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Bone-conducted (BC) speech captures speech signals based on the vibrations of a speaker’s skull. It is thus
not affected by noise sources from environments and hence exhibits better noise-resistance capabilities
than air-conducted (AC) speech. Although the quality and intelligibility of the BC speech degrade due to
the nature of the solid vibration, BC speech can be utilized as an auxiliary source to jointly improve the
performance of speech enhancement. In this paper, we propose an end-to-end multi-modal model for
time-domain speech enhancement at low signal-to-noise ratios. The model utilizes both noisy AC speech
and synchronized BC speech as the input. It takes an encoder-decoder architecture, where an involution
network is used to estimate the mask of clean speech component, and the mask is then applied to remove
the noise component. We compared the proposed method with several state-of-the-art multi-modal and
single-modal methods on an air- and bone-conducted multi-modal corpus. Experimental results demon-
strate that the proposed approach outperforms the comparison methods in terms of the speech quality
and intelligibility of the enhanced speech. When applied to speech recognition, the enhanced speech sig-
nificantly reduces the error rate.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Speech enhancement aims to improve the intelligibility and
quality of a noisy speech signal [1,2]. It is commonly used as a
front-end of many speech processing systems, such as robust
speech recognition and speech communication. Speech enhance-
ment, especially the deep learning based approaches, has attracted
much attention in the past decades. Early deep learning based
speech enhancement methods are implemented in the time–fre-
quency domain. Frequently adopted deep models include feedfor-
ward neural network [3–5], convolutional neural network [6], and
long-short term memory [7]. They estimate the magnitude spec-
trum of clean speech [5] or its corresponding time–frequency mask
[4]. Recently, end-to-end architectures have been proposed to
directly estimate the clean speech in the time-domain [8–12].

All of the aforementioned methods were developed with air-
conducted (AC) speech. As AC speech is easily corrupted by ambi-
ent noise because of the characteristics of the air conduction, AC
speech enhancement generally does not perform well in low
signal-to-noise ratio (SNR) and non-stationary noise environments.
Therefore, several other modalities such as video [6], accelerome-
ter [13] and bone-conducted speech (BC) speech [14–16] had been
explored as an additional resource to further improve the target
speech. In this paper, we focus on using bone-conducted (BC)
speech as an additional modality.

A BC microphone is a kind of skin-attached sensor [17]. It
records speech by converting the vibration around a speaker’s skull
into electrical signals [18]. Thus, the BC microphone has the intrin-
sic capability of suppressing environmental noise, which is a good
physical property for speech enhancement in low SNR conditions.
However, BC speech still has the following shortcomings. First
and foremost, due to the channel attenuation suffered as the
speech propagates through the human tissues, the high-
frequency bands of BC speech would experience severe informa-
tion loss compared to clean AC speech. Although the bandwidth
characteristics of different types of BC microphones may be differ-
ent, only the spectral components below 1 kHz can be recorded
effectively in most cases, which significantly degrades speech
intelligibility. In addition, due to the friction and resonance
between the speaker’s skin and the BC microphone, BC speech
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inevitably contains self-generated noise. Finally, the characteristics
of BC speech vary with many factors, such as the characteristics
differences of speakers like the inherent human tissues, which is
a property difficult to be addressed by conventional signal
processing.

To utilize the above advantages of BC speech and simultane-
ously overcome its limitations, there are a few articles and cur-
rently the techniques can be categorized into two classes. The
first class, named blind enhancement of BC speech, replaces the AC
microphone with the BC microphone, and then extends the band-
width of the BC speech by learning a projection from the BC speech
to AC speech. The early works are mainly based on transformation
filters. According to the type of filtering methods, these methods
are categorized into three classes [19], i.e., equalization [20,21],
analysis-and-synthesis [22,23], and probabilistic approaches
[24,25]. Later, machine learning models were introduced, such as
Gaussian mixture models [14,26], deep neural networks [27], and
deep denoising autoencoder [28], In the above-mentioned works,
the acoustic features are mostly cepstral coefficients [14] or spec-
trogram [27]. A drawback of the methods is that the BC speech is
assumed to be noise-free, which cannot be overcome by the band-
width extension. The second class is multi-modal speech enhance-
ment where BC speech is considered as an auxiliary resource of AC
speech. Representative multi-modal models include Gaussian mix-
ture model [15] and fully convolutional network (FCN) [16]. To our
knowledge, this class is still far from being well explored, leaving
much room for improvement.

Here we focus on exploiting the deep models for the second
class of BC speech processing. Convolution neural network is a
class of commonly used deep models, in which temporal convolu-
tional network (TCN) shows good performance in speech separa-
tion and enhancement. However, the convolution operator has
two limitations. The first limitation is that the convolution oper-
ator is difficult to capture long-term information. The other limi-
tation is the inter-channel redundancy between the convolution
filters. Recently, involution was proposed [29] to overcome the
limitations. It was applied to 2-dimensional visual recognition
tasks, such as image classification and object detection. However,
its effectiveness has not been studied in speech processing yet,
where the first limitation of the convolution operator on speech
processing may be more challenging than that on image
processing.

In this paper, we propose an end-to-end multi-modal involution
neural networks (MMINet) for AC and BC joint speech enhance-
ment. It takes AC and BC speech signals in the time domain as
the input, and outputs the enhanced speech in the time domain
directly. It consists of three modules, i.e. an encoder, a mask esti-
mator, and a decoder. The encoder fuses the AC speech and BC
speech to form a feature map. The mask estimator takes the feature
map as the input, and outputs an estimated mask of the clean
speech. Applying the estimated mask to the feature map produces
Fig. 1. The block diagram of the
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a new feature map of the enhanced speech. Finally, the decoder is
used to convert the feature map of the enhanced speech to the
enhanced speech in the time domain.

The novelties and main contributions of this paper are summa-
rized as follows. First, we propose an end-to-end multi-modal
speech enhancement method that learns a joint representation of
the noisy AC speech and BC speech. Moreover, we develop a novel
involution neural network to model the context of speech. Finally,
experimental results on a large multi-modal speech database show
that the proposed method achieves significant improvement over
its single-modal components, state-of-the-art speech enhance-
ment methods [30,11], and a recent multi-modal method [16], in
terms of both objective evaluation metrics for speech enhance-
ment and character error rate (CER) for speech recognition.
2. Method

2.1. Problem formulation

Suppose a clean AC speech signal xa is corrupted by ambient
noise na, which results in a noisy AC speech signal x̂a ¼ xa þ na. A
synchronized BC speech xb is corrupted by self-noise nb, and is
insensitive to na. The noisy AC speech and BC speech are paralleled
as a binary channel signal x ¼ ðx̂a; xbÞ. The end-to-end multi-modal
model takes the original speech waves in time domain x̂a and xb,
and produces the enhanced speech y by a deep neural network
y ¼ f ðx̂a; xbÞ. The model is trained in a supervised way. The training
loss function is denoted as Lðxa; yÞ.
2.2. Multi-modal model

As shown in Fig. 1, the proposed model consists of three mod-
ules—an encoder, a mask estimator, and a decoder.
2.2.1. Encoder
The encoder E linearly merges the noisy AC speech and BC

speech into a single feature map z, which is implemented by 1-D
convolution with N kernels.

The input signals of the two channels are segmented synchron-
ically into K overlapped frames xk 2 RL�2; k ¼ 1;2; . . . ;K , where L is
the dimension of each frame and the frame shift is L=2. Zero pad-
ding is used to ensure the number of dimensions of all frames to
be the same. The encoder is a linear transform, i.e.:

z ¼ EðxÞ ¼ UX; ð1Þ

where U 2 RN�2�L consists of N learnable kernels, and X 2 RL�2�K

contains all input frames. In this work, N is set to 256, L is set to
16 with frame shift of 8.
proposed MMINet method.



Fig. 3. Illustration of 1-D involution. The symbol / indicates the kernel generation
function. The symbol � indicates multiplication broadcast across channels C. The
symbol � indicates the aggregation within local sequence.
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2.2.2. Mask estimator
The mask estimator M learns a ratio mask from the input fea-

ture map z from the encoder, i.e. m ¼ MðzÞ whose elements m
are non-negative. The estimated clean speech component c can
be calculated by:

c ¼ z�m; ð2Þ

where � is the element-wise multiplication, and c 2 RN�K .
The detailed architecture of the mask estimator is shown in

Fig. 2. The mask estimator is implemented by an involution net-
work. The original involution network was proposed for visual
tasks, therefore its involution operator is 2-dimensional. In this
paper, we developed 1-D involution operation for speech tasks.

The procedure of 1-D involution is shown in Fig. 3. Unlike the
convolution operator, involution operation generates its kernels
conditioned on the input tensor. If we denote the kernel generation
function is /, then the involution kernel w can be described as

w ¼ /ðmÞ; ð3Þ
where m is the local sequence. In this paper, we use the 1-D depth-
wise separable convolution [31] as the kernel generation function.
Then, the involution kernel is applied to the input tensor through
Multiply–Add operation which consists of the following two steps.
First, the input tensor is multiplied by the involution kernel across
the channel dimension; then, the output of each kernel is aggre-
gated along the sequence dimension. After the above involution
operation, the input tensor is transformed into new feature maps.

As shown in Fig. 2, the mask estimator is built on the involution
operator. The structure of the mask estimator is similar to the tem-
poral convolutional network (TCN) architecture in [32,33]. It con-
sists of Q stacked 1-D involution blocks, where each block
generates H learnable kernels. The structure of each 1-D involution
block is shown in Fig. 4. It contains a 1-D involution operator fol-
lowed by the PReLU activation and layer normalization. In addi-
tion, we apply a residual path and a skip-connection path in each
Fig. 2. The block diagram of mask estimator in MMINet. The term ‘‘1-D Conv” refers t
involution block. The term ‘‘LayerNorm” refers to layer normalization.
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block. In order to make the mask estimator having a sufficiently
large temporal context window, we introduce dilation into the
involution operator and increase the dilation factors exponentially.
The whole mask estimator repeats the stacked blocks for R times,
followed by a convolution layer and ReLU activation function. In
this paper, Q is set to 8, H is set to 256, and R is set to 3.
o the 1-dimensional convolution. The term ‘‘1-D Inv” refers to the 1-dimensional



Fig. 4. 1-D Involution block in the mask estimator. The term ‘‘1 � 1-conv” refers to
convolution layer with a kernel size of 1� 1. ‘‘LayerNorm” refers to layer
normalization.
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2.2.3. Decoder
The decoder D linearly transforms the feature map c to a pack of

single-channel waveforms Y 2 RL�K by a linear transform:

Y ¼ DðcÞ ¼ Vc; ð4Þ

where V 2 RL�N . Finally, the enhanced speech y can be obtained
from Y with an overlap-add operation.

2.3. Training objective

Because of the mismatch of the amplitude gains between the
estimated signal y and its clean reference xa, the training objective
of the proposed system maximizes the scale-invariant source-to-
noise ratio (SI-SNR), which has commonly been used in end-to-
end speech source separation [32]. It is defined as:

s ¼ hy; xai
kxak2

; ð5Þ
n̂ ¼ y� s; ð6Þ
SI� SNR ¼ 10log10

ksk2
kn̂k2 ; ð7Þ

where h�i and k � k2 refer to the inner product and signal power oper-
ators respectively.

3. Experiments

3.1. Datasets

We collected AC and BC speech synchronously in an anechoic
chamber. The size of anechoic chamber is 11:8� 4:2� 7:6 m3. All
the surfaces in the interior part of the chamber are made of
4

sound-absorbing materials which are complied to the ISO 3745
standards [34]. The scripts were selected from 20,000 daily dia-
logues, and read by 100 native Chinese speakers (50 males and
50 females) wearing one headset integrating AC and BC micro-
phones. Eventually, we collected a multi-modal speech corpus of
about 42 h, with each speaker contributing about 25 min. The
speech was recorded at a sampling rate of 44.1 kHz, and further
downsampled to 16 kHz. The durations of utterances range from
1 to 5 s. Among the speakers, 80 speakers were used for training,
10 speakers for validating, and the remaining 10 speakers for
testing.

MUSAN [35] and NOISEX-92 [36] corpora were used as noise
sources of the noisy AC speech. Some noise in MUSANwas sampled
from Freesound. The noise part of MUSAN was used for training.
For each noise recording in NOISEX-92, half was used for valida-
tion, and the other half for testing. The noise signals were also
downsampled to 16 kHz. The noisy AC utterances were constructed
by corrupting the clean AC utterances with randomly selected
noise segments. The SNR levels of the noisy utterances for training
and validation were selected randomly from �15 dB to 5 dB. The
SNR levels of the test utterances were set to �15 dB, �10 dB, �5
dB, 0 dB, and 5 dB respectively.

3.2. Experimental configurations

For all experiments, we trained the models for 30 epoches with
the AdamW optimizer and a batch size of 12. The learning rate was
initialized to 0.001 and was halved if the accuracy of the validation
set was not improved in 4 consecutive epochs. Early stopping was
applied if the performance of the model on the validation set was
not improved for 10 consecutive epochs. We picked the model that
has the best performance on the validation set for evaluation.

3.3. Metrics

To evaluate the quality of the enhanced speech objectively, sev-
eral objective metrics were used, including narrow-band percep-
tual evaluation of speech quality (PESQ), short-time objective
intelligibility (STOI), and extended STOI (ESTOI). A PESQ score
ranges from �0.5 to 4.5. It measures the overall speech quality. It
has a high correlation with a subjective evaluation score. STOI
and ESTOI scores range from 0 to 1. They are highly relevant to
the human speech intelligibility. For each of the three metrics,
the higher the score is, the better the speech quality or intelligibil-
ity will be. The clean AC speech is used as a reference to calculate
the scores.

To further evaluate the performance of MMINet in applications,
we applied the enhanced speech to automatic speech recognition
(ASR). The speech recognition system for evaluation was built on
the conformer [37]. The system was first pretrained using the ESP-
NET TOOLKIT on a public Mandarin speech corpus AISHELL-2 [38],
then fine-tuned by the clean AC speech of our datasets. The train-
ing set of AISHELL-2 contains about 1000 h of clean AC speech data
recorded frommore than 1900 speakers. The acoustic feature is 80-
channel log-mel filterbank coefficients computed with a frame
length of 25 ms and a frame shift of 10 ms. Because AISHELL-2 is
a Mandarin speech corpus, character error rate (CER) was used as
the evaluation metric. The lower the CER is, the better ASR perfor-
mance is. The conformer achieves CERs of 9.23% and 12.9% on the
clean test set of AISHELL-2 and our dataset respectively.

3.4. Comparison methods

We compared the proposed MMINet with its AC and BC compo-
nent, where the component networks are labeled as the AC involu-
tion network (AC-INet) and BC involution network (BC-INet). We
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also compared with multi-modal fully convolutional network
(MFCN) with late fusion strategy [16], which is state-of-the-art
air- and bone-conducted speech enhancement method. It first
pre-trains two FCNmodels with the AC and BC speech respectively.
Then, the outputs of the two pre-trained FCN are concatenated.
Another compact FCN model with 1D convolutional layers is
applied to the concatenated feature. The setting of MFCN in the
comparison was the same as [16].

We also compared with some representative single-modal
speech enhancement methods, including AC-based and BC based.
For AC-based methods, the first one is Improved Minima Con-
trolled Recursive Averaging (IMCRA) [30], which is a dominant tra-
ditional signal precessing method for speech enhancement in
industry. Another one is the deep complex convolution recurrent
network (DCCRN) [11], which is one of the state-of-the-art deep
models for speech enhancement. For BC-based methods, we com-
pared two blind enhancement methods of BC speech, i.e, transfor-
mation filter based equalization [21], and FCN-based method [16].
Finally, we also evaluate the speech quality of the AC speech and
BC speech directly as a reference.
3.5. Results

Table 1 lists the results of the competing methods. From the
table, we find that the quality of the BC speech drops due to the
self-generated noise and the loss of the high-frequency informa-
tion. Although the BC speech sounds muffled, its speech intelligi-
bility is still acceptable. Therefore, the PESQ of BC speech is not
low relatively. However, when applying the BC speech to speech
recognition, the CER increases to as high as 0.88 indicating that
the high frequency component of speech is important for ASR
and the ASR system trained with the AC speech cannot be general-
ized to the BC speech at all.

As for the blind enhancement of BC speech, it is observed that
transformation filter based equalization can slightly improve the
performance because the low-frequency components are equal-
ized. However, the effective bandwidth of BC speech in our corpus
Table 1
Average performance of the proposed MMINet and competing methods over the SNRs
of ½�15;�10;�5; 0;5� dB.

PESQ STOI ESTOI CER

Clean AC speech - - - 0.134
Noisy AC speech 1.36 0.64 0.46 0.793
IMCRA [30] 1.60 0.50 0.36 0.779
DCCRN [11] 2.37 0.76 0.65 0.619
AC-INet (proposed) 2.49 0.80 0.69 0.521

BC speech 2.37 0.68 0.57 0.880
Filter method [21] 2.41 0.70 0.58 0.823
BC-FCN [16] 2.00 0.66 0.47 0.932
BC-INet (proposed) 2.39 0.68 0.56 0.845

MFCN [16] 1.77 0.68 0.54 0.761
MMINet (proposed) 3.29 0.91 0.84 0.273

Table 2
Performance comparison between MMINet and its AC-only component at five SNR levels

Noisy AC speech

PESQ STOI ESTOI CER PESQ STO

SNR5 1.99 0.82 0.70 0.604 3.29 0.93
SNR0 1.62 0.74 0.58 0.739 2.93 0.89
SNR-5 1.30 0.64 0.45 0.843 2.49 0.83
SNR-10 1.03 0.54 0.33 0.873 2.06 0.74
SNR-15 0.88 0.45 0.22 0.904 1.66 0.60

average 1.36 0.64 0.46 0.793 2.49 0.80
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is quite narrow, which makes the high-frequency components can-
not be reconstructed. In addition, the performance of BC-FCN is
lower than original BC speech, which is coincident with [16]. The
reason is the FCN architecture in [16] cannot restore the high-
quality speech using BC speech. Likewise, BC-INet does not have
better performance than original BC speech, because the proposed
involution neural network produces a mask, which can mask some
information on the feature map output from encoder, and cannot
compensate the high-frequency components of BC speech.

As for the AC speech enhancement, we find that IMCRA can
improve the speech quality in terms of PESQ and CER, however,
it makes the speech intelligibility drop in terms of STOI and ESTOI,
which indicates that the performance is limited in low SNR condi-
tions. DCCRN outperforms the aforementioned baselines signifi-
cantly in all metrics, which shows the advantage of deep learning
on speech enhancement. However, the proposed AC-INet has bet-
ter performance than DCCRN, which proves that involution is more
suitable than convolution in modeling speech context. Finally, the
proposed MMINet further outperforms AC-INet by a large margin.

From Table 1, we can also observe that the proposed MMINet
significantly outperforms FCN methods in all metrics. Both FCN
and MMINet are multi-modal methods in time-domain. However,
their architectures and training methods are different, which
accounts for the advantage of MMINet over FCN. Specifically, FCN
uses a stack of convolution layers to predict the clean AC speech
from the noisy AC speech and BC speech. MMINet uses an
encoder-decoder architecture and estimates a mask for the feature
map of the clean AC speech. Besides, FCN method needs to pretrain
the two FCN branches with the AC and BC speeches respectively,
which decreases the interaction between the AC and BC speeches
information. On the contrary, MMINet extracts the mask from
the joint embedding space of the AC and BC speeches.

Table 2 lists the detailed performance of the MMINet, its AC-
INet component, and noisy speech in all five SNR levels. From the
table, we find that both AC-INet and MMINet significantly improve
the speech quality and ASR performance over the noisy AC speech
at all levels of SNR. Comparing to AC-INet, the proposed MMINet
achieves an average improvement of 0.8 in terms of PESQ, 0.11
in STOI, 0.15 in ESTOI, and about 25% in CER, highlighting the
importance of leveraging the BC speech in low SNR environments.
In addition, we can find that the advantage of multi-modal method
becomes more salient as the SNR decreases, given the BC speech is
more noise-resistant.

To demonstrate the complementary property between the BC
speech and AC speech, as well as the advantage of the proposed
method, we further visualize the magnitude spectrograms of the
clean AC speech, BC speech, noisy AC speech and enhanced speech
produced by MMINet in Fig. 5. From the figure, we first find that
the BC speech only captures low-frequency bands, while the infor-
mation at the frequency bands higher than 1 kHz decays severely
and even completely lost. The BC speech has sharp self-generated
noise, which is mainly at low-frequency bands and at a narrow-
band of about 2 kHz. The noisy AC speech, which is corrupted by
in terms of four evaluation metrics.

AC-INet MMINet

I ESTOI CER PESQ STOI ESTOI CER

0.87 0.243 3.63 0.94 0.90 0.163
0.82 0.355 3.46 0.93 0.87 0.211
0.73 0.531 3.28 0.90 0.84 0.285
0.60 0.671 3.13 0.89 0.82 0.319
0.41 0.805 2.95 0.87 0.79 0.389

0.69 0.521 3.29 0.91 0.84 0.273



Fig. 5. (a) and (b) are spectrograms of the clean AC and synchronized BC speech respectively. (c) is spectrogram of the corresponding noisy AC speech interfered by babble
noise, where the SNR is �5 dB. (d) are the spectrogram of enhanced speech with MMINet.
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the babble noise at the SNR of �5 dB, does not have a clear spectro-
gram structure compared to the clean AC speech. Finally, the
enhanced speech produced by the proposed MMINet not only sup-
presses the noise in both the noisy AC speech and BC speech at low
SNR condition, but also recovers the information at the high-
frequency bands to some extent.
4. Conclusions

In this paper, an end-to-end multi-modal speech enhancement
method named MMINet is proposed. The proposed model can uti-
lize both the noisy AC speech and its synchronized BC speech to
obtain the enhanced speech at low SNR environment. Specifically,
the mask estimator of our model is built with the 1-D involution
network. To the best of our knowledge, it is the first time that invo-
lution operation is applied on speech to explore the context. We
evaluated our model on an air- and bone-conducted multi-modal
speech corpus. Experimental results demonstrate BC speech can
be used as an auxiliary source to improve the speech quality and
intelligibility as well as the application to ASR. Moreover, the pro-
posed MMINet can effectively utilize the information of AC and BC
speech, and outperforms the state-of-the-art methods.
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