDNMF sDNMF cDNMF

ACC 3 0.5497 0.7932 0.9889 0.9872 0.7853 0.7854 0.7263 0.9738 0.8840 0.9954 0.9954 0.9954
4 0.5187 0.7402 0.9831 0.9496 0.7291 0.7306 0.6782 0.9469 0.8151 0.9864 0.9864 0.9864
5 0.4939 0.7013 0.9771 0.9443 0.6943 0.6986 0.6716 0.9186 0.8037 0.9808 0.9808 0.9808
6 0.4678 0.6762 0.9683 0.9171 0.6452 0.6392 0.6267 0.9093 0.7888 0.9863 0.9863 0.9863
7 0.4814 0.6570 0.9392 0.8649 0.6125 0.6105 0.6253 0.9024 0.7490 0.9566 0.9566 0.9566
8 0.4721 0.6230 0.9457 0.8406 0.5818 0.5792 0.5736 0.8748 0.7233 0.9460 0.9460 0.9460
9 0.4930 0.6481 0.9095 0.8092 0.5883 0.5832 0.5433 0.8690 0.7469 0.9575 0.9575 0.9575
10 0.4883 0.6413 0.9017 0.7705 0.5642 0.5612 0.5319 0.8481 0.7305 0.9100 0.9100 0.9100
15 0.5412 0.5941 0.8393 0.6861 0.4736 0.4694 0.4411 0.7963 0.6849 0.8613 0.8613 0.8613
20 0.6290 0.6093 0.7606 0.6458 0.4593 0.4610 0.4358 0.7741 0.6776 0.8074 0.8074 0.8074
25 0.6582 0.6095 0.7390 0.6325 0.4351 0.4367 0.4240 0.7392 0.6521 0.7664 0.7664 0.7664

rank 10.82 8.18 4.18 5.91 9.82 9.91 11.09 5.18 6.91 1.00 1.00 1.00
Coherence 3 �593.96 �427.39 �538.16 �678.43 �613.89 �613.89 �470.37 �419.13 �952.05 �336.00 �335.75 �341.63

4 �573.30 �510.27 �562.86 �660.56 �592.47 �592.47 �447.67 �430.83 �888.18 �358.83 �350.48 �378.10
5 �545.48 �509.78 �544.17 �634.29 �610.96 �610.96 �459.79 �406.99 �803.90 �377.58 �370.10 �381.37
6 �536.32 �546.04 �554.52 �626.23 �642.78 �642.78 �466.89 �428.79 �831.70 �367.09 �364.30 �378.32
7 �518.56 �543.56 �560.76 �597.02 �646.05 �646.05 �483.75 �397.79 �731.31 �396.75 �382.47 �401.49
8 �519.33 �565.30 �555.45 �594.85 �657.72 �657.72 �477.15 �445.76 �704.81 �424.66 �399.95 �438.13
9 �518.04 �570.69 �566.21 �594.83 �655.35 �655.35 �469.70 �418.12 �755.24 �415.77 �394.24 �439.97
10 �518.91 �574.42 �573.86 �597.61 �668.08 �668.08 �508.05 �422.32 �715.69 �436.64 �414.76 �446.00
15 �507.35 �617.88 �624.20 �579.34 �660.27 �660.27 �493.83 �433.01 �676.80 �519.91 �457.45 �523.13
20 �557.22 �642.49 �660.17 �616.12 �679.49 �679.49 �497.80 �458.33 �627.00 �549.08 �478.88 �562.01
25 �598.00 �666.08 �694.07 �635.02 �686.57 �686.57 �517.31 �469.48 �588.06 �572.57 �501.95 �589.15

rank 6.36 7.36 8.09 9.09 9.82 9.82 4.55 2.82 11.00 2.73 1.27 4.09
SimCount 3 216.60 2.78 419.04 24.44 16.10 16.10 22.44 4.08 50.08 0.42 0.38 0.72

4 216.52 5.26 308.62 25.32 24.00 24.00 34.94 2.22 54.12 0.94 0.98 1.26
5 209.04 8.02 282.56 24.74 29.36 29.36 57.68 4.94 112.22 1.26 1.08 1.48
6 195.50 11.90 225.34 23.12 44.14 44.14 68.54 6.62 113.76 2.08 1.92 2.68
7 176.74 16.06 204.44 25.40 53.52 53.52 95.46 4.48 191.38 3.16 2.98 3.00

(continued on next page)
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Table 3 (continued)

#topics PLSI LDA LapPLSI LTM SPA SNPA XRAY AnchorFree DFPA bDNMF sDNMF cDNMF

8 160.20 21.12 198.92 23.94 58.76 58.76 132.42 8.84 192.30 5.28 4.78 6.58
9 161.46 25.46 163.18 24.34 74.48 74.48 159.44 9.92 285.06 6.98 6.32 8.06
10 146.84 30.48 139.46 23.34 74.78 74.78 182.96 13.46 287.76 8.00 7.36 7.96
15 91.82 65.08 80.14 23.26 189.44 189.44 481.58 40.78 690.20 25.66 23.40 22.90
20 70.60 104.82 49.32 20.76 271.50 271.50 712.50 79.70 1056.20 50.22 44.90 43.64
25 52.18 147.22 33.20 22.78 450.14 450.14 936.52 132.34 1741.28 72.52 66.32 57.28

rank 9.18 5.73 9.55 5.00 7.36 8.36 9.64 4.73 11.09 2.91 1.82 2.64

Table 4
Performance of the comparison algorithms on Reuters-21578.

#topics PLSI LDA LapPLSI LTM SPA SNPA XRAY AnchorFree DFPA bDNMF sDNMF cDNMF

ACC 3 0.6012 0.6269 0.7797 0.7445 0.7853 0.7854 0.7263 0.7904 0.7155 0.8591 0.8591 0.8591
4 0.5253 0.5691 0.6966 0.6870 0.7291 0.7306 0.6782 0.7257 0.6587 0.7745 0.7745 0.7745
5 0.4671 0.5290 0.6614 0.6198 0.6943 0.6986 0.6716 0.6480 0.6171 0.7160 0.7160 0.7160
6 0.4648 0.5140 0.6165 0.5844 0.6452 0.6392 0.6267 0.6449 0.6169 0.6803 0.6803 0.6803
7 0.4182 0.4628 0.6122 0.5820 0.6125 0.6105 0.6253 0.6472 0.5524 0.6948 0.6948 0.6948
8 0.4049 0.4442 0.6067 0.5663 0.5818 0.5792 0.5736 0.6133 0.5504 0.6474 0.6474 0.6474
9 0.3708 0.4064 0.5914 0.5490 0.5883 0.5832 0.5433 0.5886 0.5089 0.6244 0.6244 0.6244
10 0.3765 0.4150 0.5628 0.5279 0.5642 0.5612 0.5319 0.5822 0.5386 0.6110 0.6110 0.6110
15 0.3278 0.3545 0.4417 0.4210 0.4736 0.4694 0.4411 0.5198 0.5082 0.5189 0.5189 0.5189
20 0.3371 0.3331 0.4083 0.3624 0.4593 0.4610 0.4358 0.5294 0.4585 0.4899 0.4899 0.4899
25 0.3601 0.3373 0.3615 0.3553 0.4351 0.4367 0.4240 0.4684 0.4218 0.4702 0.4702 0.4702

rank 11.73 11.18 7.09 9.27 5.55 5.91 7.82 4.18 8.73 1.18 1.18 1.18
Coherence 3 �769.73 �674.14 �852.48 �943.56 �613.89 �613.89 �470.37 �827.28 �996.30 �760.47 �647.97 �759.97

4 �786.89 �677.18 �813.51 �952.28 �592.47 �592.47 �447.67 �743.97 �1017.05 �719.27 �609.09 �726.13
5 �785.65 �686.31 �838.40 �942.68 �610.96 �610.96 �459.79 �771.63 �1045.24 �752.04 �620.00 �746.92
6 �805.24 �715.15 �854.96 �947.58 �642.78 �642.78 �466.89 �699.50 �1046.70 �764.52 �639.33 �766.60
7 �806.03 �705.90 �804.15 �940.69 �646.05 �646.05 �483.75 �684.54 �982.35 �784.11 �654.06 �793.31
8 �789.16 �762.92 �860.11 �967.17 �657.72 �657.72 �477.15 �722.67 �901.23 �825.28 �674.71 �826.15
9 �793.27 �776.83 �841.44 �975.13 �655.35 �655.35 �469.70 �710.96 �858.33 �832.10 �699.29 �851.84
10 �790.22 �776.46 �831.18 �945.31 �668.08 �668.08 �508.05 �703.61 �911.27 �808.08 �672.49 �828.59
15 �837.89 �847.72 �848.49 �959.15 �660.27 �660.27 �493.83 �685.33 �950.77 �807.32 �669.67 �859.50
20 �831.64 �903.37 �845.18 �955.92 �679.49 �679.49 �497.80 �678.43 �911.14 �846.06 �709.83 �916.70
25 �827.83 �902.68 �831.65 �932.96 �686.57 �686.57 �517.31 �667.75 �905.43 �851.30 �708.87 �969.11

rank 7.73 6.45 9.18 11.45 2.27 3.27 1.00 5.36 11.27 7.27 4.00 8.73
SimCount 3 3.20 230.84 765.22 45.12 16.10 16.10 22.44 7.26 49.70 3.60 3.10 2.96

4 6.46 218.28 759.62 39.60 24.00 24.00 34.94 12.00 51.22 7.84 5.98 6.56
5 9.32 223.40 694.86 38.76 29.36 29.36 57.68 16.90 104.92 11.16 9.28 9.60
6 12.48 228.04 661.24 40.58 44.14 44.14 68.54 19.62 109.74 16.36 13.74 13.62
7 21.22 221.34 721.32 41.66 53.52 53.52 95.46 33.40 190.46 22.00 17.68 18.08
8 24.60 277.82 653.54 46.96 58.76 58.76 132.42 61.60 189.82 34.20 28.68 27.92
9 33.56 332.46 628.38 55.42 74.48 74.48 159.44 69.76 289.18 43.80 35.90 33.80
10 39.68 276.18 607.02 51.18 74.78 74.78 182.96 86.00 287.54 48.60 41.02 38.22
15 76.02 209.54 658.12 46.20 189.44 189.44 481.58 126.70 658.42 137.28 121.78 90.40
20 130.54 222.64 637.50 49.44 271.50 271.50 712.50 226.02 1000.46 227.28 198.32 137.78
25 194.98 202.88 615.52 48.94 450.14 450.14 936.52 339.68 1607.34 296.32 251.80 148.94

rank 2.00 9.55 11.55 5.09 6.73 6.73 9.27 5.91 10.64 4.64 2.73 2.18
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higher than the other comparison methods, which indicates that
DNMF is able to generate less overlapped topic words than the
comparison methods except the probabilistic model—LTM. Note
that, because different DNMF variants use the same deep model
for document clustering, they yield the same clustering accuracy.

Table 3 shows the results on the TDT2 corpus. From the table,
we see that the DNMF variants obtain the best performance in
terms of clustering accuracy and similarity count, particularly
when the number of topics is below 10. bDNMF and sDNMF out-
perform the comparison algorithms in terms of all three evaluation
metrics, which demonstrates the advantage of the DNMF frame-
work further. Although LapPLSI yields competitive clustering accu-
racy with DNMF, its performance in coherence and similarity count
is significantly lower than DNMF. Although AnchorFree reaches a
higher coherence rank than cDNMF, its similarity count scores
are much higher than cDNMF.
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Table 4 shows the performance of the comparison methods on
the Reuters-21578 corpus. From the table, we see that the DNMF
variants reach the highest clustering accuracy. Although it seems
that they do not reach the top performance in terms of coherence
and similarity count soly, they balance the coherence and similar-
ity count which evaluate two contradict aspects of a topic model.
For example, although the coherence of sDNMF ranks behind XRAY
and SPA, its similarity count is much higher than the latter.
Although the similarity count of sDNMF ranks behind PLSI, its
coherence is higher than PLSI as well. If we average the coherence
and similarity count ranking lists, it is clear that sDNMF performs
the best.

We summarize the ranking lists of the comparison methods on
the three corpora in Table 5. From the overall ranking list in the
table, we see that (i) the DNMF variants perform the best generally,
followed by AnchorFree and LTM, and (ii) sDNMF performs the best



Table 5
Average ranks of the comparison methods on all three data sets. The ‘‘Coh.+SimCount” ranking list is the average of the lists in coherence and similarity count. The ‘‘overall”
ranking list is the average of the lists in the three evaluation metrics.

PLSI LDA LapPLSI LTM SPA SNPA XRAY AnchorFree DFPA bDNMF sDNMF cDNMF

ACC 10.58 8.75 6.42 6.43 8.62 8.71 10.30 5.05 6.95 1.06 1.06 1.06
Coherence 8.33 6.27 8.76 9.65 5.60 5.60 5.85 3.19 8.02 5.27 3.12 7.34
SimCount 7.36 7.76 10.70 3.76 6.06 6.06 8.37 6.75 10.64 4.42 2.52 2.61

Coh.+SimCount 7.85 7.02 9.73 6.71 5.83 5.83 7.11 4.97 9.33 4.85 2.82 4.98
Overall 8.76 7.59 8.63 6.61 6.76 6.79 8.17 5.00 8.54 3.58 2.23 3.67
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among the three DNMF variants. If we take a look at the average
ranking list over coherence and similarity count, we find that
sDNMF reach the top performance, while bDNMF and sDNMF
behave similarly with AnchorFree—a recent advanced NMF
method that avoids the anchor-word assumption.
3.5. Effects of the hyperparameters of DNMF

To study how the hyperparameters of DNMF affect the perfor-
mance, we searched the hyperparameters in grid. To prevent
exhaust search, when we studied a hyperparameter, we fixed the
other hyperparameters to their default values.
Fig. 3. Performance of cDNMF with respect to hyperpara

Fig. 4. Performance of cDNMF with
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We first studied the two regularization hyperparameters of
cDNMF k1 and k2 in terms of coherence and similarity count by
searching the two hyperparametres in grid from 0.1 to 0.9. The
results are shown in Figs. 3 and 4. From the figures, we see that
cDNMF is in sensitive to the two hyperparameters.

Then, we studied the hyperparameters d and M of the deep
model in DNMF in terms of all three evaluation metrics, in which
d is searched from 0.1 to 0.9 and M searched from 10 to 400.
Fig. 5 shows the clustering accuracy of DNMF with respect to the
two hyperparameters. Figs. 6,7, shows the coherence and similarity
count of the DNMF variants with respect to d on the three corpora
respectively. Figs. 9–11 shows the coherence and similarity count
of the DNMF variants with respect to M on the three corpora
meter k1 in terms of coherence and similarity count.

respect to hyperparameter k2.



Fig. 5. Clustering accuracy of DNMF with respect to hyperparameters d and M.
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respectively. From the figures, we see that although the DNMF
variants are sensitive to d and M, we can clearly find the regula-
tions. For the hyperparameter d, we observe from Fig. 5a and
Figs. 6–8 that, when d is set around the default value 0:5, all DNMF
variants approach to the top performance in all cases.
Fig. 6. Performance of the DNMF variants with respect to hyperparamet

Fig. 7. Performance of the DNMF variants with respect to hyperpar
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For the hyperparameterM, we see from Fig. 5b that enlarging M
clearly improves the clustering accuracy of all DNMF variants.
From Figs. 9a, 10a, and 11a, we see that the performance of all
DNNF variants is improved generally along with the increase of
M in terms of coherence in all cases except that the performance
er d on 20-newsgroups in terms of coherence and similarity count.

ameter d on TDT2 in terms of coherence and similarity count.



Fig. 9. Performance of the DNMF variants with respect to hyperparameter M on 20-newsgroups in terms of coherence and similarity count.

Fig. 10. Performance of the DNMF variants with respect to hyperparameter M on TDT2 in terms of coherence and similarity count.

Fig. 8. Performance of the DNMF variants with respect to hyperparameter d on Reuters-21578 in terms of coherence and similarity count.
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of bDNMF and sDNMF is getting worse on 20-newsgroups. From
Figs. 9b, 10b, and 11b, we see that the similarity count scores of
all DNMF variants are getting smaller generally along with the
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increase of M on 20-newsgroups and TDT2. It is interesting to
observe that the similarity count scores of the DNMF variants first
get larger and then smaller along with the increase of M on



Fig. 11. Performance of the DNMF variants with respect to hyperparameter V on Reuters-21578 in terms of coherence and similarity count.
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Reuters-21578, with a peak at M ¼ 100. Nonetheless, the DNMF
variants approach to the lowest similarity count scores at
M ¼ 400 in all cases. We can imagine that, when we set M larger
than 400, the performance may be further improved with the
expense of higher computational complexity. To balance the per-
formance and the computational complexity, it is reasonable to
set M ¼ 400.
4. Conclusions

In this paper, we have proposed a deep NMF topic modeling
framework and evaluated its effectiveness with three implementa-
tions. To our knowledge, this is the first deep NMF topic modeling
framework. The novelty of DNMF lies in the following aspects.
First, we proposed a novel unsupervised deep NMF framework that
is fundamentally different from existing deep learning based topic
modeling methods. It takes the unsupervised deep learning as a
constraint of NMF. It is a general framework that can incorporate
many types of deep models and NMF methods. To evaluate its
effectiveness, we implemented three DNMF algorithms, denoted
as bDNMF, sDNMF, and cDNMF. bDNMF takes the sparse output
of the deep model as the topic-document matrix directly, which
formulates bDNMF as a supervised regression problem with a non-
negative constraint on the word-topic matrix. sDNMF takes the
output of the deep model as a mask of the topic-document matrix,
and solves the NMF problem by the alternative iterative optimiza-
tion, which relaxes the strong constraint on the topic-document
matrix in bDNMF. cDNMF takes the output of the deep model as
a regularization, which further relaxes the constraint on the
topic-document matrix. To our knowledge, the regularization
terms in cDNMF is novel. Finally, we applied multilayer bootstrap
networks for document clustering. It reaches the state-of-the-art
performance given the high-dimensional sparse TF-IDF statistics
of the documents, which further boosts the overall performance
of the DNMF implementations. We have conducted an extensive
experimental comparison with 9 representative comparison meth-
ods covering probabilistic topic models, NMF topic models, and
deep topic modeling on three benchmark datasets—20-
newsgroups, TDT2, and Reuters-21578. Experimental results show
that the proposed DNMF variants outperform the comparison
methods significantly in terms of clustering accuracy, coherence,
and similarity count. Moreover, although the DNMF variants are
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relative sensitive to the hyperparameter d, we always find a robust
working range across the corpora, which demonstrates the robust-
ness of the DNMF variants in real-world applications.
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Appendix A

Before we prove Theorem 1, we first give the definition of an
upper bound auxiliary function.

Definition 1. Gðu; u0Þ is an upper bound auxiliary function for gðuÞ
if the following conditions are satisfied:

Gðu;u0ÞP gðuÞ;Gðu;uÞ ¼ gðuÞ ðA:1Þ
Corollary 1. If Gð�; �Þ is an upper bound auxiliary function for gðuÞ,
then gðuÞ is non-increasing under the update rule

utþ1 ¼ argmin
u
Gðu;utÞ ðA:2Þ
Proposition 1. For any matrices
A 2 Rn�n

þ ;B 2 Rk�k
þ ;E 2 Rn�k

þ ;E0 2 Rn�k
þ , with A and B being symmetric

matrices, the following inequality holds [59]:

Xn
i¼1

Xk

j¼1

½AE0B�ij½E�2ij
½E�0ij

P TrðETAEBÞ ðA:3Þ
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Definition 2. A function can be represented as an infinite sum of
terms that are calculated from the values of the function’s deriva-
tives at a single point, which can be formulated as follows:

f ðxÞ ¼
X1
n¼0

f ðnÞðaÞ
n!
ðx� aÞn ðA:4Þ

Given the above definitions, the objective function of cDNMF
(21) with respect to the three univariate functions are obtained
as follows:

OC ¼ kD� CWk2F þ k1kCCT � DDTk2F ðA:5Þ

OW ¼ kD� CWk2F þ k2kf ðDÞ � TWk2F ðA:6Þ

OT ¼ k2kf ðDÞ � TWk2F ðA:7Þ
Then, we have the following three lemmas.

Lemma 1. The auxiliary function for OðCÞ is as follows:

Gð½C�ij; C0
� �

ijÞ ¼ OC þ �2DWT þ 2CWWT
h

�4k1DDTCþ 4k1CC
TC

i
ij
ð½C�ij � ½C0�ijÞ

þ 1
3!4k1½C�ijð½C�ij � ½C0�ijÞ

3 þ 1
4!4k1ð½C�ij � ½C0�ijÞ

4

þ 1
2

2½CWWT �ijþ4k1 ½CCTC�ij
½C�ij ð½C�ij � ½C0�ijÞ

2

ðA:8Þ

Proof 2. It is obvious that GðC;CÞ ¼ OCðCÞ, we only need to prove
that GðC;C0ÞP OCðCÞ. The first-order partial derivative of (A.5) in
element-wise is

@OC
@½C�ij

¼ ½�2DWT þ 2CWWT � 4k1DD
TCþ 4k1CC

TC�ij
ðA:9Þ

The second-order derivative of (A.5) with respect to C is

@2OC

@½C�ij@½C�ij
¼ ½2WWT �jj � 4k1½DDT �ii þ 4k1½CCT �ii ðA:10Þ

The third-order partial derivative of (A.5) is

@3OC

@½C�ij@½C�ij@½C�ij
¼ 4k1½C�ij ðA:11Þ

The fourth-order partial derivative of (A.5) is

@4OC

@½C�ij@½C�ij@½C�ij@½C�ij
¼ 4k1 ðA:12Þ

According to the Taylor expansion in Definition (A.4), we can
rewrite (A.5) to its Taylor expansion form:

OCðcijÞ ¼ OC þ @OC
@cij
ðcij � ½C�ijÞ

þ 1
2

@2OC
@cij@cij

ðcij � ½C�ijÞ2

þ 1
3!

@3OC
@cij@cij@cij

ðcij � ½C�ijÞ3

þ 1
4!

@4OC
@cij@cij@cij@cij

ðcij � ½C�ijÞ4

ðA:13Þ

The upper bound auxiliary function for (A.5) is defined as

Gð½C�ij; ½C0�ijÞ ¼ OC þ @OC
@½C�ij ð½C�ij � ½C

0�ijÞ
þ 1

3!
@3OC

@½C�ij@½C�ij@½C�ij ð½C�ij � ½C
0�ijÞ

3

þ 1
4!

@4OC
@½C�ij@½C�ij@½C�ij@½C�ij ð½C�ij � ½C

0�ijÞ
4

þ 1
2

2½CWWT �ijþ4k1 ½CCTC�ij
½C�ij ð½C�ij � ½C0�ijÞ

2

ðA:14Þ
171
Substituting (A.13) into (A.14), we find that GðC;C0ÞP OCðCÞ is
equivalent to

1
2

2½CWWT �ijþ4k1 ½CCTC�ij
½C�ij ð½C�ij � ½C0�ijÞ

2

P 1
2 ½2WWT �jj � 4k1½DDT �ii þ 4k1½CCT �ii
� �

ð½C�ij � ½C0�ijÞ
2

ðA:15Þ

Because we have

½CWWT �ij
½C�ij ¼

X
j

½C�ij�½WWT �jjð Þ
½C�ij

P ½C�ij�½WWT �jj
½C�ij ¼ ½WWT �jj

ðA:16Þ

½CCTC�ij
½C�ij ¼

X
j

½CCT �jj�½C�ijð Þ
½C�ij

P ½CCT �ii�½C�ij
½C�ij ¼ ½CCT �ii

ðA:17Þ

we can conclude that (A.15) holds, and (A.14) is an upper bound
auxiliary function for (A.5). Because the elements of matrix C is non-
negative, the third and fourth order partial derivatives are larger
than zero and (A.14) is a convex function, its minimum value can
be achieved at

½C0�ij
¼ ½C�ij �

½�2DWTþ2CWWT�4k1DDTCþ4k1CCTC�ij
2�1

2

½2CWWT �ijþ4k1 ½CCT C�ij
½C�ij

¼ ½C�ij
½DWT �ijþ2k1 ½DDTC�ij
½CWWT �ijþ2k1 ½CCTC�ij

ðA:18Þ

Lemma 1 is proved. h
Lemma 2. Given Proposition 1, the auxiliary function for OðWÞ is as
follows:

GðW;W0Þ ¼ �2k2Trðf ðDÞWTTTÞ � 2TrðDWTCTÞ
þ
X
ij

½CTCW�ij ½W0 �2ij
½W�ij þ k2

X
ij

½TTTW�ij ½W0 �2ij
½W�ij

ðA:19Þ

Lemma 3. The auxiliary function for OðTÞ is as follows:

GðT;T0Þ ¼ �2k2Trðf ðDÞWTTTÞ þ k2
X
ij

½TWWT �ij½T0�
2
ij

½T�ij
ðA:20Þ

With the above lemmas, we derive the update rules for each
variable by minimizing their corresponding auxiliary functions:

@GðC;C0 Þ
@½C0 �ij ¼ �2½DW

T �ij þ 2 ½CWWT �ij ½C0 �ij
½C�ij

�4k1½DDTC�ij þ 4k1
½CCTC�ij ½C0 �ij
½C�ij ¼ 0

ðA:21Þ

@GðW;W0 Þ
@½W0 �ij ¼ �2k2½T

T f ðDÞ�ij � 2½CTD�ij
þ2 ½C

TCW�ij ½W0 �ij
½W�ij þ 2k2

½TTTW�ij ½W0 �ij
½W�ij ¼ 0

ðA:22Þ

@GðT;T0Þ
@½T0 �ij ¼ �2½f ðDÞW

T �ij þ 2 ½TWWT �ij ½T0 �ij
½T�ij ¼ 0 ðA:23Þ

which derives

½C0�ij ¼ ½C�ij
½DWT �ij þ 2k1½DDTC�ij
½CWWT �ij þ 2k1½CCTC�ij

ðA:24Þ

½W0�ij ¼ ½W�ij
k2½TT f ðDÞ�ij þ ½CTD�ij
½CTCW�ij þ k2½TTTW�ij

ðA:25Þ
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½T0�ij ¼ ½T�ij
½f ðDÞWT �ij
½TWWT �ij

ðA:26Þ

It can be proved that the three update rules (29), (28) and (30)
are equivalent to (A.24), (A.25) and (A.26), respectively. Because
the objective function in (21) is lower bounded by 0, the modified
DNMF converges to a stationary point. Theorem 1 is proved.
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