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Abstract—Topic modeling is widely studied for the dimension
reduction and analysis of documents. However, it is formulated as
a difficult optimization problem. Current approximate solutions
also suffer from inaccurate model- or data-assumptions. To deal
with the above problems, we propose a polynomial-time deep
topic model with no model and data assumptions. Specifically,
we first apply multilayer bootstrap network (MBN), which is an
unsupervised deep model, to reduce the dimension of documents,
and then use the low-dimensional data representations or their
clustering results as the target of supervised Lasso for topic word
discovery. To our knowledge, this is the first time that MBN and
Lasso are applied to unsupervised topic modeling. Experimental
comparison results with five representative topic models on the
20-newsgroups and TDT2 corpora illustrate the effectiveness of
the proposed algorithm.

I. INTRODUCTION

Topic modeling is an unsupervised method that learns latent
structures and salient features from document collections. It
is originally formulated as a hierarchical generative model:
a document is generated from a mixture of topics, and a
word in the document is generated by first choosing a topic
from a document-specific distribution, and then choosing the
word from the topic-specific distribution. The main difficulty
of topic modeling is the optimization problem, which is NP-
hard in the worst case due to the intractability of the posterior
inference. Existing methods aim to find approximate solutions
to the difficult optimization problem, which falls into the
framework of matrix factorization.

Matrix factorization based topic modeling maps documents
into a low-dimensional semantic space by decomposing the
documents into a weighted combination of a set of topic
distributions: D ≈ CW where D(:, d) represents the d-th
document which is a column vector over a set of words
with a vocabulary size of v, C(:, g) denotes the g-th topic
which is a probability mass function over the vocabulary, and
W (g, d) denotes the probability of the g-th topic in the d-th
document. Existing methods for the matrix decomposition can
be categorized to two classes in general—probabilistic models
[1]–[4] and nonnegative matrix factorizations (NMF) [5]–[7].

A seminal work of probabilistic models is latent Dirichlet
allocation (LDA) [1]. It assumes that each document is a
sample from a multinomial distribution whose parameters are
generated from CW(:, d). Each column of C and W also

represent multinomial distributions independently drawn from
Dirichlet distributions. It adopts Kullback-Leibler divergence
to measure the distance between D and CW, since the pos-
terior distributions p(W|D) and p(C|D) are coupled. Later
on, many models followed the above framework, such as hier-
archical Dirichlet process [8], [9] and Laplacian probabilistic
semantic indexing [10]. However, the model assumptions, such
as the multinomial distribution, may not be always accurate.

The validness of NMF comes from the fact that the matrices
C and W should be nonnegative. The objective function of
NMF is generally as follows:

(C,W) = arg min
C≥0;W≥0

‖ D−CW ‖2F (1)

An important weakness of this formulation is that there is
no guarantee that the solutions of C and W are unique
[11]. To solve the identifiability problem, many NMF methods
adopted an anchor word assumption, which assumes that
every topic has a characteristic anchor word that does not
appear in the other topics [12]. However, this assumption may
not always hold in practice. Recently, an anchor-free NMF
based on the second-order statistics of documents [13] has
been proposed, which significantly improved the performance
of NMF methods. Another problem of NMF is that it is
formulated as a shallow learning method, which may not
capture the nonlinearity of documents.

Motivated by the above problems, this paper proposes a
deep topic model (DTM), which learns a deep representation
of the documents, i.e. f(D), and the topic-word matrix C
separately, under the assumption that if each of the components
is good enough, then the overall performance can be boosted.
Specifically, we apply multilayer bootstrap networks (MBN)
[14] to learn a document-topic projection f(·) first, and then
apply Lasso [15] to learn C given f(D). MBN is a simple non-
parametric deep model for unsupervised dimension reduction,
which overcomes the problems of model assumptions, shallow
learning, and anchor word assumption. Given the output of
MBN, the topic modeling becomes a simple supervised regres-
sion problem. We employ Lasso for this problem. Empirical
results on the TDT2 and 20-newsgroups corpora illustrate the
effectiveness of the proposed algorithm.
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II. DEEP TOPIC MODELING

A. Object function
The objective of DTM is defined as

min
f(·),C

1

2
‖Cf(D)−D‖2F + λΩ(C) (2)

where f(·) is an unsupervised deep model containing multiple
layers of nonlinear transforms, Ω(·) is a regularizer, and λ
is a regularization hyperparameter. We optimize (2) in two
steps. The first step learns f(D) by MBN, which outputs the
document-topic matrix W. The second step learns the topic-
word matrix C by Lasso, given W = f(D). The overall DTM
algorithm is shown in Fig. 1.

Fig. 1: Deep topic model.

B. Multilayer bootstrap network
The network structure of MBN is shown in Fig. 1. It

is a deep dimensionality reduction algorithm optimized by
random resampling of data and one-nearest-neighbor opti-
mization [14]. It consists of L gradually narrowed hidden
layers from bottom-up. Each hidden layer consists of V k-
centroids clusterings (V > 100), where parameter k at the
l-th layer is denoted by kl, l = 1, . . . , L. Each kl-centroids
clustering has kl output units, each of which indicates one
cluster. The output layer is the linear-kernel-based spectral
clustering [16]. It outputs W, which is used as the input of
the Lasso component.

MBN is trained layer-by-layer from bottom-up. To train
the l-th layer, we simply need to focus on training each kl-
centroids clustering as follows:
• Random sampling of input. The first step randomly

selects kl data points from X(l−1) = [x
(l−1)
1 , . . . ,x

(l−1)
N ]

as the kl centroids of the clustering, where N is the size
of the corpus. If l = 1, then X(l−1) = D.

• One-nearest-neighbor learning. The second step assigns
any input x(l−1) to one of the kl clusters and outputs a kl-
dimensional indicator vector h = [h1, . . . , hkl ]

T , which
is a one-hot sparse vector.

The output units of all kl-centroids clusterings are con-
catenated as the input of their upper layer, i.e. x(l) =
[hT1 , . . . ,h

T
V ]T . From the above description, we can see that

MBN does not make any model or data assumptions.
Note that the parameter setting {kl}Ll=1 is important to

maintain the tree property of MBN. In practice, it obeys the
following criterion:

k1 = bN/2c , kl = bδkl−1c (3)

kL ≈
{
dNZ

Nz
e, if D is strongly class imbalanced

1.5c, otherwise
(4)

where δ ∈ (0, 1) is a user defined hyperparameter with 0.5
as its default, c is the number of topics, NZ and Nz are
the numbers of the documents belonging to the largest and
smallest topics respectively. δ controls the network structure.
(4) guarantees that at least one data point is sampled from
each of the topics in probability. In other words, it ensures
that the random samples at the top hidden layer is an effective
model.

C. Lasso

Substituting the output of MBN, i.e. W, to (2) derives:

min
C

1

2
‖CW −D‖2F + λΩ(C) (5)

(5) is a typical regularized regression problem [17]. Many re-
gression models can be applied to (5). Here we choose Lasso,
given its strong ability on the feature selection and prediction
problems for high-dimensional data. Specifically, we use Lasso
to calculate the conditional probability distribution of each
word over the topics [15], which is formulated as the follow
problem:

min
C(i,:)

1

2
‖ C(i, :)W −D(i, :) ‖22 +λ ‖C(i, :)‖1 (6)

where i = 1, . . . , v is the index of the i-th word. We adopt
the alternating direction method of multipliers (ADMM) [18]
solver to solve problem (6).1

III. RELATED WORK

It is known that the main difficulty of hierarchical proba-
bilistic topic models is the high computation on the inference
problem of the hidden variables. Topic models based on
deep variational auto-encoders overcome the difficulty. They
generally can be decomposed into two modules: an inference
network q(h|D(:, d)) which compresses the documents into
continuous hidden vectors h by deep neural networks, and a
generative model p(D(:, d)|h) =

∏V
v=1 p(D(v, d)|h) which

reconstructs the documents by generating the words indepen-
dently from h [19] via restricted Boltzmann machines, sigmoid
belief networks, Dirichlet processes, etc [20], where D(v, d)
is the vth word of the document D(:, d). They maximise the

1https://github.com/foges/pogs
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evidence lower-bound of the joint likelihood of the documents
and hidden variables:

L = Eq(h|D(:,d))

[
V∑
v=1

log p(D(v, d)|h)

]
−DKL[q(h|D(:, d))‖p(h)]

(7)
where DKL(·‖·) denotes the Kullback-Leibler divergence
between two distributions, Eq(h|D(:,d))(·) is the expectation
operator over q(h|D(:, d)), and p(h) is a prior for h. The
above models integrate the power of neural networks into the
inference of the probabilistic topic models, which not only
helps the probabilistic topic models scalable to big datasets
but also speeds up the convergence of the probabilistic topic
models significantly. However, the prior assumption of h
may not always hold, and moreover, the inference network
faces a problem of component collapsing [21] which is a
kind of bad local optima that is particularly endemic to
auto-encoding variational Bayes and similar methods. On the
contrary, the proposed method not only is able to generate deep
representations of the documents but also does not suffer the
aforementioned weaknesses.

IV. EXPERIMENTS

A. Experimental settings

We conducted experiments on the 20-newsrgoups and the
top 30 largest topics of the NIST Topic Detection and Tracking
(TDT2) corpora. 20-Newsgroups consists of 18,846 documents
with a vocabulary size of 26,214. The subset of TDT2 con-
sists of 9,394 documents with a vocabulary size is 36,771.
For each corpus, we randomly sampled c = 5, 10, 15, 20
topics respectively, and reported the average results over 50
Monte-Carlo runs. The indices of the 50 runs on TDT2 are
the same as those at http://www.cad.zju.edu.cn/home/dengcai/
Data/TextData.html. We used TF-IDF as the feature. We used
cosine similarity to measure the similarity of two documents
in the TF-IDF space.

For the proposed DTM, we set the hyperparameters of MBN
and Lasso to their default values, i.e. V = 400, δ = 0.5,
and λ = 1/3.2 We compared DTM to the following five
representative topic modeling methods:
• LDA [1]: it is a seminal probabilistic model based on

multinomial and Dirichlet distributions.
• Locally-consistent topic modeling (LTM) [22]: it ex-

tends the probabilistic latent semantic indexing algorithm
[23] by incorporating cosine similarity kernel to model
the local manifold structure of documents.

• Successive nonnegative projection (SNPA) [24]: it is
an NMF method. It does not require the matrix W to
be full rank, which makes it more robust to noise than
traditional NMF methods.

• Anchor-free correlated topic modeling (AchorFree)
[13]: it is an NMF method. It does not have the anchor-
word assumption, which makes it behave much better
than traditional NMF methods.

2The default value of λ is in the implementation of the ADMM algorithm.

• Deep Poisson Factor Modeling (DPFM) [20]: it is a
deep learning based topic model built on the Dirichlet
process. We set its DNN to a depth of two hidden
layers, and set the number of the hidden units of the
two hidden layers to c and dc/2e respectively for its best
performance. We used the output from the first hidden
layer for clustering.

We further compared MBN with a cosine-similarity-kernel-
based spectral clustering (SC) algorithm [16], and compared
DTM with SC+Lasso, for evaluating the effects of MBN on
performance.

B. Evaluation Metrics

We evaluated the comparison results in terms of clustering
accuracy (ACC), coherence (Coh.) [25], and similarity count
(SimC.). Coherence evaluates the quality of a single mined
topic. It is calculated by

Coh(ν) =
∑

v1,v2∈ν
log

freq(v1, v2) + ε

freq(v2)
(8)

where v1 and v2 denote two words in the vocabulary ν,
freq(v1, v2) denotes the number of the documents where
v1 and v2 co-appear, freq(v2) denotes the number of the
documents containing v2, and ε = 0.01 is used to prevent
the logarithm operator from zero. The higher the clustering
accuracy or coherence score is, the better the topic model
is. Because the coherence measurement does not evaluate the
redundancy of a topic, we use the similarity count to measure
the similarity between topics. For each topic, the similarity
count is obtained simply by adding up the overlapped words of
the topics within the leading c words. The lower the similarity
count score is, the better the topic model is.

C. Results

Table I shows the comparison results on the 20-newsgroups
corpus. From the table, we see that DTM achieves higher
clustering accuracy than the other algorithms. For example,
DTM achieves more than 5% absolute clustering accuracy
improvement over the runner-up method LTM when c = 10,
and 1% higher in other cases. In addition, the single-topic
quality of the topics mined by DTM ranks the fourth in terms
of coherence. The overlaps between the topics mined by DTM
ranks the second in terms of similarity count.

Table II shows the results on the TDT2 corpus. From the
table, we can see that DTM obtains the best performance in
terms of clustering accuracy and similarity count evaluation
metrics. For example, the clustering accuracy produced by
DTM is over 4% absolutely higher than that of the runner-
up method when mining 5 topics, and over 13% higher than
the latter when c = 10.

Table III shows the results on the Reuters-21578 corpus.
From the table, we can see that DTM obtains the best
performance in terms of clustering accuracy and similarity
count. For instance, the clustering accuracy produced by DTM
is over 7% absolutely higher than that of the runner-up method
when c = 3. We further averaged all six ranking lists in Tables
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TABLE I: Comparison results on 20-newsgroups.
Metric Model c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10 c=15 c=20 rank

ACC

LDA 0.81 0.73 0.70 0.66 0.65 0.62 0.60 0.59 0.52 0.49 5.9
LTM 0.90 0.83 0.84 0.82 0.79 0.77 0.72 0.71 0.63 0.60 2.1
SNPA 0.43 0.33 0.29 0.26 0.24 0.22 0.21 0.21 0.18 0.15 7.0

AnchorFree 0.88 0.84 0.76 0.71 0.71 0.69 0.66 0.64 0.52 0.45 4.6
SC 0.84 0.81 0.79 0.76 0.74 0.71 0.69 0.67 0.58 0.52 3.2

DPFM 0.84 0.81 0.79 0.76 0.74 0.71 0.69 0.67 0.58 0.52 4.2
DTM 0.91 0.89 0.87 0.86 0.83 0.81 0.77 0.76 0.68 0.64 1.0

Coh.

LDA -603.3 -634.1 -651.7 -678.7 -686.5 -702.2 -716.6 -729.3 -762.8 -759.1 3.0
LTM -636.5 -677.5 -704.4 -753.5 -741.0 -778.8 -790.3 -799.5 -854.7 -855.9 5.2
SNPA -801.3 -792.6 -819.3 -863.5 -856.6 -873.9 -907.8 -911.9 -1055.7 -901.7 7.0

AnchorFree -572.9 -573.3 -565.9 -538.8 -544.2 -566.8 -562.4 -571.9 -575.6 -596.1 1.2
SC -670.3 -689.8 -712.8 -742.6 -751.1 -742.1 -775.2 -774.8 -831.5 -890.2 5.3

DPFM -534.4 -585.5 -562.9 -588.6 -587.2 -592.8 -605.6 -616.2 -640.4 -676.1 1.8
DTM -681.1 -681.4 -696.6 -729.9 -731.1 -736.2 -760.4 -768.4 -823.2 -899.8 4.5

SimC.

LDA 9.4 14.6 22.3 33.1 37.2 42.5 50.5 66.4 116.2 196.0 4.0
LTM 0.4 1.0 1.6 2.3 4.3 5.2 6.4 9.2 19.6 26.0 1.1
SNPA 5.5 12.2 13.2 19.7 22.3 24.1 28.1 23.6 21.5 15.0 2.7

AnchorFree 10.4 21.3 32.2 53.1 76.1 112.1 142.0 195.8 598.8 1235.0 5.4
SC 21.6 38.4 64.2 95.7 124.1 160.7 193.1 224.8 365.6 496.1 5.8

DPFM 21.6 38.4 64.2 95.7 124.1 160.7 193.1 224.8 365.6 496.1 6.8
DTM 1.7 3.8 4.3 7.2 9.8 13.8 16.6 20.0 39.4 54.8 2.2

I, II and III. The overall rank of the 6 comparison methods
from the number one to number six is DTM, AnchorFree,
LTM, SC, SNPA, LDA, and DPFM, respectively.

Table IV shows the top 20 topic words discovered by
AnchorFree and DTM respectively when mining a corpus of
5 topics in TDT2. From the table, we can see that DTM
produces more discriminative topic words than AnchorFree.
Specifically, DTM does not produce overlapping words, while
AnchorFree produces 23 overlapping words among the 100
topic words. The topic words of the second and fifth topics
produced by AnchorFree have an overlap of over 50%. Some
informative words discovered by DTM, such as the words re-
lated to anti-government activities or violence in the fifth topic,
were not detected by AnchorFree. The above phenomenon
is observed in other experiments too. We conjecture that
the additional conditional assumptions made by AnchorFree,
such as consecutive words being persistently drawn from the
same topic, might affect the topic characterization. On the
contrary, the proposed DTM not only avoids making additional
assumptions but also does not suffer the weaknesses of deep
neural networks.

D. Effects of hyperparameters on performance

We study V and δ independently on 20-newsgroups, TDT2
and Reuters-21578. When we study a hyperparameter, we
tune it in a range, leaving the other hyperparameters to their
default values. The experimental results are shown in Fig. 2.
From Figs. 2a, 2c and 2e, we see that enlarging V increases
the accuracy of DTM steadily, and the performance of DTM
becomes stable when V > 100. However, increasing V
enlarges the computational complexity of DTM as well. To
balance the accuracy and computational complexity, setting
V = 400 is reasonable. From Figs. 2b, 2d and 2f, we
observe that, although the performance is relatively sensitive
to hyperparameter δ, the hyperparameter has a stable interval
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Fig. 2: Effect of hyperparameters V and δ on performance.

around the default value 0.5. To conclude, setting δ = 0.5 is
safe for DTM.
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TABLE II: Comparison results on TDT2.
Metric Model c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10 c=15 c=20 c=25 rank

ACC

LDA 0.79 0.74 0.70 0.68 0.66 0.62 0.65 0.64 0.59 0.61 0.61 5.8
LTM 0.99 0.95 0.94 0.92 0.86 0.84 0.81 0.77 0.69 0.65 0.63 2.7
SNPA 0.79 0.73 0.70 0.64 0.61 0.58 0.58 0.56 0.47 0.46 0.44 7.0

AnchorFree 0.97 0.95 0.92 0.91 0.90 0.87 0.87 0.85 0.80 0.77 0.74 2.3
SC 0.92 0.82 0.79 0.75 0.70 0.68 0.70 0.67 0.63 0.58 0.59 5.0

DPFM 0.88 0.82 0.80 0.79 0.75 0.72 0.75 0.73 0.68 0.68 0.65 4.0
DTM 0.97 0.99 0.98 0.98 0.94 0.94 0.94 0.90 0.85 0.82 0.76 1.2

Coh.

LDA -427.4 -510.3 -509.8 -546.0 -543.6 -565.3 -570.7 -574.4 -617.9 -642.5 -666.1 4.2
LTM -678.4 -660.6 -634.3 -626.2 -597.0 -594.9 -594.8 -597.6 -579.3 -616.1 -635.0 4.8
SNPA -613.9 -592.5 -611.0 -642.8 -646.1 -657.7 -655.4 -668.1 -660.3 -679.5 -686.6 5.7

AnchorFree -419.1 -430.8 -407.0 -428.8 -397.8 -445.8 -418.1 -422.3 -433.0 -458.3 -469.5 1.5
SC -353.9 -429.0 -441.6 -468.2 -507.4 -492.9 -488.6 -517.6 -542.9 -566.7 -584.3 2.4

DPFM -952.1 -888.2 -803.9 -831.7 -731.3 -704.8 -755.2 -715.7 -676.8 -627.0 -588.1 6.4
DTM -360.1 -358.7 -402.1 -389.6 -430.0 -469.2 -508.9 -505.1 -623.9 -684.0 -706.6 3.0

SimC.

LDA 2.8 5.3 8.0 11.9 16.1 21.1 25.5 30.5 65.1 104.8 147.2 4.4
LTM 24.4 25.3 24.7 23.1 25.4 23.9 24.3 23.3 23.3 20.8 22.8 4.1
SNPA 16.1 24.0 29.4 44.1 53.5 58.8 74.5 74.8 189.4 271.5 450.1 5.8

AnchorFree 4.1 2.2 4.9 6.6 4.5 8.8 9.9 13.5 40.8 79.7 132.3 2.6
SC 0.2 2.4 3.6 8.9 12.2 13.2 19.3 25.4 44.1 91.8 123.2 3.0

DPFM 50.1 54.1 112.2 113.8 191.4 192.3 285.1 287.8 690.2 1056.2 1741.3 7.0
DTM 0.5 0.1 0.2 0.4 1.0 1.0 1.1 2.2 5.9 10.0 18.2 1.1

TABLE III: Comparison results on Reuters-21578.
Metric Model c=3 c=4 c=5 c=6 c=7 c=8 c=9 c=10 c=15 c=20 c=25 rank

ACC

LDA 0.63 0.57 0.53 0.51 0.46 0.44 0.41 0.42 0.35 0.33 0.34 6.9
LTM 0.74 0.69 0.62 0.58 0.58 0.57 0.55 0.53 0.42 0.36 0.36 4.5
SNPA 0.79 0.73 0.70 0.64 0.61 0.58 0.58 0.56 0.47 0.46 0.44 2.7

AnchorFree 0.79 0.73 0.65 0.64 0.65 0.61 0.59 0.58 0.52 0.53 0.47 2.1
SC 0.66 0.62 0.60 0.58 0.52 0.46 0.43 0.44 0.37 0.34 0.34 6.1

DPFM 0.72 0.66 0.62 0.62 0.55 0.55 0.51 0.54 0.51 0.46 0.42 4.5
DTM 0.86 0.77 0.72 0.68 0.69 0.65 0.62 0.61 0.52 0.49 0.47 1.3

Coh.

LDA -674.1 -677.2 -686.3 -715.2 -705.9 -762.9 -776.8 -776.5 -847.7 -903.4 -902.7 3.7
LTM -943.6 -952.3 -942.7 -947.6 -940.7 -967.2 -975.1 -945.3 -959.2 -955.9 -933.0 6.0
SNPA -613.9 -592.5 -611.0 -642.8 -646.1 -657.7 -655.4 -668.1 -660.3 -679.5 -686.6 1.2

AnchorFree -827.3 -744.0 -771.6 -699.5 -684.5 -722.7 -711.0 -703.6 -685.3 -678.4 -667.8 2.9
SC -644.6 -619.2 -657.5 -691.7 -664.8 -696.2 -692.2 -690.9 -720.2 -744.4 -763.2 2.3

DPFM -996.3 -1017.1 -1045.2 -1046.7 -982.4 -901.2 -858.3 -911.3 -950.8 -911.1 -905.4 5.9
DTM -808.3 -812.6 -828.3 -847.9 -918.7 -976.2 -1002.4 -975.8 -1030.0 -1102.3 -1099.3 6.0

SimC.

LDA 230.8 218.3 223.4 228.0 221.3 277.8 332.5 276.2 209.5 222.6 202.9 6.1
LTM 45.1 39.6 38.8 40.6 41.7 47.0 55.4 51.2 46.2 49.4 48.9 3.2
SNPA 16.1 24.0 29.4 44.1 53.5 58.8 74.5 74.8 189.4 271.5 450.1 4.7

AnchorFree 7.3 12.0 16.9 19.6 33.4 61.6 69.8 86.0 126.7 226.0 339.7 3.7
SC 3.3 7.7 10.4 15.5 25.4 41.5 57.2 63.1 137.7 252.9 312.2 2.8

DPFM 49.7 51.2 104.9 109.7 190.5 189.8 289.2 287.5 658.4 1000.5 1607.3 6.4
DTM 0.7 1.8 2.3 3.9 4.7 7.2 8.3 10.6 25.2 37.6 50.7 1.1

V. CONCLUSION

In this paper, we have proposed a deep topic model
based on MBN and Lasso. The novelty of DTM lies in
the following three respects. First, we extended the linear
matrix factorization problem to its nonlinear case. Second, we
estimated the topic-document matrix and word-topic matrix
separately by MBN and Lasso independently, which simplifies
the optimization problem of (2). At last, we applied MBN
and Lasso to the unsupervised topic modeling for the first
time. Particularly, MBN, as an unsupervised deep model,
overcomes the weaknesses of the model assumptions, anchor
word assumption, and shallow learning, which accounts for
the advantage of DTM over the 5 representative comparison
methods. Experimental results on 20-newsgroups, TDT2 and
Reuters-21578 have demonstrated the effectiveness of the

proposed method.
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TABLE IV: Topic words discovered by DRTM and AnchorFree on a 5-topic subset of TDT2 corpus. The topic words in bold
denotes overlapped words between topics.

AnchorFree DRTM

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

netanyahu asian bowl tornadoes economic netanyahu asian bowl florida nigeria
israeli asia super florida indonesia israeli percent super tornadoes abacha
israel economic broncos central asian israel indonesia broncos tornado military

palestinian financial denver storms financial palestinian asia denver storms police
peace percent packers ripped imf peace economy packers killed nigerian
arafat economy bay victims economy albright financial green victims opposition

palestinians market green tornado crisis arafat market game damage nigerias
albright stock football homes asia palestinians stock bay homes anti

benjamin crisis game killed monetary talks economic football ripped elections
west markets san people currency west billion elway nino arrested
talks stocks elway damage billion benjamin crisis san el lagos
bank currency diego twisters fund madeleine imf team weather democracy
prime prices xxxii nino percent london japan sports twisters sani
london dollar nfl el international ross spkr diego storm sysciviliantem
minister investors quarterback deadly government withdrawal currency coach rain protest
yasser index sports storm bank process markets play stories protests
ross billion play counties korea prime dollar win deadly presidential

withdrawal bank yards weather south yasser south teams struck abachas
madeleine growth favre funerals indonesian secretary government season residents violent

13 indonesia pittsburgh toll suharto 13 prices fans california nigerians
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