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Abstract
Unsupervised domain adaptation transfers empirical knowledge from a label-rich source domain to a fully unlabeled target
domain with a different distribution. A core idea of many existing approaches is to reduce the distribution divergence
between domains. However, they focused only on part of the discrimination, which can be categorized into optimizing
the following four objectives: reducing the intraclass distance between domains, enlarging the interclass distances between
domains, reducing the intraclass distances within domains, and enlarging the interclass distances within domains. Moreover,
because few methods consider multiple types of objectives, the consistency of data representations produced by different
types of objectives has not yet been studied. In this paper, to address the above issues, we propose a zeroth- and first-order
difference discrimination (ZFOD) approach for unsupervised domain adaptation. It first optimizes the above four objectives
simultaneously. To improve the discrimination consistency of the data across the two domains, we propose a first-order
difference constraint to align the interclass differences across domains. Because the proposed method needs pseudolabels for
the target domain, we adopt a recent pseudolabel generationmethod to alleviate the negative impact of imprecise pseudolabels.
We conducted an extensive comparison with nine representative conventional methods and seven remarkable deep learning-
based methods on four benchmark datasets. Experimental results demonstrate that the proposed method, as a conventional
approach, not only significantly outperforms the nine conventional comparison methods but is also competitive with the seven
deep learning-based comparison methods. In particular, our method achieves an accuracy of 93.4% on the Office+Caltech10
dataset, which outperforms the other comparison methods. An ablation study further demonstrates the effectiveness of the
proposed constraint in aligning the objectives.

Keywords Unsupervised domain adaptation · Interclass distance discrimination between domains · First-order difference
constraint

Introduction

It is known that machine learning benefits from large-scale
manually labeled data. However, manual labeling is often
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time-consuming and labor-intensive. Dealing with scenarios
wheremanually labeled data are insufficient is a difficult task.
A natural thought for this problem is to transfer the labeled to
unlabeled data knowledge. However, the mismatch between
the data distributions may lead to catastrophic results. To
address mismatched distribution problem, much efforts have
been devoted to unsupervised domain adaptation (UDA) [1–
4], which transfers empirical knowledge from a label-rich
source domain to an unlabeled target domain with a different
distribution.

The core UDA issue is to reduce the distribution gap
between the source domain and the target domain [5–9]. A
common thought for this problem is to find a shared subspace
where the source and target data distributions are similar
[10–13]. To learn the subspace, a metric is first needed to
evaluate the distribution difference. Commonmetrics include
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Fig. 1 Principle of the proposed
ZFOD. a Zeroth-order
discrimination of ZFOD. b
Discrimination shift problem of
the zeroth-order discrimination.
c First-order difference
discrimination for remedying
the discrimination shift problem,
where the length of the dotted
lines represents the interclass
distance within the domains

Source data:

Target data:

Class centers of source:

Class centers of target:

Increasing the distance:

Decreasing the distance:

(a) (b) (c)

A-distance [14], KL divergence [15], and maximum mean
discrepancy (MMD) [16]. Then, an optimization objective
defined on the metric with continuous constraints is used
to align the source and target domains. For example, [17]
reduced the mean deviation of the domains by learning a
linear projection matrix with MMD.

Recently, many methods have aimed to further improve
the discrimination of the source and target data as an addi-
tion to simply aligning the distributions since the latter
may weaken data discrimination [12, 18]. The optimiza-
tion objectives of discriminative learning methods can be
roughly divided into four types: reducing the intraclass dis-
tances between domains [19, 20], enlarging the interclass
distances between domains [21], reducing the intraclass dis-
tances within domains [22, 23], and enlarging the interclass
distances within domains [24, 25]. For example, [19] aligned
the conditional distributions of the source and target domains
by reducing the mean deviating between a class in the source
domain and the same class in the target domain, which can
be regarded as a method of reducing the intraclass distance
between domains. [21] proposed a contrastive domain dis-
crepancy to reduce the intraclass distance and enlarge the
interclass distance between domains. [25] takes the maxi-
mum distance of the data pairs in the same class and the
minimum distance of the data pairs in different classes as
regularization terms to align the source and target domains,
which can be regarded as a mixture of reducing the intraclass
distance between and within domains as well as enlarging
the interclass distance within domains. Each type of objec-
tive shows effectiveness in improving the discrimination of
the data representations to some extent; however, to our
knowledge, none of the existing methods consider all four
objectives together.

Moreover, if multiple types of discriminative optimization
objectives are used together, the effects of different objectives
on the data representations may be dramatically different,
particularly for tasks with large domain shifts. Figures 1a
and 1b illustrate this problem, where Fig. 1a demonstrates
the principles of multiple types of discriminative optimiza-

tion objectives, and Fig. 1b shows the new data distribution
generated by the objectives. From Fig. 1b, we can see that
the discrimination of the data distributions is significantly
improved compared to that in Fig. 1a; however, the discrim-
ination of the source and target data is different. We call
this inconsistent domain alignment the discrimination shift,
which will finally lead to unsatisfied transfer performance.
This problem seems insufficiently explored.

In this paper, we propose a novel UDA algorithm, named
zeroth- and first-order difference discrimination (ZFOD), to
address the aboveproblems. It first optimizes all four discrim-
inative optimization objectives jointly. They are implemented
as follows: (i) The minimization of the intraclass distances
between domains is implemented byminimizing the distance
between themeans of the same class across domains. (ii) The
maximization of the interclass distance between domains is
implemented by maximizing the distance between the mean
of a class in the source domain and the mean of another class
in the target domain. (iii) The minimization of the intraclass
distance within domains is implemented by minimizing the
distance of every two samples in the same class for the source
and target domains. (iv) The maximization of the interclass
distance within domains is implemented by maximizing the
distance of every two samples from different classes of either
the source domain or the target domain.

To align the components of the ZFOD objective for first-
order difference discrimination of data across the source and
target domains, motivated by [26], we propose a novel first-
order difference constraint. As illustrated in Fig. 1c, when
ZFOD maximizes the interclass distance within domains,
the first-order difference constraint aims to constrain the dis-
tances in the source and target domains to be the same.

Notably, optimizing the objective ofZFODneeds to obtain
pseudolabels for the target domain. However, the accumula-
tion of pseudolabel errors during the iterative optimization
process degrades the performance significantly. To allevi-
ate this difficulty, we use a simple and effective method,
named mining target domain intraclass similarity to rem-
edy the pseudolabels (TSRP) [27] and improve accuracy. To
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summarize, the novelty and contribution of the paper is sum-
marized as follows:

• We propose jointly optimizing all four discriminative
optimization objectives, which is the zeroth-order dis-
crimination of ZFOD.

• We propose first-order difference discrimination to align
the objective components. The optimization of the dis-
crimination term in each iteration is formulated as a
generalized eigenvalue decomposition problem, which
has a simple closed-form solution.

• We conducted an extensive comparison with nine rep-
resentative conventional methods [10, 19, 20, 24, 25,
28–31] and seven remarkable deep learning-based meth-
ods [32–39] on four benchmark datasets, including
Office+Caltech10 [29], Office-31 [40], ImageCLEF-
DA [41], and Office-Home [42]. Experimental results
demonstrate the competitiveness of the proposed method
with not only conventional comparison methods but also
deep learning-based comparison methods.

The remainder of this paper is organized as follows: In
Sect. “Related work”, we review some related works. In Sect.
“Methods”, we present the proposed ZFOD. The experimen-
tal results are reported in Sect. “Experiments”. Finally, we
conclude this paper in Sect. “Conclusion”.

Related work

In this section, we first review the methods of learning
domain-invariant features and then review the methods that
focus on improving data discrimination.

Many domain-invariant feature learning methods have
been proposed recently [3, 43], which can be roughly
divided into two categories: instance reweighting adapta-
tion methods and feature adaptation methods [3]. Instance
reweighting adaptation methods aim to allocate resampling
weights directly by feature distribution matching across dif-
ferent domains in a nonparametric manner [22, 44, 45]. For
example, [45] proposed an intuitive weighting-based sub-
space alignment method by reweighting the source samples,
which generates a source subspace that is close to a target
subspace. [22] reweighted instances by landmark selection
so that the pivot samples of the landmarks can be selected as a
knowledge transfer bridge, and the outliers can befiltered out.
Feature adaptation methods aim to obtain a domain-invariant
feature by aligning the domain data distributions [29, 33,
46–50]. For instance, [29] maps both domains into the Grass-
mann manifold and models the domain shift by constructing
geodesic flows. [46] aligned the distributions of source and
target domains by aligning their second-order statistics. [47]
aligned the distributions indirectly by minimizing the dif-

ference between the higher-order central moments of the
domains.

In recent years, the idea of generating pseudolabels for
the target domain has become popular in UDA [19, 23–25].
However, inaccurate pseudolabels may yield unsatisfactory
performance with error accumulation during the optimiza-
tion process. Therefore, some methods aim to improve
pseudolabel accuracy [23, 25, 51]. For example, [51] used
three asymmetric classifiers to improve pseudolabel accu-
racy,where twoof the classifierswere used to select confident
pseudolabels, and the third learned a discriminative data rep-
resentation for the target domain. [23] proposed generating
accurate pseudolabels by selective pseudolabeling and struc-
tured prediction. [52] proposed multistage adaptive label
filtering to increase correctly labeled target samples.

With the increasing usage of pseudolabels, an increasing
number of methods are considering how to improve the dis-
crimination of a data representation while maintaining its
domain-invariant property. Here, we list some representa-
tive methods that transform the unsupervised target domain
into a supervised target domain with pseudolabels. [24] min-
imizes the distance of each pair of samples in a class and
maximizes the distance of any two samples that belong to dif-
ferent classes for the source and target domains. [5] obtained
the pseudolabels of the target domain by clustering and then
aligned the class centers of the source and target domains
for a domain-invariant subspace. [12] proposed a super-
vised discriminative MMDwith pseudolabels to mitigate the
degradation of feature discriminability incurred by MMD.
[10] developed an ensemblemodel by a clustering-promoting
technology and obtained the final decision of unlabeled target
data via majority voting. [23] utilized supervised locality-
preserving projection to reduce the distances between class
samples across the source and target domains. [53] proposed
cross-domain contrastive learning to make samples within
the same category close to each other, while samples from
different classes lie far apart, regardless of which domain
they come from.

The methods mentioned above only consider part of the
discrimination. In this paper, we divide the UDA methods
for improving data discrimination into four categories. With
this observation, we propose a zeroth-order discrimination
objective to further improve the discrimination of source and
target data and keep the data distributions of the two domains
aligned. Inspired by [26], which constrained the distance of
any two samples belonging to different classes to a constant,
we propose first-order difference discrimination for UDA.
Unlike [26], the proposed first-order difference discrimina-
tion constrains the interclass distances of the source domain
to be as equal as possible to that of the target domain, thereby
mitigating the discriminative differences between the two
domains.
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Methods

In this section, we first present the proposed ZFOD frame-
work in Sect. “Optimization objective”, and then describe its
components, which include the interdomain discrimination,
intradomain discrimination, first-order difference discrimi-
nation, regularization of the projection model, and pseudola-
bel generation algorithm respectively from Sect. “Interdo-
main discrimination” to Sect. “Improving the pseudolabels
given the solution in (1)”, in detail.

Optimization objective

Assume the source domain contains ns labeled data points
{(xis, yis)}nsi=1 and the target domain containsnt unlabeleddata

points {x j
t }ntj=1 where xis, x

j
t ∈ R

m and yis ∈ {1, 2, . . . ,C}
with m denoted as the feature dimension and C denoted
as the number of classes. We denote Xs = [x1s , . . . , xnss ]
and Xt = [x1t , . . . , xntt ]. The whole data matrix is X =
[Xs,Xt ] ∈ R

m×n with n = ns + nt . In this paper, we gen-
erate and optimize pseudolabels for the target domain. We
denote the pseudolabel of the target data x j

t as ŷ j
t . Our goal

is to find a common feature subspace, defined by a projection
matrix P ∈ R

m×d , such that the new feature representations
of the two domains in the new subspace, i.e., zis = P�xis and
z jt = P�x j

t , can be effectively aligned, where d is the feature
dimension of the subspace.

The core idea of our ZFOD is (i) the zeroth-order discrim-
ination, which consists of four discriminative optimization
objectives and can be roughly divided into two categories: the
interdomain discriminationLinterD and intradomain discrim-
inationLintraD for improving the data discrimination, and (ii)
the first-order difference discrimination LFD for aligning the
interclass discrimination of the source and target domains.
ZFOD is formulated as the following optimization problem:

min
P

LinterD + αLintraD + βLFD + γ ‖P‖2F (1)

where the operator ‖·‖2F is the Frobenius norm, and ‖P‖2F is
a regularization term of P to avoid overfitting, α, β and γ are
three tradeoff parameters, and LinterD, LintraD, and LFD are
the functions of the variables P and {ŷ j

t }ntj=1. For simplicity,
we fix α = 1, which should yield good performance after an
empirical investigation on some benchmark datasets.

Interdomain discrimination

The interdomain discrimination objective LinterD aligns the
distributions of the source samples and target samples, so that
the discrimination of the source samples can be transferred
to the unlabeled target samples. Given the pseudolabels for

the target domain, the interdomain discrimination can be fur-
ther divided into two parts: interdomain intraclass distance
discrimination and interdomain interclass distance discrimi-
nation, which are described respectively as follows:

Interdomain intraclass distance discrimination

Interdomain interclass distance discrimination aligns the data
distributions of each single class across the two domains as
similarly as possible in the subspace, which can be consid-
ered a set of C independent UDA problems. We evaluate the
interdomain divergence of a class across domains by MMD
[16]. The alignment over all classes is formulated as a mini-
mization problem of the following objective:

LintraC
interD =

C∑

k=0

∥∥∥∥∥∥∥

1

nks

∑

xis∈Xk
s

zis − 1

nkt

∑

x j
t ∈Xk

t

z jt

∥∥∥∥∥∥∥

2

=
C∑

k=0

Tr
(
P�XMkX�P

)

= Tr
(
P�XMintraCX�P

)

(2)

where Xk
s denotes the source samples of class k and Xk

t
denotes the target samples with their pseudoclass labels set
to k, and nks and nkt are the number of the source and target
samples of class k, respectively; particularly, the class k = 0
denotes the data of the whole source or target domain; Mk

is the intraclass matrix of class k across domains with its
element (Mk)i j defined as:

(Mk)i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
nks n

k
s
, ∀xi , x j ∈ Xk

s
1

nkt n
k
t
, ∀xi , x j ∈ Xk

t

− 1
nks n

k
t
, ∀xi ∈ Xk

s , x
j ∈ Xk

t

− 1
nks n

k
t
, ∀x j ∈ Xk

s , x
i ∈ Xk

t

0, otherwise

(3)

andMintraC = ∑C
k=0 Mk . Note thatMk is also known as the

class-conditional MMD matrix for class k.

Interdomain interclass distance discrimination

Interdomain interclass distance discrimination improves
cross-domain data discrimination such that each single class
in a domain is far apart from the other classes in the other
domain. The interdomain divergence is evaluated by MMD
as well. Unlike the problem in Sect. “Interdomain intraclass
distance discrimination”, the interdomain interclass distance
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discrimination is formulated as amaximization of the follow-
ing objective:

LinterC
interD =

C−1∑

k=1

C∑

q=k+1

∥∥∥∥∥∥∥

1

nks

∑

xis∈Xk
s

zis − 1

nqt

∑

x j
t ∈Xq

t

z jt

∥∥∥∥∥∥∥

2

=
C−1∑

k=1

C∑

q=k+1

Tr
(
P�XMkqX�P

)

= Tr
(
P�XMinterCX�P

)

(4)

where Mkq is the interclass matrix of class k in the source
domain and pseudoclass q in the target domain:

(
Mkq

)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
nks n

k
s
, ∀xi , x j ∈ Xk

s
1

nqt n
q
t
, ∀xi , x j ∈ Xq

t

− 1
nks n

q
t
, ∀xi ∈ Xk

s , x
j ∈ Xq

t

− 1
nks n

q
t
, ∀x j ∈ Xk

s , x
i ∈ Xq

t

0, otherwise

. (5)

and MinterC = ∑C−1
k=1

∑C
q=k+1Mkq .

We regard that intraclass and interclass discrimination as
equivalently important. Eventually, the interdomain discrim-
ination is formulated as:

LinterD = LintraC
interD − LinterC

interD

= Tr
(
P�XMX�P

) (6)

where M represents the interdomain discrimination matrix:

M = MintraC − MinterC. (7)

Intradomain discrimination

The intradomain discrimination objective LintraD improves
the data discrimination at each domain, which can be divided
into two parts: intradomain intraclass distance discrimination
and intradomain interclass distance discrimination.

Intradomain intraclass discrimination

Intradomain intraclass discrimination reduces the intraclass
distance in each domain. Here we define the intraclass dis-
tance as the average distance of pairwise samples in a class,
which results in a minimization problem of the following
objective:

LintraC
intraD =

C∑

k=1

ns
nks

∑

xis ,x
j
s ∈Xk

s

∥∥∥zis − z js
∥∥∥
2

+
C∑

k=1

nt
nkt

∑

xit ,x
j
t ∈Xk

t

∥∥∥zit − z jt
∥∥∥
2

= Tr
(
P�XsWintraC

s X�
s P

)
+ Tr

(
P�XtWintraC

t X�
t P

)

= Tr
(
P�XWintraCX�P

)

(8)

where WintraC
s and WintraC

t are the intraclass matrices of the
source domain and target domain respectively:

(
WintraC

s

)

i j
=

⎧
⎪⎪⎨

⎪⎪⎩

ns, if i = j

− ns
nks

, if i �= j

0, otherwise

, ∀xis, x j
s ∈ Xk

s

(9)

(
WintraC

t

)

i j
=

⎧
⎪⎪⎨

⎪⎪⎩

nt , if i = j

− nt
nkt

, if i �= j

0, otherwise

, ∀xit , x j
t ∈ Xk

t

(10)

and WintraC = diag
(
WintraC

s ,WintraC
t

)
.

Intradomain interclass discrimination

Intradomain interclass discrimination enlarges the interclass
distance in each domain. Here, we define the interclass dis-
tance as the average of the distances of any pair of samples
that belong to different classes in a domain, which results in
a maximization problem of the following objective:

LinterC
intraD =

∑

yis �=y j
s

∥∥∥zis − z js
∥∥∥
2 +

∑

ŷit �=ŷ j
t

∥∥∥zit − z jt
∥∥∥
2

= Tr
(
P�XsWinterC

s X�
s P

)
+ Tr

(
P�XtWinterC

t X�
t P

)

= Tr
(
P�XWinterCX�P

)
(11)

where WinterC
s and WinterC

t are the interclass matrices of the
source domain and target domain, respectively:

(
WinterC

s

)

i j
=

⎧
⎪⎨

⎪⎩

ns − nks , if i = j and yis = k

−1, if i �= j and yis �= y j
s

0, otherwise

(12)

(
WinterC

t

)

i j
=

⎧
⎪⎨

⎪⎩

nt − nkt , if i = j and ŷit = k

−1, if i �= j and ŷit �= ŷ j
t

0, otherwise

(13)

and WinterC = diag
(
WinterC

s ,WinterC
t

)
.
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Finally,we formulate the intradomain discrimination from
(8) and (11) as follows:

LintraD = LintraC
intraD − ρLinterC

intraD

= Tr
(
P�XWintraCX�P

)
− ρ Tr

(
P�XWinterCX�P

)

= Tr
(
P�XWX�P

)
(14)

where ρ is a hyperparameter for balancing the two terms, and W
is the intradomain discrimination matrix:

W = WintraC − ρWinterC (15)

First-order difference discrimination

Definition

The first-order difference discrimination objectiveLFD con-
strains the distance between any two classes of a domain to be
similar to the distance of the same pair of classes of another
domain, which is formulated as a minimization problem of
the following objective:

LFD =
C−1∑

k=1

C∑

q=k+1

∥∥∥∥∥∥∥

1

nks

∑

xis∈Xk
s

zis − 1

nqs

∑

x j
s ∈Xq

s

z js

− 1

nkt

∑

xit∈Xk
t

zit + 1

nqt

∑

x j
t ∈Xq

t

z jt

∥∥∥∥∥∥∥

2

=
C−1∑

k=1

C∑

q=k+1

Tr
(
P�XSkqX�P

)

= Tr
(
P�XSX�P

)
(16)

where

(
Skq

)
i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
nks n

k
s
, ∀xi , x j ∈ Xk

s

1
nqs n

q
s
, ∀xi , x j ∈ Xq

s

1
nkt n

k
t
, ∀xi , x j ∈ Xk

t

1
nqt n

q
t
, ∀xi , x j ∈ X̂q

t

1
nks n

q
t
, ∀xi ∈ Xk

s , x
j ∈ Xq

t or ∀x j ∈ Xk
s , x

i ∈ Xq
t

1
nqs n

k
t
, ∀xi ∈ Xq

s , x j ∈ Xk
t or ∀x j ∈ Xq

s , xi ∈ Xk
t

− 1
nks n

q
s
, ∀xi ∈ Xk

s , x
j ∈ Xq

s or ∀x j ∈ Xk
s , x

i ∈ Xq
s

− 1
nks n

k
t
, ∀xi ∈ Xk

s , x
j ∈ Xk

t or ∀x j ∈ Xk
s , x

i ∈ Xk
t

− 1
nqs n

q
t
, ∀xi ∈ Xq

s , x j ∈ Xq
t or ∀x j ∈ Xq

s , xi ∈ Xq
t

− 1
nkt n

q
t
, ∀xi ∈ Xk

t , x
j ∈ Xq

t or ∀x j ∈ Xk
t , x

i ∈ Xq
t

0, otherwise

.

(17)

Algorithm 1: ZFOD.
Input: Labeled source data {(xis , yis)}nsi=1; unlabeled target data

{(x j
t )}ntj=1; hyperparameters β, ρ and γ ; dimension of the

subspace d.
Output: Projection matrix P, and the final classifier ffinal(·).

1 while not converge do
2 Compute the interdomain discrimination matrix M in (6);
3 Compute the intradomain discrimination matrix W in (14);
4 Compute the first-order difference discrimination matrix S by

(16);
5 Update P by solving the generalized eigenvalue problem in

(21);
6 Use TSRP to refine pseudolabels and obtain the final

classifier ffinal(·);

and S represents the first-order difference discrimination
matrix:

S =
C−1∑

k=1

C∑

q=k+1

Skq (18)

Discussion

The first-order difference discrimination LFD is designed
to remedy the weakness of the interdomain discrimination
LinterD.

Specifically, when the data distributions are nonuniform,
the large intraclass distance components in LintraC

interD and small
interclass distance components of LinterC

interD contribute to the
main reduction of the objective value minP LinterD during
the optimization process, which makes the solution P biased
toward these components, and against the other compo-
nents. As a result, the classes that do not benefit much from
minP LinterD tend to be not aligned well across domains. In
other words, the knowledge of those classes in the source
domain may not transfer well to the target domain.

If we calculate the components of LFD, we find that the
classes that are not well aligned tend to make the values of
the corresponding components large, while the classes that
are well aligned yield small values. Therefore, we propose
LFD as a supplement to LinterD.

Optimization algorithm

TheoptimizationofZFODalternately conducts the following
steps: (i) solving problem (1) assigning the pseudolabels and
(ii) improving the pseudolabels with the solution of (1). See
the following subsections for the two steps. See Algorithm 1
for a summarization of ZFOD.
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Solving problem (1) given the pseudolabels

Substituting (6), (14), and (16) into (1) results in the following
optimization problem:

min
P

Tr
(
P�X (M + W + βS)X�P

) + γ ‖P‖2F
s.t. P�XHX�P = Id

(19)

where the constraint maximizes the embedded data variance
as [24] and [19] did, Id is an identify matrix of dimension d
and H = I(ns+nt ) − (1/(ns + nt ))1(ns+nt )×(ns+nt ).

The Lagrangian function of problem (19) is:

L(P,�) =Tr
(
P� (

X (M + W + βS)X� + γ Im
)
P
)

+ Tr
((

Id − P�XHX�P
)

�
) (20)

where � = diag(θ1, θ2, ..., θd) ∈ R
d×d is a diagonal

matrix with Lagrange multipliers. Solving ∂L(P,�)/∂P =
0 derives the following optimal solution of (19):

P	 =
(
X (M + W + βS)X� + γ Im

)−1
XHX�P� (21)

which is a generalized eigenvalue decomposition problem. In
practice, we select the generalized eigenvectors of the right
side of (21) corresponding to the d-smallest eigenvalues as
the final P	.

Note that problem (19) can be easily generalized into the
following kernel form through a kernel mapping φ : X →
φ(X):

min
P

Tr
(
P�K (M + W + βS)K�P

) + γ ‖P‖2F
s.t. P�KHK�P = Id

(22)

where K = φ(X)�φ(X). It has a similar solution to (21).

Improving the pseudolabels given the solution in (1)

Inaccurate pseudolabels of the target domain result in sub-
optimal performance. To alleviate this problem, we use our
previous work, named TSRP [27], to correct the errors of the
pseudolabels. For the integrity of the paper, we present the
TSRP algorithm briefly as follows:

As shown in Fig. 2, the TSRP first generates coarse pseu-
dolabels for the target domain by a classifier finit(·) trained
on the source samples {(zis, yis)}nsi=1, and calculates the simi-
larity of the samples in each pseudoclass as in Fig. 2a. Then,
for each pseudoclass, it removes the samples with low con-

High similarity：

k：

Low similarity：

Deleting Spanning tree

（a） （b） （c）
Other class samples：

Fig. 2 TSRP principle [27]. TSRP consists of two steps: (i) Deleting,
which deletes the samples with low pairwise similarity scores, as shown
in Fig. (a) to Fig. (b), and (ii) spanning tree, which selects samples with
highly confident pseudolabels by spanning trees, as shown in Fig. (b)
to Fig. (c)

fidence, as in Fig. 2a, b, where the confidence is defined as

Ski, j =

⎧
⎪⎨

⎪⎩

〈zit ,z jt 〉
‖zit‖‖z jt ‖

, i �= j, ŷit = ŷ j
t = k

0, otherwise
,∀k = 1, 2, . . . ,C

(23)

Next, as shown as in the operation step from Fig. 2b–c, for
each pseudoclass, TSRP connects the samples by spanning
trees and then selects the samples of a spanning tree whose
root sample has the maximum degree. In this way, the TSRP
can further eliminate the negative effect of highly confident
misclassified samples. Finally, it uses the selected target-
domain samples with high confidence and the source-domain
samples together to train a final classifier ffinal(·), which is
used to generate the refined pseudolabels of the remaining
samples with low confidence.

Computational complexity

Assume ZFOD needs T iterations to converge; then the over-
all computational complexity of ZFOD isO(T ((C2+4)(ns+
nt )2 + dm2)), which is proved as follows:

As shown in Algorithm 1, for each iteration, the computa-
tional complexity of ZFOD mainly consists of the following
five parts:

• Calculating the interdomain discrimination matrix M
spends O(0.5(C2 + C + 2)(ns + nt )2) time.

• Calculating the intradomain discrimination matrix W
spends O(2(ns + nt )2) time.

• Calculating thefirst-order differencediscriminationmatrix
S spends O(0.5(C2 − C)(ns + nt )2) time.

• Solving the generalized eigen-decomposition problem
takes O(dm2) time.
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• TSRP costs O((ns + nt )2).

As the experiments show, because T and the optimal d are
usually small numbers, ZFOD can be solved in a polynomial
time with respect to the number of data samples.

Storage complexity

The overall storage complexity of ZFOD is O((ns + nt )2),
which is proved as follows:

• Storing the source and target data, which require an
O((ns + nt )) space.

• Calculating the interdomain discrimination matrix M,
which require an O((ns + nt )2) space.

• Calculating the intradomain discrimination matrix W,
which require an O(n2s + n2t ) space.

• Calculating thefirst-order differencediscriminationmatrix
S, which require an O((ns + nt )2) space.

Experiments

In this section, we evaluate the performance of the proposed
ZFOD on several popular visual cross-domain benchmarks.
The source code of ZFOD is available at https://github.com/
02Bigboy/ZFOD.

Datasets and cross-domain tasks

The experiments were performed on 4 datasets. The detailed
information of the datasets are introduced as follows:

Office+Caltech10 [29] contains four domains: Amazon,
Webcam, DSLR and Caltech-256, which share the same 10
classes. The dataset has 2533 images in total.

Office-31 [40] consists of three domains: Amazon (A),
Webcam (W) and DSLR (D). It contains 4110 images with
31 categories in total.

ImageCLEF-DA [41] has three domains: Caltech-256
(C), ImageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P).
It contains 12 classes, each of which has 50 images from
three domains.

Office-Home [42] includes 65 object classes from four
domains, i.e., Artistic images (A), Clipart (C), Product
images (P) and Real-World images (R). There are a total
of 15,588 images.

For the Office+Caltech10 dataset, we used the 4096-
dimensional DECAF-6 feature [54]. For the other datasets,
we used the 2048-dimensional ResNet-50 feature [32].

Experimental settings

For the proposed ZFOD, we applied the following parameter
setting to all comparison experiments. Specifically,we set the
hyperparameters β = 1.5, γ = 1, and ρ = 0.1. We set the
dimension of the subspace d to 100, and limited the number
of the optimization iterations to be no larger than 10, i.e.,
N = 10. As the ablation study shows, ZFOD is insensitive
to the hyperparameter setting.

To evaluate the effectiveness of the proposed algorithm,
nine representative conventional methods and seven remark-
able deep learning-based methods were compared.

Conventional UDAmethods

we compare nine conventional UDA methods with ZFOD:

• Classic UDA methods:

1. 1-nearest neighbor classifier (1NN) [28].
2. Geodesic flow kernel for domain adaptation (GFK)

[29].
3. Joint geometrical and statistical alignment (JGSA)

[30].
4. Manifold embedded distribution alignment (MEDA)

[20].

• Method of reducing the intraclass distance between
domains:

1. Joint distribution adaptation (JDA) [19].

• Method of reducing the intraclass distance between
domains and reducing the intraclass distance within
domains.

1. Domain-irrelevant class clustering (DICE) [10].

• Method of reducing the intraclass distance and enlarging
the interclass distances within domains.

1. Minimum centroid shift (MCS) [31].

• Methods of reducing the intraclass distance between
domains, enlarging the interclass distanceswithin domains
and reducing the intraclass distances within domains.

1. Discriminatve transfer feature and label consistency
(DTLC) [25].

2. Domain invariant and class discriminative (DICD)
[24].

3. Target similarity for pseudolabels (TSRP) [27].

Note that the proposed ZFOD is closely related to DICD.
When ZFOD removes the interclass distance across domains
and first-order difference discrimination, ZFOD degrades
into DICD.
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Table 1 Computational and
storage complexities of the
comparison methods

Methods Computational complexity Storage complexity

JDA O(Tdm2 + TC(ns + nt )2 + Tm(ns + nt )) O((ns + nt )2)

DICD O(Tdm2 + (TC + 3T )(ns + nt )2 + Tdm(ns + nt )) O((ns + nt )2)

DTLC O(Tdm2 + TC(ns + nt)2 + Tdm(ns + nt) + Tn3t ) O((ns + nt )2)

DICE O(Tdm2 + Tmnsnt + T (ns + nt )2 + Tmd(ns + nt )) O((ns + nt )2)

ZFOD O(Tdm2 + T (C2 + 4)(ns + nt )2) O((ns + nt )2)

Table 2 Average classification accuracy (%) of the comparison methods on the target domains of the Office+Caltech10 dataset, where A =Amazon,
C = Caltech, D = DSLR And W = Webcam. The highest accuracy on a cross-domain task is marked in bold

Tasks \ Methods NN GFK JDA JGSA MEDA DICE MCS TSRP DTLC DICD ZFOD

C → A (DeCAF6) 85.7 87.8 89.8 91.4 93.4 92.3 93.5 92.4 92.8 91.0 92.1

C → W (DeCAF6) 66.1 70.2 83.7 86.8 95.6 93.6 85.1 94.2 98.0 92.2 93.2

C → D (DeCAF6) 74.5 88.5 86.6 93.6 91.1 93.6 90.4 94.9 93.0 93.6 98.7

A → C (DeCAF6) 70.3 75.8 82.3 84.9 87.4 85.9 88.3 87.9 88.2 86.0 88.4

A → W (DeCAF6) 57.2 77.0 78.6 81.0 88.1 86.4 91.5 89.5 93.6 81.4 90.8

A → D (DeCAF6) 64.9 84.1 80.3 88.5 88.1 89.8 91.7 92.4 87.3 83.4 95.5

W → C (DeCAF6) 60.3 75.1 83.5 85.0 93.2 85.3 88.3 87.1 88.1 84.0 89.3

W → A (DeCAF6) 62.5 82.9 90.2 90.7 99.4 90.7 93.4 90.4 92.0 89.7 91.6

W → D (DeCAF6) 98.7 100 100 100 99.4 100 100 100 100 100 100

D → C (DeCAF6) 52.0 73.1 85.1 86.2 87.5 87.4 89.0 88.3 89.3 86.1 89.5

D → A (DeCAF6) 62.7 85.2 91.4 92.0 93.2 92.5 93.5 93.6 92.9 92.2 93.4

D → W (DeCAF6) 89.2 90.9 99.0 99.7 97.6 90.0 99.3 99.0 100 99.0 98.6

Average 70.3 82.0 87.5 90.0 92.8 91.4 92.0 92.5 93.0 89.9 93.4

We list the computational and storage complexities of the
proposed methods and some comparison methods in Table 1.
The table shows that when the number of classes (C) is small,
the complexity of the proposed method is similar to those of
the comparison methods.

Deep learning-based UDAmethods

They are the deep adaptation networks (DAN) [33], residual
transfer networks (RTN) [34], multiadversarial DA (MADA)
[35], conditional domain adversarial network(CDAN) [36],
joint adaptation networks (JAN) [37], Collaborative and
adversarial network (iCAN) [38], and maximum classifier
discrepancy (MCD) [39], respectively. Note that we also
added Resnet-50 [32], which use the classifier trained on the
source domain to the test domain directly without applying
a specially designed UDA algorithm as a baseline.

The classification accuracy on the target domain is used
as the evaluation metric. For a fair comparison, the reported
results of the comparison methods were either from their
original papers or produced by the publicly available codes
of the methods.

Main results

Table 2 lists the classification accuracy of the compari-
son methods on the domain adaptation tasks of the Office+
Caltech10 dataset. The table shows that ZFOD yields
the highest average accuracy, which achieves an absolute
improvement of 0.4% over the best competitor DTLC. For
the results on each domain adaptation task, ZFOD achieves
the highest accuracy on 6 out of 12 tasks.

In particular, the average accuracyofZFODis 3.5%higher
than that of the closely related comparison method DICD. If
we look at the tasks in detail, we find that ZFOD is superior
to DICD for all tasks except for “D→W”. For example, the
accuracy of ZFOD over DICD is improved from 83.4% to
95.5% on the “A→D” task, and from 93.6% to 98.7% on the
“C→D” task.

Table 3 shows the classification accuracy of the compari-
son methods on the Office-31 and ImageCLEF-DA datasets.
From the table, we see that ZFOD reaches an average accu-
racy of 88.1%, which is 0.2% higher than the runner-up
comparison method DTLC. It achieves the best results on 3
out of 12 tasks. It is worthymentioning that ZFOD is superior
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Table 3 Average classification accuracy (%) of the comparison methods on the target domains of the Office-31 and ImageCLEF-DA datasets

Tasks \ Methods Resnet DAN RTN JAN MADA CDAN iCAN MEDA DTLC DICD ZFOD

A → D 68.9 78.6 77.5 84.7 87.8 89.8 90.1 85.3 91.0 81.7 91.0

A → W 68.4 80.5 84.5 85.4 90.1 93.1 92.5 86.2 85.3 83.3 90.4

D → A 62.5 63.6 66.2 68.6 70.3 70.1 72.0 72.4 73.5 69.4 74.8

D → W 96.7 97.1 96.8 97.4 97.4 98.2 98.8 97.2 98.0 97.6 98.1

W → A 60.7 62.8 64.8 70.0 66.4 68.0 69.9 74.0 73.5 69.4 72.3

W → D 99.3 99.6 99.4 99.8 99.6 100 100 99.4 99.8 99.4 99.6

I → P 74.8 74.5 75.6 76.8 75.0 76.7 79.5 80.2 80.5 77.5 79.5

P → I 83.9 82.2 86.8 88.0 87.9 90.6 89.7 91.5 90.8 81.2 91.5

I → C 91.5 92.8 95.3 94.7 96.0 97.0 94.7 96.2 96.7 94.5 95.8

C → I 78.0 86.3 86.9 89.5 88.8 90.5 89.9 92.7 95.0 91.2 93.5

C → P 65.5 69.2 72.7 74.2 75.2 74.5 78.5 79.1 80.9 77.0 77.8

P → C 91.2 89.8 92.2 91.7 92.2 93.5 92.0 95.8 90.0 87.2 92.5

Average 78.5 81.4 83.2 85.1 85.6 86.8 87.3 87.5 87.9 84.1 88.1

Table 4 Average classification accuracy (%) of the comparison methods on the target domains of the Office-Home dataset

Tasks \ Methods ResNet DAN JAN MCD CDAN EasyTL DICE JGSA DICD ZFOD

Ar → Cl 34.9 43.6 45.9 46.9 49.0 49.8 49.1 51.3 47.4 52.2

Ar → Pr 50.0 57.0 61.2 64.1 69.3 72.5 70.7 72.9 67.2 74.2

Ar → Rw 58.0 67.9 68.9 77.6 74.5 75.8 73.9 78.5 69.5 73.4

Cl → Ar 37.4 45.8 50.4 56.1 54.4 60.7 51.4 58.1 55.4 57.1

Cl → Pr 41.9 56.5 59.7 62.4 66.0 69.5 65.9 72.4 64.5 70.8

Cl → Rw 46.2 60.4 61.0 65.5 68.4 71.2 65.9 73.4 63.8 70.9

Pr → Ar 38.5 44.0 45.8 58.9 55.6 59.0 60.0 62.3 59.9 62.5

Pr → Cl 31.2 43.6 43.4 45.8 48.3 47.1 48.6 50.3 48.2 49.9

Pr → Rw 60.4 67.7 70.3 80.0 75.9 76.4 76.2 79.4 73.7 75.8

Rw → Ar 53.9 63.1 63.9 73.3 68.4 64.8 65.4 67.9 64.8 65.8

Rw → Cl 41.2 51.5 52.4 49.8 55.4 51.1 53.5 53.4 52.6 52.6

Rw → Pr 59.9 74.3 76.8 83.1 80.5 77.3 78.8 80.4 76.4 79.4

Average 46.1 56.3 58.3 63.6 63.8 64.6 63.3 63.3 62.0 65.4

toDICD in all tasks, and reaches an average accuracy of 3.5%
higher than that of DICD. Especially for the “A→D” task of
the Office-31 dataset and the “P→I” task of the ImageCLEF-
DA dataset, the accuracy has been increased from 81.7% and
81.2% to 91.0% and 91.5%, respectively. Besides, ZFOD
outperforms the deep learning-based methods. Its average
accuracy is 0.8% higher than the best deep model iCAN.

Table 4 lists the classification accuracy of the compari-
son methods on the Office-home dataset. From the table, we
observe similar phenomena as those on the other datasets.
Specifically, ZFOD reaches the highest average accuracy,
which is 0.8% higher than the best referenced method
EeasyTL. It achieves the highest accuracy on 3 out of 12
tasks,while EeasyTLwins none of the tasks. Compared to the
deep learning-based methods, ZFOD outperforms all deep
methods with an absolute accuracy improvement of at least

1.6%. For example, ZFOD outperforms CDAN in 7 out of 12
tasks. The accuracy is improved from 66.0% to 70.8% on the
“Cl→Pr” task, and from 55.6% to 62.5% on the “Pr→Ar”
task.

The above phenomena, which demonstrate the advantage
of ZFOD, can be explained as follows: ZFOD not only max-
imizes the data discrimination in four aspects but also aligns
the data distributions of the two domains by the so-called
first-order difference discrimination, which may result in
better domain-invariant and discriminative representations
than the comparison methods. In contrast, some excellent
comparison methods, such as MCS, DTLC, and DICD, only
maximize part of the data discrimination. Their interdomain
alignment is also limited to the data and do not refer to the
levels of high-order data discrimination. See Table 5 for a
summary of the differences between ZFOD and some rep-
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Table 5 Properties of the comparison methods

Method Interdomain Intradomain First-order difference discrimination

Intraclass Interclass Intraclass Interclass

DICE [10] � × � × ×
JDA [19] � × × × ×
DTLC [25] � × � � ×
DICD [24] � × � � ×
MCS [31] × × � � ×
ZFOD (proposed) � � � � �

resentative conventional methods that also optimize the data
discrimination to some extent.

Ablation study

ZFOD contains three novel points: TSRP-based pseudolabel
generation, first-order difference discrimination, and zeroth-
order discrimination. In this subsection, we conducted an
ablation study by removing the novel points from ZFOD
one by one. The ZFOD without the TSRP-based pseudola-
bel generation method is denoted as “ZFOD without TSRP”.
The ZFOD without the first two novel points is denoted as
“ZFOD without TSRP and FOD”. If we remove all three
novel points, the most closely related method is DICD [24].
When the zeroth-order discrimination removes the interclass
distance across domains, then the remaining three discrim-
ination subitems are the same type of subitems as those in
DICD. Therefore, we compared the above ZFOD variants
with DICD.

The experiments were conducted on the four UDA
datasets. For each dataset, we randomly selected two tasks as
representatives. The comparison results are listed in Table 6
and analyzed as follows:

Effect of the TSRP-based pseudolabel generation method
on performance

From the comparison results between “ZFOD without
TSRP” and ZFOD, we see that the performance of “ZFOD
without TSRP” is apparently worse than ZFOD, which indi-
cates that the TSRP-based pseudolabel generation method
can improve the accuracy of the pseudolabels, and the cor-
rectness of the pseudolabels is very important for ZFOD to
learn a domain-invariant and discriminative feature.

Effect of first-order discrimination on performance

From the comparison results between “ZFOD without
TSRP” and “ZFODwithout TSRP and FOD”, we see that the
former shows slightly better or at least similar performance

with the latter on the tasks of Office+Caltech10, Office-31
and ImageCLEF-DA and significantly outperforms the latter
on the tasks ofOffice-home,which shows the effectiveness of
the first-order discrimination and that the first-order discrim-
ination can further help align the distribution of the source
domain and target domain.

Effect of zeroth-order discrimination on performance

From the comparison results between “ZFODwithout TSRP
and FOD” and DICD, we find that the zeroth-order discrim-
ination, which has an extra interdomain interclass distance
discrimination subitem beyond DICD, outperforms DICD
on Office+Caltech10, Office-31 and ImageCLEF-DA. How-
ever, it is significantly worse than DICD on Office-Home,
which indicates that the advantage of combining all four
subitems of the zeroth-order discrimination over the subset
of the subitems is not guaranteed due to the discrimination
inconsistency problem analyzed in Sect. “Discussion”.

After comparing the results between “ZFOD without
TSRP and FOD” and DICD, we find that there is no guar-
antee that “ZFOD without TSRP and FOD” is always better
than DICD due to the discrimination inconsistency problem.
However, we further find that “ZFOD without TSRP” out-
performs DICD apparently in all tasks, which indicates that
the first-order discrimination overcomes the discrimination
inconsistency problem of the zeroth-order discrimination.

Effects of hyperparameters on performance

ZFOD has four hyperparameters β, γ , ρ, and d. In the previ-
ous sections, we used the same hyperparameter setting in all
experiments. To study whether the performance of ZFOD
is sensitive to different hyperparameter settings, we con-
ducted a grid search for each parameter. During the grid
search of one parameter, we fixed the other parameters to
their default values. The experiments were conducted on ran-
domly selected tasks of the four UDA datasets: “C → W
(Office-Caltech10)”, “P → I (ImageCLEF-DA)”, “A → W
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Table 6 Ablation study for the components of ZFOD

Dataset Office-Caltech10 Office-31 ImageCLEF-DA Office-Home
Methods\Tasks C → D A → D A → D D → W P → I C → P Ar → Cl Cl → Rw

DICD 93.6 83.4 81.7 97.6 81.2 70.0 47.4 63.8

ZFOD without TSRP and FOD 96.2 89.2 84.1 98.2 81.2 77.0 41.0 56.6

ZFOD without TSRP 95.5 89.2 84.7 98.1 82.7 78.2 49.5 65.4

ZFOD 98.7 95.5 91.0 98.1 91.5 77.8 52.2 70.9
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Fig. 3 Effect of the hyperparameters on four domain adaptation tasks. Different colors represent different domain adaptation tasks

(a) DICD (b) ZFOD

Fig. 4 Visualization of the data distributions produced by DICD and
ZFOD on the “A→D (Office+Caltech10)” task. Different colors repre-
sent different categories. The source samples are marked by the symbol
“o”. The target samples are marked by “+”

(Office-31)” and “Ar → Pr (Office-Home)”. The results are
shown in Fig. 3 and analyzed as follows:

The hyperparameter β is a hyperparameter for the first-
order discrimination. The larger β is, the more important the
first-order discrimination behaves in ZFOD.We investigated
β in a wide range of [0, 3]. From the result in Fig. 3, we
can see that, when we increase β gradually from 0 to 3, the
performance of ZFOD improves steadily, especially on the
large dataset Office-home. This phenomenon proves that the
first-order difference discrimination facilitates the alignment
of the source and target domains. Because ZFOD achieves
relatively stable results when β ∈ [0.5, 1.5], we chose β =
1.5 as the default value.

(a) DICD (b) ZFOD

Fig. 5 Visualization of the data distributions produced by DICD and
ZFOD on the “W → C (Office+Caltech10)” task

The hyperparameter γ balances the discrimination loss
functions and the complexity of the projection matrix P. We
studiedβ by a grid search of {0.1, 0.5, 1, 5, 10, 50, 100}. The
figure shows that all accuracy curves tend to first rise up and
then move down when γ is gradually increased. Eventually,
we pick γ = 1, which tends to yield the best performance
for all tasks.

The hyperparameter d defines the dimension of the sub-
space.We searched d in a wide range of [10, 200]. The figure
shows that with the increasing d, the accuracy curves first
gradually rise and then tend to be stable. Finally, we chose
d = 100, which balances the classification performance and
computational complexity.

The hyperparameter ρ in (15) balances the intradomain
intraclass discrimination and intradomain interclass discrim-
ination.We studiedρ by agrid search of {0.01, 0.05, 0.1, 0.5,
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Fig. 6 Cross-domain similarity
matrices produced by DICD and
ZFOD on the “A → D
(Office+Caltech10)” task
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Fig. 7 Cross-domain similarity
matrices produced by DICD and
ZFOD on the “W → C
(Office+Caltech10)” task
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1, 2, 5}. The figure shows that ZFOD performs steadily when
ρ ∈ [0.01, 0.5], and drops sharply on the task of “Ar → Pr
(Office-Home)” when ρ > 0.5. Therefore, we set ρ = 0.1
as a safe default value.

From the above analysis, we conclude that ZFOD is
insensitive to the hyperparameter selection. Although the
performance of ZFOD can be further improved beyond the
results of the previous experimental subsections by carefully
selecting a hyperparameter setting per task, we did not do so
for the real-world applications of ZFOD.

Data visualization

In this subsection, we visualize the distributions and pairwise
similarity matrices of data produced by DICD and ZFOD on
two randomly selected tasks, which are the “A → D (Office-
Caltech10)” and “W → C (Office-Caltech10)” tasks.

Figures 4 and 5 visualize the data distributions. From the
two figures, we see that the data distributions produced by
ZFOD have larger interclass distances than those produced
by DICD.

Figures 6 and 7 show the similarity matrices of all data
across domains, where the similarity between samples is
measured by the cosine similarity. A similarity matrix across
domains contains three parts: a source-domain similarity
matrix which is at the upper-left corner of the full similar-
ity matrix, a target-domain similarity matrix which is at the
lower-right corner, and two cross-domain similarity matrices
which are at the upper right and lower left corners.

Figures 6a and 7a show that the sample similarity of the
cross-domain similarity matrices produced by DICD is quite
high for some different classes, which indicates that DICD
does not focus enough on domain alignment. In contrast,
Figs. 6b and 7b show that ZFOD alleviates this problem,
which indicates the effectiveness of the first-order discrimi-
nation.

Moreover, Figs. 6a and 7a show that the sample similarity
produced by DICD in the source- and target-domain similar-
ity matrices is high for the samples in the same class and not
discriminative enough for the samples in different classes.
In contrast, Figs. 6b and 7b show that ZFOD not only yields
high intraclass similarity as DICD does, but also produces
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lower interclass similarity than DICD, which indicates the
advantage of the zeroth-order discrimination.

Conclusion

In this paper, we proposed the zeroth- and first-order dif-
ference discrimination algorithm for unsupervised domain
adaptation. It contains three novel components: zeroth-
order discrimination, first-order difference discrimination,
and TSRP-based pseudolabel generation. The zeroth-order
discrimination consists of interdomain discrimination and
intradomain discrimination, each of which is further divided
into interclass discrimination and intraclass discrimination.
The novelty of zeroth-order discrimination is that it covers
four important aspects of data discrimination that have not
been considered in the literature to our knowledge. Because
the interdomain discrimination only maximizes the cross-
domain discrimination at the data level without aligning the
interclass distances of the source and target domains, the
first-order difference discrimination was proposed to over-
come the weakness. Because all of the discrimination terms
use pseudolabels to define the pseudoclasses at the target
domain, it is important to generate highly accurate pseudola-
bels. Eventually, the TSRP-based pseudolabel generation
method is applied. Its core idea is to iteratively pick the
pseudolabels with high confidence to train a strong classifier,
which is then used to correct the remaining pseudolabels or
improve their confidence. We conducted an extensive com-
parisonwith nine state-of-the-art conventionalUDAmethods
and seven representative deep learning-based UDAmethods.
The comparison results demonstrate the effectiveness of the
proposed method. The ablation studies further confirm the
effectiveness of each novel component of ZFOD, e.g., in
improving the discrimination of the domain-invariant feature
and aligning the source and domains well.
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