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A B S T R A C T

Automatic Emotion Recognition (AER) is critical for naturalistic Human–Machine Interactions (HMI). Emotions
can be detected through both external behaviors, e.g., tone of voice and internal physiological signals, e.g.,
electroencephalogram (EEG). In this paper, we first constructed a multi-modal emotion database, named Multi-
modal Emotion Database with four modalities (MED4). MED4 consists of synchronously recorded signals of
participants’ EEG, photoplethysmography, speech and facial images when they were influenced by video stimuli
designed to induce happy, sad, angry and neutral emotions. The experiment was performed with 32 participants
in two environment conditions, a research lab with natural noises and an anechoic chamber. Four baseline
algorithms were developed to verify the database and the performances of AER methods, Identification-vector +
Probabilistic Linear Discriminant Analysis (I-vector + PLDA), Temporal Convolutional Network (TCN), Extreme
Learning Machine (ELM) and Multi-Layer Perception Network (MLP). Furthermore, two fusion strategies on
feature-level and decision-level respectively were designed to utilize both external and internal information
of human status. The results showed that EEG signals generate higher accuracy in emotion recognition than
that of speech signals (achieving 88.92% in anechoic room and 89.70% in natural noisy room vs 64.67% and
58.92% respectively). Fusion strategies that combine speech and EEG signals can improve overall accuracy
of emotion recognition by 25.92% when compared to speech and 1.67% when compared to EEG in anechoic
room and 31.74% and 0.96% in natural noisy room. Fusion methods also enhance the robustness of AER in
the noisy environment. The MED4 database will be made publicly available, in order to encourage researchers
all over the world to develop and validate various advanced methods for AER.
1. Introduction

Emotions contain information about people’s intentions and reac-
tions and have a significant impact on the perceptions and decisions
of the people they communicate with [1,2]. Precise recognition of
emotions in interpersonal and human–computer interactions can lead
to more harmonious and natural communication [3,4]. Therefore, emo-
tion cognition and recognition play an important role in our everyday
social communication.

In neuroscience, emotions are defined as complex psycho-physio-
logical processes that reflect the reactions of our nervous system toward
external relations [5]. The reactions involve changes in the external
behaviors such as facial expressions, body gestures, frequency and
speed of voice, as well as internal physiological responses such as
electroencephalography (EEG), electrocardiogram (ECG), respiration
and pulse [1]. For example, anger leads to louder voice, staring and
frowning, raised blood pressure, body temperature and increased heart
rate. In daily life, we understand emotions better when we combine
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a speaker’s facial expressions, body gestures and the tones of voice
together, as the expression and perception of emotions are essentially
multi-modal [6]. In this case, all the three channels of information
contribute to the understanding of emotions. Therefore, multi-modal
emotion expressions which integrate the complementary information
among different emotion modalities can provide a better interpretation
of emotions.

Access to annotated multi-modal database is a prerequisite for de-
veloping Automatic Emotion Recognition (AER) algorithms. There are
some published databases aiming to providing benchmark methods for
AER [7–10]. Since speech and facial expressions are the most intuitive
modalities for emotion recognition, the existing multi-modal databases
mainly focus on audio and video signals [11,12]. However, this may not
be sufficient since humans can involuntarily or intentionally conceal
their emotions, known as social masking [13]. For instances, people can
perceive and understand emotional information from speech signals,
such as special mood words and intonation changes and can also hide
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Fig. 1. The framework of emotion recognition. EEG, PPG, Speech and Video signals were simultaneously recorded while subjects watching emotional video clips and read emotional
contextual script materials afterwards. EEG and Speech data were segmented and pre-processed. Features were then extracted and fed into baseline algorithms. Finally, the emotion
recognition was given through both feature-level and decision-level fusion methods.
true emotions by regulating emotional information in speech [14]. In
contrast, physiological information can provide some complementary
advantages for AER. Signals from the Autonomic Nervous System (ANS)
and Central Nervous System (CNS) signals, such as ECG and EEG,
are not easily affected by conscious or intentional control, thus are
considered more robust and objective. EEG signals [15] have been
widely used in AER since they capture the emotional information from
its origin. However, less work is available in combining internal physio-
logical responses into audio/video channels. Therefore, to consider the
characteristics of each modality, a comprehensive multi-modal emotion
database is needed.

Among different channels of emotional expressions, speech signals
are easily corrupted with environmental factors, such as background
noise and the reverberation in natural environments, which in turn
affect the performance of speech-based AER [16,17]. Schuller et al.
suggested that the accuracy degrades could be as high as 74.5% for
2

clean speech to 54.9% at −10 dB signal-to-noise ratio (SNR) on Danish
emotional speech corpus (DES) for five emotions (anger, joy, sadness,
surprise and neutrality) [18]. Therefore, it is necessary to develop
robust and secure AER systems to resist the inevitable noise and adver-
sarial environment (S. Zhao et al.) [13]. Many methods were developed
to tackle this issue. However, in most studies, speech signals were
collected in one noisy environment [16,17] or simulated by adding
different types of noise to clean speech [19]. There is limited access for
databases that include both clean and noisy signals in controlled exper-
iment conditions. Therefore, in this work we considered environmental
noise as an independent factor in the experimental design.

In this paper, we integrated the emotional external behaviors and
internal physiological signals to recognize human emotions. The main
framework of our proposed AER method is shown in Fig. 1. The
main contribution of this work are as follows. We first constructed
a multi-modal and multi-environmental emotion database which in-
cludes speech, video, EEG and photoplethysmography (PPG) signals
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Table 1
Summary of the main Characteristics of Emotional Database Reviewed.

Dataset Subjects Modalities Hours Labels Language Environment

BAUM-1 31 Audio, Visual – Happy, confusion, sad,
disgust, angry, fear,
boredom, interest

Turkish Natural

SEMAINE 150 Audio, Visual ∼80 h Valence, arousal,
and action units

English Natural

IEMOCAP 10 Audio, Visual ∼12 h Happy, angry, sad,
neutral and valence,
activation, dominance

English Natural

SEED-IV 44 EEG,
eye movement

∼105 h Happy, sad, fear, neutral ∖ Natural

DEAP 32 Visual, EEG,
EMG, EOG, RA,
BVP, GSR, ST

∼21 h Arousal, valence, liking,
dominance, familiarity

∖ Natural

NNIME 44 Audio, Visual,
ECG

∼7h Happy, sad, angry, neutral,
surprise and frustration

Chinese Natural

RAMAS 10 Audio, Visual,
Posture, ECG

∼7 h Happy, sad, angry,
fear, disgust, surprise

Russian Natural

MAHNOB-HCI 27 Audio, Visual,
GSR, RA, BVP, ST,
Eye Gaze, EEG, ECG

∼9 h Valence, dominance,
arousal, predictability,
and emotional keywords

English Natural

MED4 32 Audio, Visual,
EEG, PPG

∼15 h Happy, sad, angry, neutral Chinese Natural,
Anechoic

The last row is our database. The acronyms in the table are: EMG is Electromyogram, EOG is Electrooculogram, GSR is Galvanic Skin Response, ST is Skin Temperature, BVP
is Blood Volume Pressure, RA is Respiration Amplitude. The ’’∼’’ symbol means approximate value. The natural environment is the room that is not equipped with professional
sound absorbing materials.
recorded from natural noisy room and anechoic chamber. Based on the
MED4 database, we analyzed the effect of the window size for EEG
sampling on AER. We then performed single modality AER based on
EEG and speech signals separately from different environment through
four baseline algorithms. Finally, to identify whether there is comple-
mentary information between speech and EEG signals, we performed
feature- and decision-level fusion strategies. We concatenated features
from EEG and speech signals as feature-level fusion method and ap-
plied average sum (AVER), weighted average sum (WAVER), random
forest (RF) [20] and extremely randomized trees (ET) [21] as decision-
level fusion methods to evaluate the strength and weakness of each
approach.

The rest of this paper is organized as follows. Section 2 reviews the
related multi-modal emotional databases. Section 3 introduces MED4
database in detail. Section 4 explains the pre-processing and features
extraction of speech and EEG signals. Section 5 gives four baseline
algorithms. The experimental results are demonstrated in Section 6.
Finally, the paper is concluded in Section 7.

2. Multi-modal emotional databases

Creating a high quality multi-modal emotional database that prom-
pts an advance in AER is an important step and requires a deep un-
derstanding of existing databases. This section focuses on the publicly
available multi-modal emotional databases related to audio and physio-
logical signals modalities. In Table 1, we summarize the characteristics
of the reviewed databases.

Existing multi-modal emotional databases including audio signals
mainly use three ways to stimulate target emotions: acting, sponta-
neous responding to designed scenarios, and eliciting emotions via
stimuli with emotional contents. BAUM-1 [11] is an acted audio–visual
database involving 8 emotions and mental states, where 31 subjects
were asked to read aloud scripts in Turkish while imagining specific
scenarios. The SEMAINE [7] database contains naturalistic audio–visual
expressions from 150 subjects, who engaged in an emotional conver-
sation with a sensitive artificial listener. A total of 959 conversations
were recorded, each lasting approximately five minutes. Elicitation
techniques were selected in IEMOCAP [22] database : the use of scripts.
3

Ten actors were divided into five dyadic pairs and were asked to per-
form scripts with clear emotional contents under the supervision of an
experienced professional. Approximately twelve hours of audio–visual
data were included.

Using emotional film clips, pictures or music videos to elicit sub-
jects’ target emotions are widely used in collection of spontaneous
physiological responses. SEED-IV [23] and DEAP [8] are two commonly
used emotional benchmark datasets related to physiological signals.
SEED-IV synchronously recorded 44 subjects’ EEG data and Eye move-
ments during they watched video clips which induced happy, sad, fear
and neutral emotions. Totally 72 film clips were shown to each subject
and the duration of each film clip was approximately two minutes. The
DEAP database comprises EEG and peripheral physiological recordings
of 32 subjects while watching 40 different music videos of one minute
duration.

Multi-modal databases that combine external emotional behaviors
and internal physiological signals can provide a more comprehensive
data source for AER. In NNIME [24], 44 subjects were paired into
dyadic groups to spontaneously perform a short hypothesized scene
of about three minutes. They were instructed to interact freely with
each other in order to collect audio–visual and ECG responses of the
six pre-specified emotions (Happy, sad, angry, neutral, surprise and
frustration). A similar database that uses improvised dyadic interactions
is the RAMAS [25] database, which includes approximately seven
hours of recordings of audio–visual, posture and ECG signals from ten
semi-professional actors. However, the above two multi-modal emo-
tional databases did not record EEG responses for emotion expression.
MAHNOB-HCI [26] is one of the few publicly available databases which
contains both audio–visual channels, CNS and ANS signals. It syn-
chronously recorded face video, audio, eye gaze data and physiological
signals of 27 subjects while watching videos and images. However, the
audio signals were some natural utterances and laughter that expected
occur during experiments and just used for video tagging. Therefore, in
this paper we adopted the similar elicited technique that use film clips
to evoke subjects’ emotions, then collected the emotional responses
that includes signals from audio–visual, CNS and ANS channels while
subjects read scripts.

From Table 1, it is observed that MED4 is the only one multi-
environmental and multi-modal emotional database that contains



Computers in Biology and Medicine 149 (2022) 105907Q. Wang et al.

e
t
u
i

o
n
d
s
a
s

3

f
t
c
s

t
l
i

3

d
n
e
j
s
v
s
[
t
s
e
c
w

3

T
A
3
t
w
w
S
p
o
p
r
k
s
t
c
F

3

s
T
i
s
q
s
a
u
d
o
c
I
e
N
A

Table 2
The video clips and their sources.

Code Emotion labels Video clips sources

1 Neutral Weather forecast
2 Neutral Weather forecast
3 Happy Just For Laughs Gags
4 Happy Just For Laughs Gags
5 Sad Wedding Dress
6 Sad Hachi-A Dog’s Tale
7 Angry Falling Down
8 Angry Life as a House

audio–visual channels, EEG and peripheral physiological signals rec-
orded in natural noisy room and anechoic chamber.

3. MED4 database establishment

The MED4 database has been recorded separately in two different
environments: a lab with natural noises and an anechoic room. 32 sub-
jects first watched film clips contain target emotions (happy, sad, angry
and neutral) and then read aloud pre-scripted text materials as the
expression of such emotions. Speech, video, EEG and PPG signals were
recorded during the experiment, but only the signals when subjects
expressing emotions were used to construct the MED4 database.

3.1. Stimuli video clips

Emotional video clips are effective and widely used to induce emo-
tions. To elicit the target discrete emotions (happy, sad, angry, neutral),
sixteen films were selected based on the public views on the types of
emotions related (e.g., tragedy, comedy). We also referred to the films
used in other relevant work such as [27]. The film clips were then
edited based on the following criteria: (a) the duration of each film clip
should be between one and seven minutes which is suitable for emotion
evoked and avoids fatigue caused by excessive duration [28], (b) the
emotion and content of the video clips should be easily understood,
(c) the clips should show the most emotional arousing part of the film,
(d) the video clips should stimulate one single and consistent target
emotion. Based on these criteria, sixteen video clips were preliminary
collected (four clips for each type of emotion), with average duration of
four minutes. Then, five evaluators were invited to rate the emotional
content of these sixteen video clips. They were asked to assess the
emotions they perceived from the sixteen movie clips presented at
randomized order, using Post-Film Questionnaire which consists five
items (four related to the target emotions and one question of ‘‘What
other emotion did you feel except the four emotions listed above’’) on a
five-point scale (one = ‘‘not at all’’, five = ‘‘extremely’’) to indicate the
motion intensity. Two film clips received the highest scores based on
he Questionnaire from each emotion were chosen as emotional stimuli,
ltimately eight film clips were selected to be shown which are listed
n the Table 2.

To study the effect of environmental noise for different modalities
f emotional expression, we conducted the experiment separately in
atural noisy room and anechoic chamber. The eight film clips were
ivided into two sessions with no repetition. Half of the subjects were
hown session one stimuli in natural noisy room and session two in
nechoic chamber, the other half subjects were shown the opposite
ession.

.2. Environmental setting

The natural noisy environment condition was conducted in a human
actor laboratory. The speech signals collected in this environment con-
ain various types of environmental noises and reverberation. Anechoic
hamber is 11.8 𝑚 long *4.2 𝑚 wide * 3.8 𝑚 high. It is equipped with
ound absorbing material inside the wall that greatly reduces noise,
4

reverberation and electromagnetic interference. The background noise
in the anechoic chamber is less than 17 dB. The speech signals collected
from the anechoic chamber are high quality and regarded as more
suitable for studying the emotional clues of speech [29].

Previous studies have reported that indoor lighting and temperature
can influence affective and cognitive processes [30]. Increasing in
illumination levels can increase the level of arousal, and mild heat (up
to ∼27 ℃) can reduce it. To make sure that environmental noise is
he single variable, we set the illumination and temperature of the two
abs to be the same and comfortable for the subjects to avoid external
ntervention.

.3. Transcript for emotion recognition

There are two main types of transcripts in the acted and elicited
atabases in speech emotion research. Some studies use emotionally
eutral utterances, where subjects read sentences by applying different
motions. The others use emotionally biased sentences, where sub-
ects express their emotion according to contextual information of the
cripts. The purpose of MED4 database is to obtain as natural audio,
ideo and physiological signals as possible in a controlled experimental
etting. Contextual information is critical for the naturalness of speech
31]. Meanwhile, genuinely emotional speech is likely to contain emo-
ionally biased content. Hence, utterances corresponding to the video
timuli were scripted as the reading script. Considering the stimuli that
voke happy emotions have no words, we edited two dialogs with
ontextual information, of which some sentences contained emotional
ords toward happy state, such as ‘‘ We are so happy and cheerful’’.

.4. Apparatus and synchronization

Speech data were captured by one condenser microphone (Audio
echnica ATR2500) with a sampling rate of 44.1 kHz and presented in
dobe Audition software. EEG data were continuously collected using a
2-channel EEG module (NeurOne) with electrodes arranged according
o international 10–20 system with a sampling rate of 500 Hz. PPG
as collected by an ear clip sensor which attached to the earlobe
ith a sampling rate of 64 Hz and displayed in ErgoLab software.
peech, EEG and PPG signals were recorded on a dedicated PC. E-
rime software was installed in another PC that controls the protocol
f the experiment, including presenting the stimuli, managing the
rocedure and synchronizing the data recording. When subjects were
eady to read the script, they were asked to press any key on the
eyboard to start the recording of speech. The E-prime software sent
ynchronization markers directly to the EEG, PPG collection software
o align the EEG, PPG and speech signals. Facial videos of subjects were
ollected via webcam of the stimuli PC with a sampling rate of 60 Hz.
ig. 2 illustrates the placement of equipment for data collection.

.5. Subjects

The subjects who engaged in emotional data collection experiment
hould have the ability to accurately perceive and express emotions.
he ability to feel and share the emotional experiences to another

s known as empathy [32], while the Chinese version of Interper-
onal Reactivity Index (IRI-C) questionnaire [33] which consists of 22
uestions measures the empathic ability of participants. The higher
core of IRI-C questionnaire means the better ability of empathy. In
ddition, Toronto Alexithymia Scale (TAS-20) [34] is the most widely
sed 20-item self-report questionnaire for measuring the difficulty in
istinguishing emotions, describing emotions to others and the absence
f externally oriented thinking. The score of TAS-20 less than 51 is
onsidered as free of alexithymia. Thus, we chose the subjects who had
RI-C > = 55 and TAS-20 < = 51 point to participant the data collection
xperiment. 32 healthy students (sixteen males, sixteen females) from
orthwestern Polytechnical University participated in this experiment.
verage age of subjects is 24.28 years old (sd = 2.69 years).
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Fig. 2. The placement of equipment.

3.6. Experimental protocol

From the night before, subjects were informed to ensure adequate
sleep and avoid excitable substances, e.g., coffee and alcohol. Upon
arrival, prior to each experiment, each subject signed a consent form,
which includes the basic demographic information and consents the
usage of their personal/experimental data. Then the subject was ex-
plained the purpose, the procedure and the self-assessment form in
detail, followed by an introduction of the equipment used in the ex-
periment. They were also informed that they can pause the experiment
if emotions disappear due to sleepy during reading scripts. By recalling
an emotional event [35] or the previous film clip to arouse the target
emotion, they can then continue the experiment. In addition, they
were asked to watch the film clips attentively and minimize head
movements to avoid artifacts in EEG recording. After the sensors were
properly placed, their signals were checked before data collection. Then
the experimenter existed the lab and the subject started experiment
with pressing any key on the keyboard. Each experiment lasted about
60 min.

There was a baseline recording of two minutes, during which EEG
and PPG signals were recorded with subject’s eyes closed in first one
minute and eyes open in the second. Then the four film clips (one
session) were presented in four trials, each trial consisting of the
following steps:

• Presentation of two-five minutes film clips to induce the target
emotion.

• Speech recordings of about four minutes according to the script
with the emotion felt from previous video clip.

• 45 s self-assessment for emotions during watching the stimuli and
reading.

• 15 s relaxation for the following trial.

EEG, PPG and video signals were recorded throughout each ex-
periment, while speech signals were recorded only during the subject
uttering the script. Self-assessment was conducted immediately after
each trial. In the self-assessment, participants were asked to assess
emotional state that they experienced rather than emotions that were
designed to induce. After four trials, the experiment ended, and the
subject left the room without talking about the content of experiments
to others. The detailed protocol is shown in Fig. 3. We first conducted
the experiments in natural noisy room, subsequently experiments in
anechoic chamber using the same participants and protocol.

3.7. Database organization

The database contains the EEG, PPG, video and speech emotional
signals collected in a lab with natural noises as well as in an anechoic
5

Fig. 3. Protocol of our designed emotion experiments.

Table 3
Experiment Content Summary.
Subjects and modalities

No. of subjects 32, sixteen male and sixteen female

Recorded modalities 32-channel EEG (500 Hz), PPG
signals (64 Hz),
Speech (44.1 kHz), Video (60 Hz)

Evoke target emotions using video clips

No. of film clips eight, four for each environment

Expressing emotions based on scripts

No. of scripts eight, two for each emotion

Self-report Happy, Sad, Angry, Neutral or other

Recorded modalities Speech, EEG, PPG, Video

chamber. The signals were annotated with four target discrete emo-
tions based on subjects’ self-assessment report after each trial. A brief
summary of the experiment content is shown in Table 3.

Within 64 experiments, data from nine experiments were elimi-
nated, due to poor EEG signals (less than 60% data available). In
addition, only the data with consistent target emotion and self-assessed
emotion were considered valid. In addition to the self-assessment, we
also conducted emotion perceptual evaluation for speech utterances.
Two native Chinese annotators who did not participate in the data
collection carried out the perceptual evaluation. Since contextual in-
formation influences the judgment of evaluators [36], our aim is to
understand acoustic cues to decode emotional behaviors, thus each
utterance was evaluated by the two annotators in random order. Each
utterance was presented to the annotators, and rated on the type of
emotions accordingly. Each utterance was given a label only when the
two annotators had the same rating and the rating was also consistent
with the self-assessment from the subject. Therefore, if the subject’s
self-assessed emotion was not the same as the target emotion, or if
it did not agree with the two annotators’ ratings, the data were also
discarded. Finally, data from 26 participants in natural noisy room
and 29 participants in anechoic chamber were considered as high
quality and included in MED4 database, of which 23 participants were
recorded in both environments.

Each utterance was considered as one data segment. Synchronizing
markers were inserted into EEG and PPG recordings at the beginning
and ending of each utterance. The detailed information of the MED4
database is demonstrated in Table 4. In total, the database comprises
of 9,504 utterances with an average duration of 2.35 s (sd = 1.09) for
natural noisy room and 10,692 utterances in anechoic chamber with
an average duration of 2.28 s (sd = 0.99). The length distribution of
each utterance is shown in Fig. 4. 90.9% (noisy) and 92.7% (anechoic)
of the data duration range from one to four seconds.
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Fig. 4. The duration distribution of utterances in MED4.

Table 4
The detailed information of the database.

Environments

Natural noisy room Anechoic chamber

Subjects 26 29

EEG (fragments) 4 emotions*26 subjects 4 emotions*29 subjects
PPG (fragments) 4 emotions*26 subjects 4 emotions*29 subjects

Speech (utterances) Happy:2392, Sad:2575,
Angry:2636, Neutral:1901

Happy:2671, Sad:2887,
Angry:2942, Neutral:2192

4. Data processing

In this paper, the video and PPG signals were not included in the fol-
lowing AER performance validation algorithms, but will be published
along with the rest of the dataset.

4.1. EEG data pre-processing

Raw EEG signals are prone to noise. The signals are pre-processed
using MATLAB EEGLAB toolbox to remove artifacts [37]. In this work,
a band-pass filter with a bandwidth range from 1 to 50 Hz was first
applied, and then a notch filter at 50 Hz was applied to remove linear
trends and minimize artifacts. Head moving and scalp sweat cause EEG
signals to drift. In an off-line analysis of event-related potential, lack of
partial data does not have a significant impact on the results, therefore
the segments with EEG data drift can be discarded. However, in some
special applications, e.g., in real-time emotion recognition, discarding
the data affects AER performance. Thus, an additional median filter was
applied to carry out a baseline correction for drifted EEG data. A spheri-
cal interpolation method was then used to interpolate the bad channels.
Finally, independent component analysis algorithm was applied to
remove artifacts related to eye blinks and muscle movements.

For feature extraction of EEG signals, most researches use sliding
window to divide the continuous EEG data into segments with equal
length [9,38]. Features are then extracted from each segment. In this
work, considering the practical application of EEG and speech signal
fusion in AER, we cut the pre-processed EEG data into segments with
varying length using the Hamming window, where each segment cor-
responding to the duration of each utterance. The distribution of the
duration of each segment would then be the same as speech utterances,
showing in Fig. 4.

In previous work [23,39], differential entropy (DE) feature has
shown superiority on EEG-based AER. It is the entropy of continuous
random variable and measures the complexity of EEG signal. Definition
as follows:

ℎ(𝐱) = −∫

∞

−∞

1
√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 log( 1
√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 )𝑑𝑥

= 1 log 2𝜋𝑒𝜎2
(1)
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2

where 𝐱 is a random variable with the Gaussian distribution 𝑁(𝜇, 𝜎2).
DE features were then calculated into five frequency bands for each
channel: delta rhythm (1–3 Hz), theta rhythm (4–7 Hz), alpha rhythm
(8–13 Hz), beta rhythm (14–30 Hz) and gamma rhythm (31–50 Hz).
Finally, we extracted 160-dimensional DE features for each sample.

4.2. Speech data processing

Pre-process for speech signals was conducted before feature extrac-
tion.

• Pre-processing : Pre-emphasis was first conducted to remove the
influence of lip radiation with a finite impulse response (FIR)
high-pass filter. The transfer function of the pre-emphasis filter
is usually given by

𝐻(𝑧) = 1 − 𝑎𝑧−1, 𝑎 ∈ [0, 1]

Here 𝑎 = 0.97, the pre-emphasis can increase the high frequency
resolution of the speech signal. Next, voice activity detection
(VAD) was applied to remove the silence segment to improve the
global accuracy of AER [40]. Since the mel-frequency cepstral
coefficient (MFCC) of silence is close to 0, which has no contribu-
tion to AER. Due to the short-term stationarity of speech signal,
we also need to divide the speech into frames through a sliding
window. In addition, the method of overlapping between frames
was adopted to make smooth transition. In this work, each utter-
ance was divided into frames of 256 points using the Hamming
window with an overlap of 128 points. After pre-emphasis, VAD
and framing, each utterance was segmented into several frames,
and acoustic features were extracted for each frame.

• Acoustic feature extraction: MFCC was first introduced in [41]
which is consistent with the human ear perception of sound
frequency characteristics. It has been widely and successfully ap-
plied to automatic speech recognition and speech-based AER [42,
43]. For each frame, the first 12 MFCC parameters and the
associated delta- and double-delta MFCCs describing local dynam-
ics were extracted to form a 36-dimensional frame-level feature
vector.

ecause of the duration of utterances vary, shown in Fig. 4, each
tterance has a variant number of frames that results in unfixed di-
ensionality of feature vector. Generally, by calculating the statistical

alues like maximum, minimum, mean and variance of all frame-level
eatures, we can get the fixed dimensional representation of utterance-
evel. However, this process will discard the temporal clues of speech
ignals, which might be important to recognize emotions [44]. In this
aper, I-vector with PLDA algorithm can capture the temporal clues of
ontinuous frames. The final feature vector for one utterance was hence
matrix of 36 × nframes (number of frames in one utterance).

. Emotion recognition methods

.1. Identification-vector + probabilistic linear discriminant analysis

I-vector with PLDA algorithm is widely used in speaker verification,
nd in this study, we used it for speech-based AER [45,46].

• Standard I-vector system use a Universal Background Model
(UBM) in conjunction with acoustic features to collect sufficient
statistics for I-vector extraction. Firstly, we use all training data
to produce an emotion-independent model which named UBM
that is a weighted sum of several Gaussian components. Then,
the specific emotion-dependent Gaussian Mixture Models (GMMs)
were created by adapting the UBM to each emotion using Max-
imum A Posteriori (MAP) adaptation with the corresponding
emotion training data. In this process, we only needed to adapt

the mean vectors of UBM (rather than weights or covariances) by
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Fig. 5. The model structure of GMM-UBM.

a shift to get the target emotion characteristics. The target GMM
supervector was generated from concatenating the mean values
of all components GMM. The structure of GMM-UBM model is
shown in Fig. 5.

• Since the dimension of the emotion-dependent GMM-UBM super-
vectors is very high, redundant information may exist. Therefore,
dimension was reduced to extract more compact features. In the
I-vector paradigm, the mean supervectors of GMM-UBM can be
modeled as the sum of the emotion-independent mean supervec-
tor and the total variability vector. Formally, the supervector of
a given utterance 𝑗 can be modeled as:

𝒔𝑗 = 𝒎 + 𝑻𝝎𝑗 (2)

where 𝒎 represents the UBM mean supervector, 𝑻 is a low dimen-
sional total variability matrix and 𝝎𝑗 is the I-vector of utterance
𝑗 and contains specific emotional and channel information.

• Since the existence of channel information during speech trans-
mission in I-vector interferes with AER, channel compensation
method should be applied to minimize the influence. PLDA is a
popular method to remove the channel attribute from I-vector.
PLDA assumes that, for the 𝑖th emotion, the I-vector 𝝎𝑖,𝑗 extracted
from the 𝑗th utterance can be formulated as:

𝝎𝑖,𝑗 = 𝝁 +𝜱𝒙𝑖 + 𝒆𝑖,𝑗 (3)

where 𝝁 is the mean vector of all training data, 𝜱𝒙𝑖 repre-
sents the inter-emotion variability and the residual term 𝒆𝑖,𝑗 ∼
𝑁(0, 𝛴) represents the intra-emotion variability which need to be
minimized.

• Given two I-vectors 𝝎(𝑗1) and 𝝎(𝑗2) extracted from utterances 𝑗1
and 𝑗2, and a trained PLDA model, we can compute the likelihood
ratio between the hypothesis 𝐻same that the I-vectors belong to
the same emotion, versus the hypothesis 𝐻dif f that the I-vectors
were produced by different emotions, with factors 𝒙1 and 𝒙2. The
PLDA score is the log of this quantity, namely

𝑠𝑐𝑜𝑟𝑒 = ln
𝑝((𝝎(𝑗1),𝝎(𝑗2))|𝐻same)

𝑝(𝝎(𝑗1)|𝐻𝑑𝑖𝑓𝑓 )𝑝(𝝎(𝑗2)|𝐻dif f )
′ (4)

If the score is greater than a given decision threshold, the two
utterances belong to the same emotion.

5.2. Extreme learning machine

ELM [47] is known for its fast training and good generalization
performance. It has shown competitive accuracy in many pattern
recognition applications such as disease diagnosis [48,49], motor im-
agery [50], face recognition [51] and distraction detection [52]. The
standard ELM model is shown in Fig. 6.

Considering a set of 𝑁 training samples (𝒙𝑖, 𝒕𝑖), 𝑖 = 1,… , 𝑁 for
𝑚 emotion classes, where each sample and its corresponding label
vector are respectively as 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑑 ]T ∈ 𝑅𝑑 and 𝒕𝑖 =
[𝑡𝑖1, 𝑡𝑖2,… , 𝑡𝑖𝑚]T ∈ 𝑅𝑚. For ELM with multi-output nodes, if 𝒙𝑖 belongs

to the class 𝑝, the label vector is denoted as 𝒕𝑖 =
𝑝

[0,… , 1,… , 0]T. In ELM,
the input weights 𝝎 and the biases 𝒃, are randomly generated and fixed,
which leads to the analytical calculation of the network outputs weights
𝜷. It can be obtained by solving the following objective function which
7

f

Fig. 6. The model structure of standard ELM.

aims to not only reach the minimum training error but also minimize
the output weights

Minimize ∶ 𝐿p =
1
2
‖𝜷‖2 + C1

2

𝑁
∑

𝑛=1
𝝃2𝒊

Subject to ∶ 𝒉(𝒙𝒊)𝜷 = 𝒕T𝒊 − 𝝃T𝒊 , 𝑖 = 1,… , 𝑁

(5)

where 𝒉 is any nonlinear activation function actually mapping the
data from 𝑑-dimensional input space to the 𝐿-dimensional hidden layer
feature space. Based on the Karush–Kuhn–Tucker theorem, the output
function of ELM classifier is

𝒇 (𝒙𝒊) = 𝒉(𝒙𝒊)𝜷 = 𝒉(𝒙𝒊)𝑯T( 𝑰
C

+𝑯𝑯T)−1𝑻 or

= 𝒉(𝒙𝒊)(
𝑰
C

+𝑯T𝑯)−1𝑯T𝑻
(6)

For any testing sample 𝒚, let 𝒇 𝑗 (𝒚) denote the result of the 𝑗th output
node, i.e. 𝒇 (𝒚) = [𝒇 1(𝒚),… ,𝒇𝑚(𝒚)]T, then the predicted class of sample
𝒚 is

𝑐𝑙𝑎𝑠𝑠(𝒚) = arg max
𝑖∈{1,…,𝑚}

𝒇 𝑖(𝒚) (7)

In ELM, if the feature mapping 𝒉 is known, almost all nonlinear
piecewise continuous functions can be used as the hidden-layer activa-
tion functions. Sigmoid and Gaussian functions are two of the major
hidden-layer output functions. If 𝒉 is unknown, we can apply Mercer’s
conditions on ELM. A kernel matrix can be defined as
𝜴𝐄𝐋𝐌 = 𝑯𝑯T ∶ 𝜴𝐄𝐋𝐌(𝒙𝒊,𝒙𝒋) = 𝒉(𝒙𝒊)𝒉(𝒙𝒋)T

= 𝐾(𝒙𝒊,𝒙𝒋)
(8)

Then, Eq. (6) can be written compactly as

𝒇 (𝒙𝒊) = 𝒉(𝒙𝒊)𝑯T( 𝑰
C

+𝑯𝑯T)−1𝑻

=
⎡

⎢

⎢

⎣

𝐾(𝒙𝒊,𝒙1)
⋮

𝐾(𝒙𝒊,𝒙𝑁 )

⎤

⎥

⎥

⎦

( 𝑰
C

+𝜴𝐄𝐋𝐌)−1𝑻
(9)

From Eq. (9) we can see that the kernel form of ELM classifier is
nly related to the input data and the number of training samples. The
imensionality 𝐿 of the feature space (number of hidden nodes) need
ot be given either.

.3. Multi-layer perception network

MLP is a widely used artificial neural network and commonly
pplied in classification task [53,54]. We used MLP as a deep learning
ethod to compare with ELM for EEG-based AER. MLP consists of

nput layer, hidden layers and output layer. The DE feature extracted

rom pre-processed EEG signals was fed into MLP as input vector. To
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Fig. 7. The structure of TCN. (a) The flowchart of TCN. The elements in dotted line are repeated 1-D convolution blocks. Different colors in the 1-D convolution blocks denote
different dilation factors. (b) The design of 1-D convolution block. It is a residual connection between the input and output. Each 1-D convolution block has a dilated convolution
layer. (c) An example of a dilated convolution with dilation factors = 1, 2, 4, 8 and kernel size = 2.
verify the recognition accuracy, several models were tested. For MLP,
the number of input nodes was 160 which is the dimension of DE
feature, and the number of hidden nodes was selected in {128, 64, 32,
16}, hidden layer from 1 to 2. The parameters which provided best
classification performance were set as 2 hidden layers with 128 and 16
hidden nodes separately.

5.4. Temporal convolutional network

Convolutional Neural Network (CNN) and its variation, such as
Temporal Convolutional Network (TCN) are commonly used in model-
ing sequential data [55]. TCN adopts dilated 1-D convolutions to create
a large temporal receptive field with fewer parameters. By stacking
1-D convolution blocks with different dilation factors to capture the
temporal dependence of various resolutions from the sequential data.
Each block has a residual connection between input and output to
avoid losing low-level details and to provide hooks for optimization.
In addition, the computations in TCN can be performed in parallel to
greatly speed up the training process and also significantly reduces the
model size.

Due to the excellent performance of TCN-based models in speech
enhancement [56] and speech separation [57], we used it for end-
to-end speech AER. Referring to the research in [57] which studied
the effect of different configurations in TCN for speech separation, we
determined the model parameters of TCN with 4 Convolution Blocks
and dilation factors are {1, 2, 4, 8} respectively. The structure of TCN
that used in this paper is shown in Fig. 7.

5.5. Fusion methods

Multi-modal fusion can improve the performance of AER. To com-
bine the EEG and speech modalities, two fusion strategies were devel-
oped in this work, i.e., feature-level and decision-level fusion. Feature-
level fusion is achieved by concatenating the features from each modal-
ity to form a new feature. Fusion at decision-level is obtained by fusing
the output from the single model classifier.

For feature-level fusion, I-vector was extracted as the feature of
speech signal and concatenated with the DE vector of EEG, and then
fed into the ELM classifier. In the decision-level fusion, the outputs
generated by two classifiers of the speech and EEG recognition were
combined. To explore an effective method for decision-level fusion, we
investigated the following four approaches [58]:

1. AVER: Suppose the outputs of AER classifiers based on EEG and
speech signals were normalized to [0,1] and denoted separately
as 𝒆 = [𝑒1, 𝑒2, 𝑒3, 𝑒4] and 𝒔 = [𝑠1, 𝑠2, 𝑠3, 𝑠4], where 𝑒𝑖, 𝑠𝑖 can be
considered as the probabilities that EEG and speech segments
labeled as the 𝑖th emotional state. AVER method calculated the
8

average sum of the probabilities which is denoted as 𝑝𝑖, and
predicted the final label 𝑐 as follows:

𝑝𝑖 =
1
2
(𝑒𝑖 + 𝑠𝑖), 𝑖 = 1,… , 4

𝑐 = argmax
𝑖
(𝑝𝑖)

2. WAVER: The validation accuracies of models that based on EEG
and speech signals on a validation set were denoted as 𝒂 =
[𝑎1, 𝑎2]. Then, WAVER method calculated the weighted sum of
the probabilities which is denoted as 𝑝𝑖, and predicted the final
label 𝑐 as follows:

𝑝𝑖 = 𝑎1 ∗ 𝑒𝑖 + 𝑎2 ∗ 𝑠𝑖, 𝑖 = 1,… , 4

𝑐 = argmax
𝑖
(𝑝𝑖)

3. RF: The outputs of the two classifiers in training set were
concatenated into a new vector which is denoted as 𝒑train =
[𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑠1, 𝑠2, 𝑠3, 𝑠4] to training a random forest [20].

4. ET: Similarly, the new score vector 𝒑train was taken as input to
training an extremely randomized trees [21].

For the four decision-level fusion approaches, AVER and WAVER
are linear methods while RF and ET are nonlinear fusion methods.

6. Results

In this section, we present the performances of single modality
and multi-modal AER separately on the MED4 database. In the ex-
periments given below, we employed five-fold subject independent
cross-validation in which one-fold data for testing and the remaining
data were used for training the classifiers.

6.1. Effect of window size with equal- and variable-length for EEG

Since EEG signals are generally non-stationary and some analysis
techniques such as spectral analysis can be performed only for station-
ary data, signal segmentation by window function was adopted [59].
Aya et al. [60] used KPSS test to determine the best size of window
function to segment EEG signals for Seizure detection. Different win-
dow sizes were tested on the desired signal, the one with the minimum
number of non-stationary segments was chosen as best window size. To
analysis the effect of different window size on AER, we compared the
classification performance using DE feature across all EEG frequency
bands with equal- and variable-length time windows. In the case of
equal length segments, the window size ranged from one second to
fourteen seconds with 0.5s interval, without overlapping. For the vari-
able length segments, as mentioned in Section 3.7, the window size
equals to the duration of corresponding utterance. The ELM classifier
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Fig. 8. The effect of window size for EEG signal.

ith radial basis function kernel was applied to identify emotions in
ach dataset. The average accuracies are presented in Fig. 8, the results
an be summarized as:

• 1s–5s: When the window size increased from 1s to 5s, and the
accuracies rapidly increased from 77.55% to 88.33%.

• 5s–14s: The accuracies stayed stable, between 88.33% (at 5s) and
90.34% (at 12s).

• Variable-length: The average accuracy of the EEG segments inter-
cepted by variable-length window function is 89.31%. The recog-
nition accuracy was higher than that with equal-length window
size.

The result in case of equal-length segments is consistent with the
revious study of Henry et al. [61], where wavelet features were ex-
racted from EEG at different time segments and fed into SVM algorithm
or classifying between high/low arousal and high/low valence. The
esult demonstrated that the segments with 3–12 s contained the most
motion information. The accuracy using data with 1–3 s duration
as a slight reduction. The results from this work showed that EEG
ignals with variable length corresponding to speech utterances are
ore appropriate for emotion recognition.

.2. Classification on single modality

From the above results, variable lengths of EEG segments contain
ffective information for AER. Therefore, in the following experiment,
EG samples are of variable lengths. The results of single modal-
ty are shown in Table 5. Compared to MLP and TCN, ELM and
-vector+PLDA achieve 6.63% and 7.06% accuracies improvements in
nechoic chamber, and 8.99% and 7.99% in natural noisy room for
EG- and speech-based AER separately. From the results of ELM and I-
ector+PLDA, both speech and EEG signals provided useful information
or AER. Average recognition accuracies of 64.67% and 58.92% across
our target emotions are achieved in different scenes respectively using
peech data. EEG signals achieve relatively high accuracies of 88.92%
nd 89.70% in anechoic chamber and noisy lab.

We also analyzed the confusion matrices and graphs from the re-
ults of ELM and I-vector+PLDA that using EEG and speech modality
eparately, shown in Fig. 9 and Fig. 10, to further explore the com-
lementary information between EEG and speech signals. In general,
EG achieves higher recognition performances for all four emotions,
specially for happy emotion with 91.76% and 91.32% accuracies,
ompared to speech signals (51.52% and 35.97%). The research in [13]
lso summarized that valence shows the strongest correlation with
EG signals. Thus, EEG data have better performance in classifying
9

igh valence emotion (happy) and low valence emotions (sad and
Table 5
Performance of each signal modality.

Modality Method Anechoic Natural

EEG ELM 88.92 89.70
MLP 82.29 80.71

Speech I-vector + PLDA 64.67 58.92
TCN 57.61 50.93

Table 6
Performances of feature- and the decision-level fusion methods.

Environment Fusion Method

Feature-level AVER WAVER RF ET

Anechoic chamber 89.04 87.45 90.59 82.91 87.22
Natural noisy room 89.65 85.86 90.66 82.56 87.47

angry). Fig. 9(a) and (b) present the confusion matrices of the speech-
based AER. It can be observed that speech signals have advantage in
recognizing neutral and angry emotions. In addition, speech are more
representative for low valence emotions like angry and sad, but less
effective for emotions with high valence levels like happy. For example,
the accuracies of angry are much higher than happy, 70.17% vs.
51.52% in anechoic chamber and 64.12% vs. 35.97% in natural noisy
room, respectively. The research [62] also verified the same conclusion.
This is probably due to the difference of the culture, environment and
education of speaker leads happy emotion is easily misclassified as
other emotion without the help of linguistic information [63]. This
finding has useful implications on developing AER applications.

Meanwhile, Fig. 10 also shows that the misclassification character of
these two modalities is similar. Both speech and EEG easily misclassifies
sad and neutral emotions, sad and angry emotions. As indicated by
these results, speech and EEG signals have some complementary and
similar characteristics in emotion representation.

6.3. Effect of environmental noise

Table 5 and Fig. 9 also show the impact of environmental noise on
AER. There is a benefit of acquiring clean signals for speech emotion
recognition, as indicated by the improved accuracy from 58.92% to
64.67% in anechoic chamber data. From Fig. 9 (a) and (b), it can be
seen that environmental noise has a great influence on the happy emo-
tion recognition and there is an increased performance with 15.55%
from natural noisy room to anechoic chamber. In natural noise lab,
more happy emotion is misclassified into neutral emotion which shown
in Fig. 10. This result is similar to that in simulated noisy speech data.
Huang et al. [64] studied the influence of white noise on AER by adding
the noise to clean speech with different SNRs. They observed that with
the reduction of SNRs, the voice quality features may be distorted by
white noise which caused the lowest detection accuracy of the positive
valence.

However, EEG-based algorithms showed robustness across types of
emotions and environments. Compared with other signal channels, such
as images, speeches, and other types of biometric, EEG-based systems
are more efficient, robust and give higher performance, as its sophisti-
cated and directly reflect brains’ inherent status [65–67]. Especially, in
Pieper’s study [68], it was found that there was no significant difference
in the power spectral density of EEG signals in quiet and artificial noise
environments. Therefore, it will be beneficial for AER to reduce the
noise for speech signals but natural environmental noises are negligible
for AER using EEG signals.

6.4. Classification on multi-modality

The average accuracies of feature- and decision-level fusion strate-

gies are shown in Table 6. The decision-level fusion is combining the
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Fig. 9. Confusion matrices of single modality. Each row of the confusion matrices is the true emotion label and each column is the predicted label. Where Neu is Neutral, Ang is
Angry and Hap is Happy. (a) Anechoic speech. (b) Natural noisy speech. (c) Anechoic EEG. (d) EEG from natural noisy room.
Fig. 10. Confusion graphs of Speech and EEG signals from different environments. The numbers denote the classification accuracy that classify the samples from arrow tail emotion
to arrow head emotion. Bolder lines indicate higher values.
Fig. 11. Confusion matrices of feature- and decision-level fusion methods. The first row represents the fusion results of signals from anechoic chamber, the second row represents
the results that signals from natural noisy environment. From left to right, the fusion strategies are feature-level, AVER, WAVER, RF, ET.
outputs from ELM and I-vector+PLDA algorithms. It shows that the
WAVER method performs the best in both environments and achieves
the average accuracy of 90.59% and 90.66% separately, followed by
feature-level fusion, ET, AVER and RF methods.

To further understand the performance of each fusion method, we
show the confusion matrices in Fig. 11. From Fig. 11(a) and (f), we
10
can see the performance of feature-level fusion approach is similar to
that of single EEG modality. Concatenating MFCCs and DE features
do not improve the recognition accuracies. The results of nonlinear
decision-level fusion approaches shown in Fig. 11(d), (i), (e) and (j)
reveal that RF and ET methods, especially RF, have lower AER accura-
cies and are easily affected by environmental noise. RF performs best
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in recognizing happy and angry emotions using data from anechoic
chamber. In addition, the accuracy has a significant decrease from
88.39% (anechoic chamber) to 77.15% (natural noisy room) for happy
emotion recognition, which is similar to the performance of speech
modality. In the case of linear decision-level approaches, the weights in
WAVER method are the proportions of recognition accuracies of EEG
and speech single modality, which emphasizes the importance of EEG
signals, therefore WAVER outperformed AVER approach.

Compared to single modality, WAVER fusion across EEG and speech
signals increase the accuracy further. In anechoic chamber, 25.92%
and 1.67% improvements achieved for decision-level fusion method
compared to speech and EEG modality, respectively. The improve-
ments for AER are 31.74% and 0.96% in natural noisy room. Fur-
thermore, Fig. 11(c) and (h) shows that WAVER method enhances
the classifying accuracy for each emotion, especially has the best per-
formance in classifying happy emotion. Meanwhile, the classification
accuracies of each emotion are not affected by environmental noise.
The results demonstrate the effectiveness of combining speech and EEG
signals for AER in practical application. The WAVER fusion method
not only improves the classification accuracy of each emotion, but
also integrates the advantages of EEG for recognizing happy emotion
while simultaneously overcoming the influence of environmental noise
in speech-based AER. The similar result was achieved from the work
in [69], they added white Gaussian noise to corrupt the visual data and
audio data were left uncorrupted. The decision-level fusion recognition
rate of the combined audio–visual modalities is higher than that of
single modality and demonstrates the robustness toward noisy visual
data.

7. Conclusion

In this paper, we constructed an emotional database MED4. To our
knowledge, MED4 is the first multi-modal and multi-environmental
emotion database which has four modalities of synchronized speech,
video, PPG and EEG signals, recorded in both a natural noisy room and
an anechoic chamber.

Based on the MED4 database, we firstly tested the effect of variable-
length EEG on AER performance, and then we performed single modal-
ity emotion recognition based on speech and EEG signals.

The results showed that EEG signals with variable length corre-
sponding to speech utterances outperforms other methods in emotion
recognition. The confusion matrices and graphs for single modality
showed that EEG signals achieved high accuracy in AER, especially
in recognizing happy emotion, and speech signals were more effective
in recognizing neutral and angry emotions. The average classification
accuracies based on EEG and speech signals separately were 89.70% vs
58.92% (in natural noisy room) and 88.92% vs 64.67% (in anechoic
chamber). Even with a lower recognition accuracy, speech signals can
still useful in applications because of its easy accessibility.

Furthermore, the effect of environmental noise for AER using single
modality was analyzed. There was a 5.75% average accuracy decrease
from clean speech to noisy speech. Especially for the recognition of
happy state from speech signals, environmental noise had a great
influence with a 15.55% reduction in recognition accuracy. However,
the performances were stable using EEG signals across different envi-
ronments. Thus, we can conclude that EEG modality is a reliable source
for AER in suboptimal acoustic environment. These results provide
insights to future applications when considering different channels,
environments and for different application scenarios. For example, sad
and neutral emotions are easily confused through speech AER, and such
signals are sensitive to noise. Therefore, such limitations should be bear
in mind and optimized for system design.

Finally, we studied the complementary information contained in
speech and EEG signals through feature- and decision-level fusion
strategies. The experimental results revealed fusion at decision-level
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with linear models, i.e., WAVER method enhance the emotion recog-
nition accuracies and eliminate the effects of environmental noise. In
addition, the WAVER method can ensure the effectiveness of the emo-
tion recognition system even when one modality is missing. Feature-
level fusion method did not improve the recognition accuracies over
single EEG modality. Nonlinear decision-level methods, RF and ET
strategies, did not improve the accuracy of AER and were unstable
to environmental noise that is similar to the performance of speech
modality.

This work contributes a useful database resource to various com-
munities for AER from single modality to multiple modalities. The
results in this paper also provide a benchmark to evaluate the effects
of speech noise reduction techniques in various environments. The
findings on the interaction among different signal modalities, target
emotions and environments reveal useful experimental support for the
design of future AER system.

Our future work will include the following directions. Firstly, in
this paper, we note that combining EEG and Speech signals by equal
weights does not guarantee improved performance. Thus, the infor-
mation complementarity across all signal modalities including external
behaviors, will be thoroughly investigated. Secondly, channel selection
and online classification algorithms should be explored with the consid-
eration of performance, portability and system robustness. Thirdly, the
influence of environmental noise on AER based on different channels
will be conducted to develop systems that are robust to environmental
noise. Furthermore, cross-domain research can be conducted by com-
bining MED4 database with other databases through adaptive methods
to develop algorithms that are robust to cross-environment conditions.

Given the potential of this database in the field of AER, MED4 will
be publicly available for researchers globally.
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