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ABSTRACT

Recently, the deep-belief-networks (DBN) based voice ac-
tivity detection (VAD) has been proposed. It is powerful in
fusing the advantages of multiple features, and achieves the
state-of-the-art performance. However, the deep layers of the
DBN-based VAD do not show an apparent superiority to the
shallower layers. In this paper, we propose a denoising-deep-
neural-network (DDNN) based VAD to address the aforemen-
tioned problem. Specifically, we pre-train a deep neural net-
work in a special unsupervised denoising greedy layer-wise
mode, and then fine-tune the whole network in a supervised
way by the common back-propagation algorithm. In the pre-
training phase, we take the noisy speech signals as the visible
layer and try to extract a new feature that minimizes the re-
construction cross-entropy loss between the noisy speech sig-
nals and its corresponding clean speech signals. Experimental
results show that the proposed DDNN-based VAD not only
outperforms the DBN-based VAD but also shows an apparent
performance improvement of the deep layers over shallower
layers.

Index Terms— Deep learning, denoising deep neural net-
works, voice activity detection.

1. INTRODUCTION

Voice activity detectors (VADs) help to separate speech from
its background noises. They are important frontends of mod-
ern speech processing systems, such as speech recognition
systems [1–3] and speech communication systems [4]. Re-
cently, the machine-learning-based VADs have received much
attention in that they have the following notable merits. First,
they can be integrated to the speech recognition systems nat-
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urally. Second, they have strong theoretical bases that guar-
antee the performance. Third, they can fuse the advantages of
multiple features [5–9] much better than traditional VADs.

The machine-learning-based VADs can be categorized to
four groups [10–16]. The first group is the discriminative-
weight-training-based VADs [10, 12, 16]. They conduct lin-
ear weighted combinations of multiple features in the orig-
inal feature space. The second group is the support-vector-
machine (SVM) based VADs [11,13]. They first fuse multiple
features to a long feature vector in the original feature space,
and then project the long feature vector to the kernel-induced
feature space for better classification performance. The third
group is the multiple-kernel-SVM (MK-SVM) based VAD
[14, 15]. It takes the distribution diversity of multiple fea-
tures into consideration by first projecting different features
into different kernel spaces and then fuse the features in the
kernel spaces in a way with linear weighted combination. All
of the aforementioned three groups utilize shallow models,
i.e. models with only zero or one hidden layer, which lack the
ability of describing highly variant features and discovering
the underlying manifold of the features.

The fourth group is the deep-belief-networks (DBNs)
based VAD [17]. Fundamentally, because the DBN [18]
contains multiple hidden layers, the DBN-based VAD can
describe highly variant features; because the unsupervised
pre-training phase of DBN provides an initial point that is
close to a good solution, the DBN-based VAD has a strong
generalization ability when compared with other machine-
learning-based VADs. However, the deep layers of the DBN-
based VAD do not yield an apparent superiority to the shal-
lower layers. In our personal opinion, it might not be proper
to simply consider VAD as a binary-class classification prob-
lem with the noisy speech and the background noise as the
two classes, since the background noise also contributes to
the distribution of the noisy speech. This might account for
the inapparent superiority of the deep layers over shallower
layers in the DBN-based VAD.

In this paper, we propose a novel denoising deep-neural-
networks (DDNNs) based VAD. The DDNN training also
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consists of two phases. The first phase is a special unsuper-
vised denoising greedy layer-wise pre-training phase. The
pre-training process of each hidden layer tries to extract a
new feature that minimizes the reconstruction cross-entropy
loss between the noisy speech signals and its correspond-
ing clean speech signals (but not the noisy speech signals).
The second phase is the well-known supervised fine-tuning
phase. It groups all layers with the pre-trained parameters to
a whole deep neural networks and tune the parameters for the
minimum classification error. Experimental results show that
the proposed DDNN-based VAD not only outperforms the
DBN-based VAD but also shows an apparent performance
improvement of the deep layers over shallower layers.

2. DENOISING-DNN-BASED VAD

The training process of the DDNN-based VAD consists of
two phases – unsupervised denoising layer-wise pre-training
phase and supervised fine-tuning phase, which are presented
in detail in Sections 2.1 and 2.2 respectively. The overview of
the DDNN-based VAD is presented in Algorithm 1.

2.1. Unsupervised Denoising Layer-wise Pre-training

Suppose we have D-dimensional noisy speech observa-
tions (i.e. frames) {xi, yi}ni=1 and their corresponding
clean speech observations {x̃i, yi}ni=1 with xi = [xi,d]

D
d=1,

yi ∈ {H0,H1}, where xd ∈ [0, 1] and H1/H0 denote the
speech/noise hypothesis.

The layer-wise pre-training of each module of DDNN
consists of optimizing two activation functions jointly. The
first function, denoted as fθ(·), maps the noisy speech obser-
vation from the visible layer x to a hidden layer fθ(x). The
second function, denoted as gθ′(·), tries to reconstruct x̃ (but
not x) from the hidden layer by gθ′ (fθ(x)) .

The unsupervised pre-training tries to minimize the re-
construction cross-entropy loss between {xi}ni=1 and {x̃i}ni=1

which is defined as follows

Jθ,θ′(x; x̃)=min
θ,θ′

n∑
i=1

L (x̃i; gθ′ (fθ (xi))) (1)

with L (xi; zi) defined as

L (xi; zi) = −
D∑

d=1

(xi,d log zi,d + (1− xi,d) log(1− zi,d))

where zi is short for gθ′ (fθ (xi)). Problem (1) can be solved
locally by the well-known back-propagation algorithm.

When we try to pre-train the L-th module with L > 1 (i.e.
the module is not the lowest one), we should first construct
its input layer x(L−1) by transferring x(0) through the pre-
trained networks as follows

x(L−1) = fθ(L−1)

(
. . . fθ(l)

(
. . . fθ(2)

(
fθ(1)

(
x(0)

))))
(2)

Algorithm 1 Denoising-DNN-based VAD.

Input: Feature set
{
x
(0)
i , x̃

(0)
i , y

(0)
i

}n

i=1
, the depth of the

DDNN L
Output: Feature extraction model

{
θ(l)

}L

l=1
, and the linear

classifier above the model.
1: /* Unsupervised denoising layer-wise pre-training */
2: for l = 1, . . . , L do
3: Get θ(l) by solving Jθ(l),θ′(l)

(
x(l−1); x̃(l−1)

)
defined

in equation (1)
4: Calculate x(l−1) by equation (2)
5: if l > 1 then
6: Get θ̃(l−1) by solving Jθ̃(l−1),θ̃′(l−1)

(
x̃(l−2); x̃(l−2)

)
or by the contrastive divergence learning [19].

7: Calculate x̃(l−1) by equation (3)
8: end if
9: end for

10: /* Supervised fine-tuning */
11: Construct the classification-DDNN and fine-tune it by the

back-propagation algorithm for the minimum classifica-
tion error mentioned in Section 2.2.

where l denotes the l-th hidden layer (i.e. the l-th layer-wise
module from the bottom-up), and x(0) is the original feature
vector.

Here comes the question. What should x(L−1) recon-
struct? Here, we propose to pre-train a clean-speech to clean-
speech deep network that accompanies with the noisy-signal
to clean-signal deep network, so that we can get x̃(l−1) by

x̃(L−1) = fθ̃(L−1)

(
. . . fθ̃(l)

(
. . . fθ̃(2)

(
fθ̃(1)

(
x̃(0)

))))
(3)

There are two ways to pre-train the accompanying deep
network {fθ̃(l)}L−1

l=1 (i.e. the deep neural network for the
clean-speech-to-clean-speech reconstruction) in the layer-
wise greedy training mode. The first one is to minimize the
reconstruction cross-entropy loss via (1) with x̃ as both the
input and the target of the module. Another way is to maxi-
mize the logrithmic likelihood of x̃ by the efficient contrastive
divergence algorithm proposed in DBN [19]. In this paper,
we adopt the former for simplicity. Note that we cannot use
x(L−1) to recover x̃(0) directly for saving the computation
load of constructing x̃(L−1), since it’s unlikely to describe the
extraction network {fθ(l)}L−1

l=1 of the noisy speech simply by
a single hidden-layer reconstruction network gθ′(1) .

In this paper, all activation functions fθ(l)

(
x(l−1)

)
and

gθ′(l)
(
x̂(l−1)

)
are defined as fθ(l)

(
x(l−1)

)
= s

(
W(l)x(l−1) + b(l)

)
and gθ′(l)

(
x̂(l−1)

)
= s

(
W′(l)x̂(l−1) + b′(l)

)
respectively

with the function s(x) set to the logistic function s(x) =
1/(1 + e−x) and {W(l),b(l)} denoted as the weight matrix
and the bias term between the (l− 1)-th and l-th layers of the
network respectively.
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2.2. Supervised Fine-tuning

The supervised fine-tuning phase can be divided into three
steps. The first step is to construct the feature extraction
part of the DDNN by first discarding the function {gθ′(l)}Ll=1

and the accompanying deep networks {fθ̃, gθ̃′}L−1
l=1 and then

stacking all pre-trained functions {fθ(l)}Ll=1 layer by layer
as [18] did. The second step is to add a linear classifier above
the feature extraction part so as to formulate the entire DDNN.
The third step is to fine-tune DDNN by the common back-
propagation algorithm for the minimum classification error
(MCE), where the cross-entropy loss is also used as the surro-
gate relaxation function. We call the DDNN for MCE as the
classification-DDNN. Note that another usage of DDNN is to
only carry out the first step of the classification-DDNN, and
then take the extracted denoising features as the input of some
independent classifiers, such as SVM. We call the DDNN for
extracting denoising features as the reconstruction-DDNN.
We only consider the classification-DDNN in this paper.

3. MOTIVATION AND RELATED WORK

The proposed algorithm can be viewed as an idea combina-
tion of the stacked denoising autoencoder (SDAE) [20, 21]
and speech enhancement techniques [22]. SDAE, proposed
by Vincent et al. in 2008 [20, 21], is a novel deep learn-
ing technique that has shown comparable performance with
DBN. It first adds noise to the original clean features and then
takes the noisy features as the input of the module that is to
be pre-trained. But it does not try to reconstruct the noisy
features. Instead, it tries to recover the original clean features
by minimizing the cross-entropy loss or the squared error loss
between the reconstructed features and the original clean fea-
tures. Compared with SDAE, DDNN also tries to recover the
clean features, but the noise injected to the clean features is
from the real environment instead of from artificial addition.

Speech enhancement techniques, such as the minimum
mean square error estimation [22], try to estimate the ampli-
tude of the clean speech from the noisy speech observation,
which is also known as the a priori signal-to-noise ratio
(SNR) estimation. The speech enhancement techniques have
been widely employed in the VAD research, such as the
well-known Sohn VAD [23]. Compared with the speech en-
hancement techniques, we construct a deep architecture in a
machine-learning perspective for the clean speech estimation
with an assumption that the training data has its correspond-
ing clean speech target, while some speech-enhancement-
based VADs assume that the background noise is relatively
stationary, so that they can trust the statistical parameters
updated in the silence period for the clean speech estima-
tion when the speech activity appears. We have to note that
many speech enhancement techniques do not need the silence
period for the noise spectrum estimation, such as [24].

4. EXPERIMENTS

Seven noisy test corpora of AURORA2 are used for perfor-
mance analysis. Four signal-to-noise ratio (SNR) levels of
the audio signals are selected, which are [−5, 0, 5, 10]dB re-
spectively. Each test corpus of AURORA2 contains 1001 ut-
terances, which are split randomly into three groups for train-
ing, developing and test respectively. Each training set and
development set consist of 300 utterances respectively. Each
test set consists of 401 utterances. Note that the corpora in
the same background noise scenario but at different SNR lev-
els are split with the same random seed, and have the same
manual labels. We concatenate all short utterances in each
data set to a long one so as to simulate the real-world applica-
tion environment of VAD. Eventually, the length of each long
utterance is in a range of (450,750)s long with the percentages
of speech ranging from 54.57% to 73.32%.

The sampling rate is 8kHz. We set the frame length to
25ms long with a frame-shift of 10ms. We extract 10 acoustic
features from each observation. The detailed information of
the features are listed in Table 1. All features are normalized
into the range of [0, 1] in dimension.

Table 1. Features and their attributes. The subscript of each
feature is the window length of the feature [25].

ID Feature Dimension ID Feature Dimension
1 Pitch 1 7 MFCC16 20

2 DFT 16 8 LPC 12

3 DFT8 16 9 RASTA-PLP 17

4 DFT16 16 10 AMS 135

5 MFCC 20 Total 273

6 MFCC8 20

The SVM-based VAD, MK-SVM-based VAD, and DBN-
based VAD are used for comparison. For the SVM-based
VAD, DBN-based VAD, and DDNN-based VAD, we concate-
nate all 10 features in serial to a long feature vector and take
the long feature vector as the input of the classifiers. For the
MK-SVM-based VAD, we deal with the features in a similar
way with [26].

In respect of the parameter setting, for the SVM-based
and MK-SVM-based VADs, the Gaussian RBF kernel is used.
The parameters of SVM and MK-SVM are searched in grid.
For the DBN-based and DDNN-based VADs, up to three hid-
den layers are adopted with the numbers of the hidden units
set to [54, 7, 7] respectively. The learning rate of the unsu-
pervised pre-training is set to 0.004. The maximum epoch
of the unsupervised pre-training is set to 200. The learning
rate of the supervised fune-tuning is set to 0.005. The maxi-
mum epoch of the supervised fune-tuning is set to 130. The
batch mode training is adopted. Each batch contains 512 ob-
servations. Note that the parameters are selected empirically
for a compromise between the training time complexity and
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Table 2. Accuracy comparison in the babble, car, restaurant, and street noises. The subscripts of the DBN and DDNN are
the depths (i.e. the numbers of the hidden layers) of the deep neural networks.

Babble Car Restaurant Street

-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB

SVM 54.61 64.46 75.97 79.53 72.20 81.59 86.34 87.60 69.04 74.22 82.09 84.83 58.32 67.98 74.88 78.12

MKSVM 55.43 65.02 76.17 80.18 75.01 83.50 86.38 87.94 70.44 75.71 83.25 86.30 63.38 73.35 77.60 79.10

DBN1 61.03 69.01 78.83 80.99 77.24 84.10 87.18 88.48 70.23 75.73 83.43 86.12 66.63 73.15 78.47 80.42

DBN2 60.81 69.24 78.94 81.23 77.88 84.14 87.04 88.44 70.10 75.68 83.59 86.08 67.41 73.76 78.70 80.86
DBN3 60.55 69.38 79.03 80.78 77.75 83.97 87.00 88.14 69.75 75.57 83.54 85.92 67.33 72.83 79.03 80.49

DDNN1 60.69 69.42 78.61 81.39 76.06 83.86 86.77 88.17 69.76 75.88 83.47 86.41 66.21 72.21 79.33 81.24

DDNN2 58.62 69.07 78.85 81.62 76.80 84.04 86.96 88.54 69.71 76.05 83.90 86.62 65.51 72.72 79.17 81.53

DDNN3 57.84 69.61 79.14 81.65 76.82 84.22 87.09 88.67 69.55 76.04 83.78 86.65 65.89 72.82 79.47 81.71

Table 3. Accuracy comparison in the airport, train, and subway noises. “AVR” is short for average. “ALL” denotes that the
AVR is calculated over all noise types and SNR levels. Note that when we calculate the averages, we did not consider the results
of the babble noise in −5 and 0 dB, since the manifolds of the speech and background noise are similar in that situation.

Airport Train Subway AVR over diff. noise types AVR
-5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB -5dB 0dB 5dB 10dB ALL

SVM 64.48 74.26 80.94 85.21 66.24 74.29 82.91 85.28 74.75 81.24 83.58 85.18 67.51 75.60 80.96 83.68 76.93

MKSVM 65.86 75.59 82.30 85.38 68.78 76.31 83.99 85.34 79.90 84.82 86.11 87.46 70.56 78.21 82.26 84.53 78.89

DBN1 66.18 76.63 81.89 86.63 68.59 76.95 83.65 85.72 78.54 82.70 85.60 85.79 71.24 78.21 82.72 84.88 79.26

DBN2 66.35 76.66 81.92 86.41 68.99 76.95 83.49 85.68 79.10 83.29 85.77 86.25 71.64 78.41 82.78 84.99 79.46
DBN3 66.62 76.38 81.85 86.50 68.89 76.14 83.56 85.62 78.95 83.26 85.81 86.01 71.55 78.03 82.83 84.78 79.30

DDNN1 66.00 76.61 82.34 86.81 68.59 77.36 83.88 85.94 77.90 83.20 85.84 86.64 70.75 78.19 82.89 85.23 79.27

DDNN2 66.80 76.86 82.45 86.98 69.33 77.48 84.21 86.12 78.19 83.39 85.62 86.46 71.06 78.42 83.02 85.41 79.48

DDNN3 67.00 76.85 82.30 86.85 69.44 77.60 84.25 86.16 78.53 83.60 85.73 86.49 71.21 78.52 83.11 85.45 79.57

the accuracy. We run all experiments 10 times and report the
average performances. The reported performance might be
further improved by tuning the parameters.

Tables 2 and 3 list the experimental results. The high-
lighted contents of each column are the best performance
of the referenced DBN-based VAD and that of the DDNN-
based VAD on the corresponding noise scenario respectively.
From the two tables, we can see that the deep layers of the
DDNN-based VADs perform better than the shallower lay-
ers, which supports our conjecture in Section 3. Also, the
DDNN-based VAD outperforms the SVM-based VAD and
the MK-SVM-based VAD. Moreover, the DDNN-based VAD
even outperforms the DBN-based VAD in several noise sce-
narios, which demonstrates its effectiveness. The experimen-
tal phenomenon manifested our conjecture in the introduction
section about the reason why the deep layers the DBN-based
VAD does not outperform the shallow layers. That is, the
manifolds of the clean speech and background noise mixed
with each other, so that we cannot expect DBN to distinguish
the background noise from the noisy speech that contains the
manifolds of both the clean speech and the background noise.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a denoising-deep-neural-
networks-based VAD. Specifically, the DDNN training con-

tains two phases. The first phase is to pre-train a deep neural
network in an unsupervised denoising greedy layer-wise
mode. The second phase is to fine-tune the whole deep neu-
ral network as usual. The denoising pre-training makes the
DDNN discover the manifold of the clean speech without
suffering severely from the disruption of the background
noise. Experimental results have shown that the deep lay-
ers of the DDNN-based VAD are much more powerful than
the shallower layers, and moreover, the DDNN-based VAD
outperforms the DBN-based VAD in several noise scenarios.

However, to train a DDNN model, the noisy speech train-
ing corpus needs its corresponding clean corpus, which is an
ideal situation. Therefore, how to relax this constraint is what
we focus on in the future work. Moreover, the experiments
are limited to the matching environments, how to make the
DDNN-based VAD perform steadily in unmatching environ-
ments is another key problem we want to address.
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