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Abstract—Multichannel blind audio source separation aims to
recover the latent sources from their multichannel mixtures with-
out supervised information. One state-of-the-art blind audio source
separation method, named independent low-rank matrix analysis
(ILRMA), unifies independent vector analysis (IVA) and nonneg-
ative matrix factorization (NMF). However, the spectra matrix
produced from NMF may not find a compact spectral basis. It
may not guarantee the identifiability of each source as well. To
address this problem, here we propose to enhance the identi-
fiability of the source model by a minimum-volume prior dis-
tribution. We further regularize a multichannel NMF (MNMF)
and ILRMA respectively with the minimum-volume regularizer.
The proposed methods maximize the posterior distribution of the
separated sources, which ensures the stability of the convergence.
Experimental results demonstrate the effectiveness of the proposed
methods compared with auxiliary independent vector analysis,
MNMF, ILRMA and its extensions. The source code is available
at https://github.com/alexwang9654/m-ILRMA.

Index Terms—Blind source separation, multichannel
nonnegative matrix factorization, independent low-rank matrix
analysis.

I. INTRODUCTION

B LIND source separation (BSS) is a technique of separating
source components from a given multichannel mixture

without any knowledge about the mixing system or microphone
positions. Most BSS methods aim to cluster the time-frequency
units of the spectrogram of the mixture into different sources. A
promising approach of multichannel BSS to achieve the above
goal is to represent the hierarchical generative process of the
time-frequency spectrogram of the mixture by a source model
and a spatial model, where the source model represents the
generative process of source spectrograms, and the spatial model
represents the mixing process of the sources.

This paper focuses on nonnegative matrix factorization
(NMF) based multichannel BSS [1]–[4]. It usually decomposes
the spectrogram of a mixture into several spectral bases and
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temporal activations. Existing NMF-based BSS methods usually
have the following major problems. First, because the NMF
decomposition is an NP-hard problem [5], it is difficult to obtain
a meaningful representation of the spectral bases. Second, they
may not guarantee that the spectral structure of each source is
identifiable. For example, a matrix V may be decomposed by
V = W′H′ = (WQ)(Q−1H) where Q is an invertible matrix
and W′ and H′ are two factors. We see that different invertible
matrices Q may yield different solutions of the factors W′ and
H′. In other words, the spectral structure of each source W may
be unidentifiable. Finally, the non-sparse solution of standard
NMF may lose some local information of the sources.

Simplex volume minimization [6], which learns an identifi-
able spectral basis, provides a reliable estimation to the source
model of BSS. To our knowledge, it has not been explored in
multichannel BSS yet.

A. Contributions

In this paper, we aim to explore the minimum-volume (Min-
Vol) prior for multichannel BSS. Specifically, we apply the
MinVol prior as a regularizer for multichannel nonnegative
matrix factorization (MNMF) [2] and independent low-rank
matrix analysis (ILRMA) [3], which are named m-MNMF and
m-ILRMA, respectively. Because the object function of MinVol
is to minimize |WTW|whereW is the basis matrix of NMF and
| · | denotes the determinant operator for a nonsingular matrix, it
is formulated as a complicated optimization problem. To over-
come this difficulty, we design two auxiliary functions for the
object functions of m-MNMF and m-ILRMA respectively, and
combine them with the maximum a posteriori (MAP) estimation.
Each auxiliary function is solved by iteratively updating the
demixing matrix, spectrogram basis, and temporal activations
in the function. The proposed methods improve the source
model of MNMF and ILRMA, which leads to better empirical
performance. The contributions of the MinVol regularizer to
MNMF and ILRMA are as follows:
� MinVol improves the identifiability of the separated spec-

trograms that are produced from the source model, since
MinVol has been proven to be able to lead to the identifia-
bility for blind source separation [7].

� MinVol improves the sparseness levels of the factorized
spectral basis matrices of the source model, which en-
hances the learning ability of the source model to capture
the local information of sources.
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� MinVol enhances the orthogonality of the factorized spec-
tral basis matrices of the source model, which leads the
spectral basis matrices to a rigorous clustering interpreta-
tion.

In this paper, we first introduce some related work and pre-
liminaries in the following two subsections, then present the
proposed MinVol prior distribution, as well as m-MNMF and
m-ILRMA in Section III. Section IV presents the experimental
results. Finally, Section VI concludes our findings.

B. Related Work

A multichannel BSS method is composed of a spatial model
and a source model. A mixture sound is usually represented
as a sum of multiple source signals convolved with the room
impulse responses of the corresponding source directions. It is
equivalent to an instantaneous mix up in the frequency domain.
The mixture is usually separated by the spatial model, where
the phase difference between microphones is important for the
demixing system. Common algorithms for multichannel BSS
are independent component analysis (ICA) [8] and its extensions
such as independent vector analysis (IVA) [9]. They make a sta-
tistical independence assumption between the sources. However,
they do not utilize the spectral structures of the source signals.

Recently, the importance of source models has been fully
aware. According to the difference of the source models, mod-
ern multichannel BSS methods can be categorized mainly into
the NMF-based methods, probability-based methods, and deep
neural network (DNN) based methods, which will be introduced
in the next three subsections respectively.

1) NMF-Based Models: The original ICA and IVA employ a
spherical multivariate Laplace distribution as the source model
to ensure higher-order correlations between the frequency bins
in each source. However, these source models do not fully
utilize the spectral structure of sources. As we know, the spectral
structure may significantly help improve the BSS performance
if properly incorporated into source models.

To overcome this weakness, NMF [10], [11], which is
a nonnegative-parts-based low-rank decomposition of an ob-
served nonnegative data matrix, can be used as a source model.
It generates a “clustering-friendly” latent spectrogram basis for
each source by introducing a low-rank structure into the source
model. Generally, NMF-based BSS models adopt Itakura-Saito
divergence to evaluate the reconstruction error between the
mixture and the estimated sources. MNMF [1], [2], which is
an extension of the NMF methods, estimates the mixing system
of convolutive mixtures in a similar way to ICA and IVA, which
is used for the clustering of spectrogram bases. It consists of
a low-rank source model and a full-rank spatial model. The
full-rank spatial model is capable of representing a wide variety
of source directivity under an echoic condition.

However, MNMF tends to get stuck in bad local optima, since
that a large number of unconstrained spatial covariance matrices
are needed to be estimated iteratively. To address this problem,
Kitamura et al. [3], [12] proposed ILRMA. It makes a rank-1
assumption to the spatial model. It performs well for directional
sources in practice. Essentially, the spatial model and source

model of ILRMA are independent vector analysis (IVA) [9] and
NMF respectively, which are optimized iteratively.

In the original MNMF and ILRMA, the observed signal is
assumed to follow a time-variant multivariant complex Gaus-
sian distribution. Recently, the methods t-MNMF [13] and t-
ILRMA [14] use the isotropic complex Cauchy distribution [15]
and its generalization—complex student’s t-distribution [16] re-
spectively to replace the original complex Gaussian distribution.
Because the Student’s t-distribution belongs to the family of
the α-stable distribution which is more suitable for modeling
complex-valued signals than the complex Gaussian distribution,
it is suitable for audio source modeling [14]. Moreover, Kitamura
et al. [4], [17]–[19] developed a complex generalized Gaussian
distribution for ILRMA, which takes t-ILRMA and ILRMA
as its special cases. To reduce the huge computational cost
of the spatial covariance matrices, Sekiguchi et al. [20], [21]
proposed a fast MNMF, which restricts the covariance matrices
to jointly-diagonalizable full-rank matrices in a frequency-wise
manner. However, its source separation performance was not
improved and the physical meaning of the joint-diagonalization
process was unclear [22]. To address this issue, Kamo et al. [22]
proposed FastMNMF with a new regularization, where the au-
thors declared that the regularization can be applied to ILRMA
as well.

2) Probability-Based Models: If the frequency bins of each
source are sparsely distributed, the source spectrograms can be
assumed to be disjoint with each other in most time-frequency
units. Under this assumption, Otsuka et al. [23] proposed a
Bayesian mixture model, called hierarchical latent Dirichlet
allocation (LDA) [24], to classify each time-frequency unit into
one source only, and classify each source into a single direction.
However, it does not build a source model, which is insufficient
in utilizing the spectral structure of sources.

To overcome this weakness, probabilistic models were em-
ployed to build priors for the distributions of the parameters
of the source model. Itakura et al. [25] improve the LDA-
based method [23] by combining the low-rank structure of the
NMF-based source model. The method iteratively updates the
spectrogram basis and temporal activations of the source model,
and the variables of the LDA-based spatial model. Itakura et
al. [26] further introduced an anechoic spatial correlation matrix
as a prior distribution of a real spatial correlation matrix for
each direction, which avoids the impulse response assumption
in previous studies. Recently, Itakura et al. [27] proposed a
unified Bayesian framework for multichannel BSS and incor-
porated prior knowledge of the microphone array into BSS.
Based on the fundamental categorization of probabilistic models
which can be categorized to mixture models and factor mod-
els, they proposed four methods for joint modeling the source
and spatial models: factor-factor model, mixture-factor model,
factor-mixture model, and mixture-mixture model. The above
models jointly estimate low-rank sources and spatial covariances
on the fly. However, the low-rank assumption does not always
hold for speech spectra. To remedy this problem, Sekiguchi
et al. [28] proposed a semi-supervised method based on an
extension of MNMF which consists of a deep generative model
called variational auto-encoder (VAE) for speech spectra and a
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standard low-rank model for noise spectra. Narisetty et al. [29]
used Bayesian non-parametric modeling of sources to avoid
parameter tuning.

3) DNN-Based Models: To provide a highly accurate esti-
mation to the parameters of the source model, supervised DNN
has been introduced into multichannel BSS for the estimation
to the source model [28], [30]–[35]. Sekiguchi et al. [28],
[31] proposed a deep pre-trained generative model of speech
spectra and an NMF-based generative model of noise spectra
for multichannel speech enhancement. Makishima et al. [32]
proposed independent deeply learned matrix analysis (IDLMA),
which utilizes mutually independent DNN source models for the
separation. Kameoka et al. [30], [33], [34], [36], [37] proposed
a multichannel variational autoencoder (MVAE), which uses a
conditional VAE to estimate the power spectrograms of sources.
Although the convergence of the optimization of MVAE is
guaranteed, its computational complexity is high. Moreover, the
accuracy of the source classification of MVAE is unsatisfied.
To solve the problems, Li et al. [38] employed an auxiliary
classifier VAE, which is an information-theoretic extension of
the conditional VAE, to learn the generative model of source
spectrograms. Togami [39] trained a source model by bidirec-
tional long short-term memory networks with the multichannel
Itakura-Saito distance as the training objective. Li et al. [35]
modeled power spectrograms of sources by a star generative
adversarial network (StarGAN). Although more and more DNN
models were used in BSS, these models require clean sources for
pre-training, which is out of the focus of this paper. Therefore,
we will not discuss and compare with the DNN-based models
anymore.

II. PROBLEM FORMULATION

In this section, we formulate the BSS problem. Suppose the
short-time Fourier transform (STFT) of a multichannel mix-
ture is xij = [xij1, . . . , xijm, . . . , xijM ]T ∈ CM , where i =
1, . . . , I , j = 1, . . . , J , and m = 1, . . . ,M are the indices of
the frequency bins, time frames, and microphones, respec-
tively. The spectrograms of source signals are defined as sij =
[sij1, . . . , sijn, . . . , sijN ]T ∈ CN , where N is the number of
sources and n = 1, . . . , N is the index of the nth source, and T

denotes the transpose operator.
We assume the mixing process in the frequency domain is

instantaneous, and each source of the mixture is a point source.
Then, the mixture and its sources have the following connection:

xij = Aisij (1)

where Ai = [ai1, . . . ,ain, . . . ,aiN ] ∈ CM×N is the mixing
matrix at the ith frequency bin. Similar to [1], [2], [27], we
assume that sijn follows a zero-mean complex Gaussian dis-
tribution as follows, since the distribution is well adapted for
Multichannel BSS methods:

sijn ∼ NC (0, λijn) (2)

where λijn is a power spectrum density of the source n at time j
and frequency i. Substituting (2) into (1), the observation xijm

is found to follow the complex Gaussian distribution as follows:

xijn ∼ NC (0, λijnGin) (3)

where Gin = aina
H
in, and H denotes the Hermitian transpose.

If the matrix Ai is not singular, the problem of source sep-
aration is to find an estimation of (Ai)

−1, denoted as Di =
[di,1, . . . ,di,N ]H , where Di ∈ CN×M , such that when we ap-
ply Di to xij , we obtain the separated signal:

yij = Dixij (4)

where yij is an estimation of sij . Here, we emphasize that
MNMF is suitable for both the underdetermined situation (M <
N ) and the determined situation (M = N ), while ILRMA is
only suitable for the determined situation.

III. PROPOSED METHODS

In this section, we first propose the MinVol based source
model in Section III-A, and then present the MinVol regularized
MNMF and ILRMA respectively in Sections III-B and III-C.

A. Minimum-Volume Prior Distribution for Source Models

We propose a minimum-volume prior distribution for the
source model of the NMF-based BSS models. Specifically, we
formulate the generative process of source power spectrograms
λ = [λ1, . . . ,λn, . . . ,λN ] = {λijn}I,J,Ni,j,n=1 as follows: λ is gen-
erated by a basis spectra W = [W1, . . . ,Wn, . . . ,WN ] =

{wnik}N,I,K
n,i,k=1 and activations H = [H1, . . . ,Hn, . . . ,HN ] =

{hnkj}N,K,J
n,k,j=1, where K is the number of the bases of the basis

matrix Wn. The power spectrogram of each source is decom-
posed into basis spectra and temporal activations by low-rank
factorization:

λijn =

K∑
k=1

wnikhnkj (5)

Based on the above factorization, we can derive the following
conditional probability function:

p(λn|Wn,Hn) =

I∏
i=1

J∏
j=1

δ

(
λijn −

K∑
k=1

wnikhnkj

)
(6)

where δ(·) is the Dirac delta function. In many existing decom-
position methods, the prior overwnik is constructed as a uniform
distribution over the non-negative real numbers,

p(wnik) = lim
uw→∞

1

uw
I[0 ≤ wnik ≤ uw]

∝ I[wnik ≥ 0] (7)

where I[·] denotes an indicator function, which has the value
one when its argument is true and zero otherwise. The prior for
hnkj is chosen as uniform between zero and one:

p(hnkj) = I[0 ≤ hnkj ≤ 1] (8)
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Under the Bayes’ rule, the posterior density of wnik and hnkj

is given by:

p(Wn,Hn|λn) ∝ 1

Z

I∏
i=1

J∏
j=1

δ

(
λijn −

K∑
k=1

wnikhnkj

)

× I[wnik ≥ 0]I[hnkj ≥ 0]I

[
K∑

k=1

hnkj = 1

]
(9)

where Z is a normalization constant.
Many algorithms have been developed to find a unique and

identifiable factorization for NMF, e.g. [6], [7], [40]–[42]. We
are interested in the MinVol criterion among these algorithms.
MinVol is motivated by the nice geometrical interpretation of
the constraints in [41],[43]. Under the MinVol constraints, all
the data points lie in a convex hull spanned by the spectrogram
basis. For convenience, we here present a probabilistic Bayesian
formulation of a prior about the volume of the data simplex:

p(W|γ) ∝ exp(−γ log |WTW + ηI|) (10)

where | · | is the determinant operator on a matrix, γ is a pa-
rameter that reflects the influence of the prior to the likelihood
function, and η is a hyperparameter of the prior distribution
(10). We choose MinVol as a prior distribution of the spectro-
gram basis. It encourages the simplex spanned by the estimated
spectrograms to be small, and constrains each element of the
spectrogram basis to be non-negative.

The posterior density of the source model based on the volume
of the data simplex can be represented as follows:

p(Wn,Hn|λn) ∝ 1

Z

I∏
i=1

J∏
j=1

δ(λijn −
K∑

k=1

wnikhnkj)

× exp(−γ log |WT
nWn + ηI|)

× I[wnik ≥ 0]I[hnkj ≥ 0]I

[
K∑

k=1

hnkj ≥ 0

]

(11)

Maximizing the likelihood of (11) is equivalent to the volume-
minimization problem of the data simplex.

B. MNMF With Minimum-Volume Regularizer

1) Preliminary: MNMF [2] decomposes the spatial covari-
ance matrix of each source into a weighted sum of direction-
dependent matrices for joint source separation and location,
which can be formulated as the following maximization prob-
lem:

log [p(X|Wn,Hn,G)p(Wn)p(Wn)]

=
I∑

i=1

J∑
j=1

logNC(xij |0, X̂ij)

=

I∑
i=1

J∑
j=1

(
−tr

(
X̂−1ij Xij

)
− log |X̂ij |

)
+C (12)

where Xij = xijx
H
ij , X̂ij =

∑
n λijnGni, and ‘C’ represents a

constant.
It is usually solved by a multiplicative update rule which itera-

tively updates one of the parameters according to the conditional
posterior distribution with the other parameters fixed:

wnik ← wnik

√√√√√
∑

j hnkjtr
(
X̂−1ij XijX̂

−1
ij Gni

)
∑

j hnkjtr
(
X̂−1ij Gni

) (13)

hnkj ← hnkj

√√√√√
∑

i wniktr
(
X̂−1ij XijX̂

−1
ij Gni

)
∑

i wniktr
(
X̂−1ij Gni

) (14)

To updateGni, Sawada et al. solve an algebraic Riccati equation:

GniAGni = B (15)

with A and B defined as:

A =
∑
j

hnkjX̂
−1
ij , B = Gni

�

⎛
⎝∑

j

hnkjX̂
−1
ij

⎞
⎠Gni

�

(16)
where G� is the old value of the variable G calculated in the
previous step.

2) Objective Function of m-MNMF: To remedy the non-
unique identifiable problem of the source model of MNMF,
here we propose m-MNMF. Fig. 1 shows a conceptual model
of m-MNMF, which is described as follows.

The likelihood function of the unknown variables W,H,G
of m-MNMF is formulated as:

log [p(X|W,H,G)p(W|γ)p(H)]

=

I∑
i=1

J∑
j=1

logNC(xij |0, X̂ij)−
N∑

n=1

γ log |WT
nWn+ηI|

=

I∑
i=1

J∑
j=1

(
−tr

(
X̂−1ij Xij

)
− log |X̂ij |

)

−
N∑

n=1

γ log |WT
nWn + ηI|+C (17)

where Xij = xijx
H
ij , X̂ij =

∑N
n=1 λijnGni.

The logarithmic absolute value term in (17) is too difficult to
optimize directly. Therefore, we propose to maximize its lower
bound instead. To derive a lower bound for (17), we use the
following two inequalities [16], [44] to relax the logarithmic
determinant term in (17):

First, for a convex function f(Z) = − log |Z| with Z ≥ 0
being a positive semi-definite matrix, we have the following
lower bound at an arbitrary positive semi-definite matrixU ≥ 0:

f(Z) = − log |Z| ≥ − log |U| − tr(U−1Z) +M (18)
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Fig. 1. Principle of the proposed m-MNMF algorithm.

where the equality holds when U = Z.
Second, for a concave function g(Z) = −tr(Z−1A) with any

matrix A ≥ 0, we have the following lower bound:

g({Zl}Ll=1)

= −tr
(( L∑

l=1

Zl

)−1
A

)
≥ −

L∑
l=1

tr(Z−1l ΦlAΦH
l ) (19)

where {Zl}Ll=1 is a set of arbitrary matrices, {Φl}Ll=1 is a set
of auxiliary matrices that satisfies

∑
l Φl = I, and the equality

holds when Φk = Zk(
∑

l′ Zl′)
−1.

Substituting the two inequalities (18) and (19) into (17) de-
rives the following lower bound of (17), denoted as L:

log [p(X|W,H,G)p(W|γ)p(H)]

≥
I∑

i=1

J∑
j=1

(
−tr

(
X̂ijU

−1
ij

)
− log |Uij |+M

)

−
I∑

i=1

J∑
j=1

N∑
n=1

tr

(
X̂−1ijnΦijnXijΦ

H
ijn

)

+ γ

N∑
n=1

(− log |V−1| − tr(VWT
nWn) +K

)

= −
I∑

i=1

J∑
j=1

N∑
n=1

λijntr
(
GniU

−1
ij

)− I∑
i=1

J∑
j=1

log |Uij |

−
I∑

i=1

J∑
j=1

N∑
n=1

λ−1ijntr

(
G−1ni ΦijnXijΦ

H
ijn

)

+ γ
N∑

n=1

(− log |V−1| − tr(VWT
nWn)

)
+C = L

(20)

where λ is a function of H and W defined in (5), and Uij , Φijn,
and V are auxiliary variables. The above lower bound is a tight
one when Uij , Φijn and V satisfy:

Uij = X̂ij (21)

Φijn = X̂ijnX̂
−1
ij (22)

V = (WT
nWn + ηI)−1 (23)

The objective function of m-MNMF is to maximize L.

3) Optimization of m-MNMF: m-MNMF is optimized by the
multiplicative updating (MU) rule [7], which optimizes Hn,
Wn, and Gni, alternatively.

GivenWn andGni fixed,Hn is calculated as follows. Letting
the partial derivative of (20) with respect to hnkj equal to zero
derives:

I∑
i=1

h−2nkjw
−1
niktr

(
G−1ni ΦijnXijΦ

H
ijn

)

−
I∑

i=1

wniktr
(
GniU

−1
ij

)
= 0 (24)

and hnkj can be obtained as:

hnkj ← h�
nkj

√√√√√√
∑I

i=1 wniktr

(
GniX̂

−1
ij XijX̂

−1
ij

)
∑I

i=1 wniktr
(
GniX̂

−1
ij

) (25)

Lemma 1 ([7]): Let wni ∈ R1×K be the ith row of Wn, and
ŵni ∈ R1×K be an auxiliary variable of wni. V can be decom-
posed as V = V+ −V− with V+ = max (V,0) and V− =
max (−V,0) where max(·, ·) is a component-wise operation
that returns the same size matrix with the greater components
in each element, and Ω(wT

ni) is the diagonal matrix Ω(wT
ni) =

Diag(2
[V+wT

ni+V−wT
ni]

[wT
ni]

) where [A]
[B] is the component-wise di-

vision between A and B, and Δŵni = ŵni −wni. Then

ĝ(wT
ni|ŵT

ni) = g(ŵT
ni) + Δwni∇g(ŵT

ni)

+
1

2
ΔwniΩ(ŵT

ni)ΔwT
ni (26)

is a separable auxiliary function for g(wT
ni) = wniVwT

ni at ŵni.
Given Hn and Gni fixed, Wn is calculated as follows.

Because tr(VWT
nWn) of (20) is quadratic and not separable,

we optimize a compact lower-bound of (20) with an approximate
separable auxiliary function. Specifically, given Lemma 1, we
obtain the lower-bound of L with respect to wnik as:

Lwnik
= −

I∑
i=1

J∑
j=1

N∑
n=1

(
K∑

k=1

wnikhnkj

)
tr(GniU

−1
ij )

−
I∑

i=1

J∑
j=1

N∑
n=1

(
K∑

k=1

wnikhnkj

)−1

tr(G−1ni ΦjinXijΦ
H
ijn)



3094 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

− γ

N∑
n=1

I∑
i=1

[
ŵniVŵT

ni + 2ΔŵniVŵT
ni

+ΔŵniΩ(ŵT
ni)ΔŵT

ni

]
(27)

We let the partial derivative of Lwnik
to zero:

∂Lwnik

∂wnik
= w−2nikh

−1
nkjtr

(
G−1ni ΦijnXijΦ

H
ijn

)

− hnkjtr
(
GniU

−1
ij

)
+ 2γ[VŵT

ni]k

+ 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵni

)]
k

wnik

− 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

ŵnik = 0

(28)

and further make the following abbreviations for clarity:

a = 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

(29)

b = 2γ[VŵT
ni]k − hnkjtr

(
GniU

−1
ij

)
− 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

ŵnik (30)

d = h−1nkjtr

(
G−1ni ΦijnXijΦ

H
ijn

)
(31)

Then, (28) can be rewritten as:

aw3
nik + bw2

nik + d = 0 (32)

We employ the cubic roots procedure [45] to solve problem
(32). In order to ensure the nonnegativity of wnik, we simply
use the Descarte’s rules of sign in the root of (32) as in [7]:

wnik ← max (0, wnik) (33)

Given Hn and Wn fixed, the spatial model Gni is calculated
as follows. We let the partial derivative of Lwith respect to Gni

equal to zero:

J∑
j=1

λ−1ijnG
−1
ni ΦijnXijΦ

H
ijnG

−1
ni −

J∑
j=1

λijnU
−1
ij = 0 (34)

where 0 is an all-zero matrix of size M ×M . Substituting Uij

and Φijn into (34) derives:

G�
niAGG�

ni = GniBGGni (35)

where G�
ni is value of Gni at the previous step, AG and BG

are short for

AG =

J∑
j=1

λijnX̂
−1
ij XijX̂

−1
ij (36)

BG =

J∑
j=1

λijnX̂
−1
ij (37)

(35) has a closed-form updating rule for Gni:

Gni ← G�
ni(G

�
niAGG�

ni)�(BG)−1 (38)

where A�B is the geometric mean of two positive semi-definite
matrices A and B:

A�B = A
1
2

(
A−

1
2BA−

1
2

) 1
2

A
1
2 = A(A−1B)

1
2 (39)

The above algorithm is summarized in Algorithm 1.

C. ILRMA With Minimum-Volume Regularizer

1) Preliminary: ILRMA utilizes the assumption of the in-
vertibility of mixing matrix Ai to transform the spatial opti-
mization of MNMF into the estimation problem of the demixing
matrix Di. We note that ILRMA cannot be applied to the under-
determined BSS problem because the mixing matrixAi must be
invertible. ILRMA employs a flexible source model to estimate
the demixing matrix Di in a stable manner as in AuxIVA [46].
When Gni is a rank-1 matrix given by Gni = aHinain, X̂ij can
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Fig. 2. Principle of the proposed m-ILRMA algorithm.

be calculated by:

X̂ij =
N∑

n=1

λijna
H
inain

= AiΛijA
H
i

= D−1i ΛijD
−H
i (40)

where Λij = Diag(λij1, . . . , λijN ) is a diagonal matrix.
By substituting (40) into the cost function of MNMF (12), we

obtain:

log [p(X|W,H,G)p(W)p(H)]

= −
I∑

i=1

J∑
j=1

tr
(
yH
ijD

−H
i

(
DH

i Λ−1ij Di

)
D−1i yij

)

+ J
I∑

i=1

log |DiD
H
i | −

I∑
i=1

J∑
j=1

log |Λij |+C (41)

The demixing matrix Di of the spatial model in ILRMA is
updated based on the rules of AuxIVA which can be represented
as follows:

Gni =
1

J

∑
j

1

λijn
xijx

h
ij

din ← (DiGni)
−1em

din ← din(d
h
inGnidin)

− 1
2 (42)

where din is a row vector of Di, and em denotes the nth column
vector of an M ×M -dimensional identity matrix.

The parameters of the source model Wn and Tn are updated
by MU:

wnik ← wnik

√√√√∑j |yijn|2hnkj (
∑

k wnikhnkj)
−2∑

j hnkj (
∑

k wnikhnkj)
−1 (43)

hnkj ← hnkj

√∑
i |yijn|2wnik (

∑
k wnikhnkj)

−2∑
i wnik (

∑
k wnikhnkj)

−1 (44)

2) Objective Function of m-ILRMA: To remedy the non-
unique identifiable problem of the source model of ILRMA,
here we propose m-ILRMA. Fig. 2 shows a conceptual model
of m-ILRMA. Specifically, substituting (40) into (17) derives

the objective of m-ILRMA:

log [p(X|W,H,G)p(W|γ)p(H)]

=

I∑
i=1

J∑
j=1

(
−tr

(
X̂−1ij Xij

)
− log |X̂ij |

)

−
N∑

n=1

γ log |WT
nWn + ηI|+C

= −
I∑

i=1

J∑
j=1

tr
(
yH
ijD

−H
i

(
DH

i Λ−1ij Di

)
D−1i yij

)

+ J

I∑
i=1

log |DiD
H
i | −

N∑
n=1

γ log |WT
nWn + δI|

−
I∑

i=1

J∑
j=1

log |Λij |+C

= −
I∑

i=1

J∑
j=1

N∑
n=1

( |yijn|2
λijn

+ log λijn

)
+C

+ J

I∑
i=1

log |DiD
H
i | −

N∑
n=1

γ log |WT
nWn + δI| (45)

Because the full rank spatial model in MNMF has more
parameters than the rank-1 spatial model in ILRMA, ILRMA
is less sensitive to its parameter initialization, so as to the
advantage of m-LIRMA over m-MNMF. As will be shown in the
experiments, m-ILRMA achieves better separation performance
than m-MNMF.

3) Optimization of m-ILRMA: m-ILRMA is optimized by the
multiplicative updating (MU) rule, which optimizes Hn, Wn,
and Gni, alternatively.

Given Hn and Gni fixed, the objective (45) with respect to
Wn is a difficult maximization problem. In order to solve this
problem, we propose to maximize a lower-bound of (45) by an
auxiliary function proposed in [47]. Specifically, we first define
a Q function by Lemma 2.
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Lemma 2: Let ŷijn =
∑

k ŵnikhnkj and ŝijn ≥ 0, ŵnik ≥ 0.
Then, the following Q function:

Q(wT
ni|ŵT

ni) =

[∑
k

ŵnikhnkj

ŷijn
ρ̌

(
yijn|ŷijnwnik

ŵnik

)]
+ ρ̄(ŷijn)

+

[
ρ̂′(yijn|ŷijn)

∑
k

(wnik − ŵnik)hnkj + ρ̂(yijn|ŷijn)
]

(46)

is an auxiliary function to Q(wni·) at ŵnik [47], where ρ̌ is
a convex function with respect to ŷijn

wnik

ŵnik
, ρ̂ is a concave

function with respect to ŷijn, and ρ̄ is a constant function with
respect to yijn. ρ̂′ is the differential of ρ̂(yijn|ŷijn) at ŷijn. In the
case of Itakura-Saito (IS) divergence, we have ρ̌(x|y) = xy−1,
ρ̂(x|y) = log y, ρ̄(x) = x(log x− 1), ρ̂′(x|y) = y−1.

Similar to m-MNMF, we use (18) to construct a low-bound
of the likelihood function with respect to Wn:

Lwnik
=

N∑
n=1

I∑
i=1

[
Q(wT

ni|ŵT
ni) + γ

[
log | det(V−1n )|

+tr(VnW
T
nWn)−K

]]
(47)

where Vn = (ZTZ+ ηI)−1 with η ≥ 0, Z ∈ RI×K is an ar-
bitrary positive definite matrix. We can set Z = Wn in the
experiments, since Wn is a positive definite matrix. Finally, the
right side of (18) is an auxiliary function for log |WT

nWn|. Be-
cause it is quadratic and inseparable, we use an approximation to
represent the right side of (18). Specifically, letVn = V+

n −V−n
with V+

n = max(Vn,0) and V−n = max(−Vn,0), Then, the
right side of (47) can be written as:

Lwnik
= −

N∑
n=1

I∑
i=1

[
Q(wT

ni|ŵT
ni) + γ

[
ŵniVnŵ

T
ni

+2ΔŵniVnŵ
T
ni +ΔŵniΩ(ŵT

ni)ΔŵT
ni

] ]
(48)

with Ω(wT
ni) = Diag(2

[V+wT
ni+V−wT

ni]

[wT
ni]

), where the operator

“ [A]
[B] ” is the component-wise division between A and B.
We let the partial derivative of Lwnik

equal to zero and derive
the MU update rule of the factor wnik as follows:

∂Lwnik

∂wnik
=

⎛
⎝∑

j

hnkj

ŷijn
−
∑
j

hnkj
ŵ2

nikyijn
w2

nikŷ
2
ijn

+ 2γ[Vnŵ
T
ni]k

+ 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

wnik

− 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

ŵnik (49)

To make the above objective function easier, we let

a = 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

(50)

b = −
∑
j

hnkj

ŷijn
+ 2γ[VŵT

ni]k

− 2γ

[
Diag

(
V+ŵT

ni +V−ŵT
ni

ŵT
ni

)]
k

ŵnik (51)

d =
∑
j

hnkj
ŵ2

nikyijn
ŷ2ijn

(52)

Setting the derivative to zero is equivalent to finding the roots
of the following degree-three polynomial:

aw3
nik + bw2

nik + d = 0 (53)

wnik ← max (0, wnik) (54)

Similar to (32), we use the cubic roots procedure [45] to solve
the above polynomial problem.

Similar to m-MNMF, given Wn and Gni fixed, the closed-
form MU rules for Hn is:

ah =

I∑
i=1

wnik|yijn|2λ−2ijn (55)

bh =

I∑
i=1

wnikλ
−1
ijn (56)

hnkj ← h�
nkj

√
ah
bh

(57)

Given Wn and Hn fixed, an IVA-based auxiliary func-
tion [46] is used to optimize the spatial modelGni, which results
in the following solution:

Gni =
1

J

∑
j

1

λijn
xijx

h
ij

din ← (DiGni)
−1em

din ← din(d
h
inGnidin)

− 1
2 (58)

The above algorithm is summarized in Algorithm 2.

D. On the Hyper-Parameter Selection and Estimation

The objectives (17) and (45) have two hyper-parameters η
and γ.

The hyper-parameter η in the objectives (17) and (45) is a
small positive constant that prevents the term log |WT

nWn +
ηI| from −∞. It should not be chosen too small, otherwise
WT

nWn + ηI might be badly conditioned which results in the
optimization problems hard to solve.

The regularization coefficient γ strongly affects the model
performance. Here we have to select an appropriate value for
γ. First, the variables X̂ij and Wn are initialized with the
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successive nonnegative projection algorithm [44], then γ is
chosen by:

γ = γ�

∑
i,j

[
tr
(
XijX̂

−1
ij

)
+ log |X̂ij |

]
log |WT

nWn + δI| (59)

where we recommend to select γ� from a range of [10−3, 1].

IV. EXPERIMENTS

In this section, we compare the proposed m-MNMF and
m-ILRMA methods with 5 representative multichannel BSS
methods in both simulated environments and real-world envi-
ronments.

A. Experimental Settings

1) Simulated Databases: We used SISEC2011 [48] as the
first experimental dataset. SISEC2011 consists of three subsets
named dev1, dev2 and dev3. For the speech separation problem,
the clean speech was used to construct an underdetermined BSS
task. After mixing up, 192 stereo mixture signals with female and
male speech were generated, where the microphone spacing is
1 m or 5 cm and the reverberation time is 130 ms or 250 ms. For
the music separation problem, we used non-percussive music
sources and the music sources including drums in the dev1 and
dev2 datasets, which has 12 music mixtures in total, where
the experiments setting is consistent with that of the speech
separation problem.

Then, we used SISEC2018 [49] as the second experimental
dataset. Specifically, we used the clean speech in the asyn-
chronous recordings of speech mixtures of SISEC2018 [49] as
the speech source. After mixing up, SISEC2018 includes 72
mixture signals (dev and dev2 datasets) with female and male
speech, where the microphone spacing is 2.15 cm or 7.65 cm
and the reverberation time is 150 ms or 300 ms.

In our experiments, we followed the environment of the
SISEC challenge [48] to construct a determined multichannel

speech separation task with the number of channels M = 2 and
number of speakers per mixture N = 2.

Besides the above two test corpora, we also followed the envi-
ronment of the SISEC challenge [48] to construct a determined
multichannel speech separation task with M = N = 2, where
we used the Wall Street Journal (WSJ0) corpus [50] as the clean
speech source. We evaluated the comparison methods on all
gender combinations. We generated two test conditions for this
test corpus, denoted as condition 1 and condition 2. In both con-
ditions, the room size was set to 6× 6× 3 m; the two speakers
were positioned 2 m from the center of the two microphones. The
differences between the two conditions are that (i) the distance
between the two microphones are 5.66 cm and 2.83 cm respec-
tively, and (ii) the incident angles of the two speakers follow [4,
Figs. 9 a and 9b]. The image source model [51] was used to gen-
erate the room impulse response with the reverberation time T60

selected from [130, 150, 200, 250, 300, 350, 400, 450, 500] ms.
For each condition, we generated 200 mixtures for each gender
combination at each T60, which amounts to 7200 mixtures. The
sampling rate was set to 16 kHz. We named the simulated data
without reverberation as WSJ0-anechoic, and the simulated data
with reverberation as WSJ0-reverb.

2) Semi-Real Database: As shown in Fig. 5, we also con-
ducted an experiment in a real world environment. Specifically,
we used a circular array of 48 equiangular-placed loudspeakers
with a radius of 1 m and a height of 1 m to produce a desired
sound field. Then, we transcribed SISEC2011 as shown in Fig. 5.
A linear array of 8 microphones, indexed as mic1 to mic8 from
left to right, was placed at the center of the circular loudspeaker
array. The target speech was located at the 45◦ and 120◦ of the
linear array respectively. We named this semi-real database as
semi-real-SISEC2011.

3) Comparison Algorithms: The hyperparameters of m-
MNMF and m-ILRMA in all experiments were set as follows:
K = 10, η = 0.5, and the number of iterations was set to 100.
The frame-length and frame-shift were set to 1024 and 512,
respectively. We compared m-MNMF and m-ILRMA with Aux-
IVA and four NMF-based multichannel BSS methods which are
described as follows:
� Auxiliary-function-based Independent Vector Analysis

(AuxIVA) [46]: It introduces an auxiliary function for IVA,
which is solved by a stable and fast update rule.

� Multichannel Nonnegative Matrix Factorization
(MNMF) [2]: It is modeled by the spatial covariance
of a zero-mean multivariate Gaussian distribution. It
can be considered as a natural extension of NMF, since
the Hermitian positive semi-definite is utilized as a
multichannel counterpart of nonnegativity. The number of
basis vectors K was set to 10 as default.

� Independent Low-Rank Matrix Analysis (ILRMA) [3]:
It is a unification of IVA and NMF, which assumes
both the statistical independence between sources and
a low-rank time-frequency structure for each source.
The demixing systems of ILRMA are estimated with-
out encountering the permutation problem. The iteration
was set to 100. The number of basis vectors K was
set to 10.
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Fig. 3. Performance of the comparison methods on SISEC2011 when the distance between the sources and the microphones is 1 m.

Fig. 4. Performance of the comparison methods on SISEC2011, where the distance between source and microphone is 5 cm.

Fig. 5. Recording conditions of impulse responses.

� T-distribution for Independent Low-Rank Matrix Analysis
(tILRMA) [14]: It generalizes the source generative model
of ILRMA from the complex Gaussian distribution to
a complex Student’s t-distribution, which is expected to
further improve the performance as well as the stability of

the parameter initialization. In our experiment, we set the
hyperparameters ν = 1000 and ρ = 10 respectively.

� Sub-Gaussian Independent Low-Rank Matrix Analysis
(subGaus-ILRMA) [18]: The generalization of subGaus-
ILRMA is similar to t-ILRMA. SubGaus-ILRMA differs
from t-ILRMA in that the distribution of its source gener-
ative model is a generalized Gaussian distribution. We set
the hyperparameters β = 1.99 and ρ = 0.5 respectively.

4) Evaluation Metrics: We used the source-to-distortion ra-
tio (SDR) and source-to-interference ratio (SIR) [52] to evaluate
the quality of the separated speech, which are defined as follow:

SDR := 10 log10
‖starget‖2

‖einterf + enoise + eartif‖2 (60)

SIR := 10 log10
‖starget‖2
‖einterf‖2 (61)

where starget is a version of the wanted source modified by an
allowed distortion, and einterf , enoise, and eartif are respectively
the interferences, noise, and artifacts error terms.

B. Main Results

1) Results on SISEC2011: The comparison results on
SISEC2011 are summarized in Figs. 3 and 4. Specifically,
Figs. 3(a), 4(a) and Figs. 3(b), 4(b) show the SDR scores of
the comparison methods on the speech separation problem with
the reverberation time of 130 ms and 250 ms respectively.
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Fig. 6. Performance of the comparison methods on SISEC2018.

Fig. 7. SDR improvement of the comparison methods on WSJ0-reverb. (a),
(c), (e) are the results in condition 1. (b), (d), (f) are the results in condition 2.

Figs. 3(d), 3(e) and Figs. 4(d), 4(e) show the corresponding SIR
scores of the comparison methods. From the figures, we see
that the performance of the proposed m-ILRMA is significantly
better than the other methods. For example, it achieves an SDR
improvement of about 2 dB higher than the best baselines, i.e.
ILRMA and subGaus-ILRMA, in both of the test environments.

TABLE I
AVERAGE SDR IMPROVEMENT (DB) OF THE COMPARISON METHODS OVER

DIFFERENT REVERBERATION TIME ON WSJ0-REVERB

TABLE II
AVERAGE SIR IMPROVEMENT (DB) OF THE COMPARISON METHODS OVER

DIFFERENT REVERBERATION TIME ON WSJ0-REVERB

Figs. 3(c), 3(f) and Figs. 4(c), 4(f) show the comparison result
on the music separation problem. From the figures, we see that
m-ILRMA achieves better performance than the other methods
except MNMF.

2) Results on SISEC2018: Fig. 6 shows the comparison re-
sults on speech separation in terms of the average SDR and
SIR improvement. From the figure, we see that m-MNMF out-
performs MNMF, and m-ILRMA outperforms ILRMA, which
demonstrate the effectiveness of the proposed MinVol prior for
the multichannel BSS.

3) Results on semi-Real-SISEC2011: Tables III and IV show
the separation performance of the comparison methods on
the real-world recording environment of semi-real-SISEC2011.
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Fig. 8. SDR improvement of the comparison methods on the WSJ0-anechoic corpus. (a), (b), (c) are the results in condition 1. (d), (e), (f) are the results in
condition 2.

Fig. 9. SIR improvement of the comparison methods on the WSJ0-anechoic corpus. (a), (b), (c) are the results in condition 1. (d), (e), (f) are the results in
condition 2.

TABLE III
SDR IMPROVEMENT (DB) OF THE COMPARISON METHODS ON SEMI-REAL

SISEC2011

TABLE IV
SIR IMPROVEMENT (DB) OF THE COMPARISON METHODS ON SEMI-REAL

SISEC2011

From Table III, we see that the SDR improvement of m-ILRMA
is 2 dB higher than that of ILRMA on average in all four
situations. From Table IV, we see that the SIR improvement
of m-ILRMA is competitive with the best comparison method.

V. RESULTS ON WSJ0-ANECHOIC AND WSJ0-REVERB

A. Results on WSJ0-Anechoic

Figs. 8 and 9 show respectively the average SDR and SIR
improvement of the comparison methods over the mixed speech
in the simulated anechoic environment of WSJ0-anechoic. From
the figures, we see that the performance of the proposed m-
ILRMA is significantly better than that of the other methods.
For example, m-ILRMA achieves an SDR improvement of about
3 dB higher than the best reference method, i.e. ILRMA.

B. Results on WSJ0-Reverb

Figs. 7 and 10 show the SDR and SIR improvement re-
spectively over the mixed speech in the simulated reverberant
environment of WSJ0-reverb. From the figures, we see that
the curves of the SDR improvement produced by m-ILRMA
are always higher than those produced from the comparison
methods. The minimum improvement of m-ILRMA over the
comparison methods is 2 dB.

To clearly show the general improvement of m-ILRMA over
the referenced methods, we average the SDR improvement with
respect to different gender combinations and T60 for each condi-
tion. The average results are listed in Tables I and II, respectively.
From the tables, we see that the average SDR improvement
brought by the proposed m-ILRMA is 2 dB higher than ILRMA
in condition 1, and 3 dB higher than the latter in condition 2.
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Fig. 10. SIR improvement of the comparison methods on WSJ0-reverb. (a),
(c), (e) are the results in condition 1. (b), (d), (f) are the results in condition 2.

The average SIR improvement of m-ILRMA is comparable to
AuxIVA, and outperforms the other methods.

C. Discussion

In this section, we demonstrate the effectiveness of the MinVol
prior on the sparsity, orthogonality, and uniqueness of the spectra
matrix by comparing ILRMA with m-ILRMA. Before analysis,
we first define the sparsity, orthogonality, and uniqueness of a
matrix as follows:

Define 1: Sparseness measurement [53]: The sparseness of a
matrix is built on the relationship between the L1 norm and the
L2 norm:

ζ(wk) =

√
n− (

∑
i |wik|)/

√∑
i w

2
ik√

n− 1
(62)

ζ̂(W) =
1

K

∑
k

ζ(wk) (63)

where wk = [w1k, . . . , wik, . . . , wIk]
T is the kth column of the

matrix W, ζ(wk) calculates the sparseness of the vector wk,
and ζ̂(Wn) defines the sparseness of the matrix Wn.

The higher the sparsity score is, the stronger the part-based
representation ability of the matrix W is.

Define 2: Orthogonality measurement [54], [55]: Two non-
negative vectors are orthogonal if and only if they do not have
the same non-zero elements, and we measure the orthogonality
of a matrix by:

Orthogonality(W) = ‖WTW − I‖ (64)

where I is an identity matrix.
The lower the orthogonality score is, the stronger the orthog-

onality between the basis vectors of the matrix W is.
Define 3: Uniqueness measurement [56]: Assume that T can

be approximated by T ≈WH. In the ideal case, we have
T = W′H. When the equality holds, we have W′ = TH−1.
However, the equality relation can hardly be achieved in practice.
Therefore, the closer the two different solutions W and W′ are
to degeneracy, the better the unique solution of the source model
T is. Here, we use the squared Frobenius norm to measure their
difference:

Dif(W,W′) = ‖W −W′‖2F (65)

The lower the uniqueness score is, the stronger the identifia-
bility of the matrix W is.

To analyze the sparsity, orthogonality and uniqueness of
the spectra matrix generated by ILRMA and m-ILRMA, we
averaged the results of 50 spectra matrices in terms of the three
measurements. Before calculating (65), we first measured the
cosine similarity of the basis vectors in the basis matrix W to
alleviate their permutation problem, then changed the order of
the basis vectors, and finally normalized the basis vectors to
prevent their scale ambiguity. The results are that (i) the sparsity
scores of ILRMA and m-ILRMA are 0.65 and 0.68 respectively,
(ii) the orthogonality scores are 0.99 and 0.74 respectively, and
(iii) the uniqueness scores are 68.53 and 2.73, respectively. The
results show that the spectral matrix of m-ILRMA has stronger
representation ability than that of ILRMA, which proves the
effectiveness of the MinVol prior for the multichannel BSS.
Fig. 11 shows the SDR improvement of the speech signals
separated from 2 channel mixtures with different initialization
parameters. From the figure, we further see the advantages of
m-ILRMA. We also observe that the proposed methods are
insensitive to the initialization parameters.

VI. CONCLUSION

In this paper, we have proposed a MinVol prior for the source
model of multichannel BSS methods. To our knowledge, this
is the first MinVol prior regularized multichannel BSS model.
The novelty of the MinVol prior lies in the following aspect.
First, we propose a novel MinVol prior distribution for the
source model which improves the identifiability, sparseness,
and orthogonality of the separated spectrograms produced from
the source model. It performs as a regularization of the source
model in the objective functions of the multichannel BSS.
To evaluate its effectiveness, we implement two multichan-
nel MinVol-based BSS algorithms, denoted as m-MNMF and
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Fig. 11. SDR improvement of the separated speech signals over the original
2-channel mixtures. The central lines indicate the median. The bottom and
top edges of the box indicate the 25th and 75th percentiles, respectively. The
experimental settings are described in Section IV-A3, where the number of
iterations was set to 100.

m-ILRMA. The optimization of the two proposed methods is
intractable since that the objective functions contain logarith-
mic determinant terms. To overcome this problem, we relax
the logarithmic determinant terms with their tightened lower
bounds. Finally, we apply multiplicative update rules to solve
the optimization problems. We have conducted an extensive
experimental comparison with five representative comparison
methods on four simulated datasets and a real dataset, which are
SISEC2011, SISEC2018, WSJ0-anechoic, WSJ0-reverb, and
semi-real-SISEC2011, respectively. Experimental results show
that the proposed m-ILRMA outperforms the comparison meth-
ods significantly in terms of SDR and SIR. Although m-MNMF
does not reach the top performance, it performs better than its
counterpart MNMF. Moreover, we analyzed the identifiability,
sparseness, and orthogonality of the spectral matrix produced
by ILRMA and m-ILRMA. The results show that the spectral
matrix of m-ILRMA has stronger representation ability than that
of ILRMA, which proves the effectiveness of the MinVol prior
for the multichannel BSS.
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