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ABSTRACT
A common method to solve a multiclass classification prob-

lem is to reduce the problem to a serial binary classification

problems and combine them via Error-Correcting Output

Codes (ECOC). The ECOC contains three parts: coding de-

sign, decoding algorithm, and base dichotomizer. Recently,

the Loss-Weighted (LW) decoding algorithm (Escalera et al.,
PAMI2010), which introduces a weight matrix to the Loss-

Based (LB) decoding (Allwein et al., JMLR2001), achieves

improved performance over traditional decoding methods.

However, the weight matrix is assigned empirically. In this

paper, we present a theoretical global optimization method

for the weight matrix, so as to achieve the minimal training

risk. Although the experimental results on real-world image,

audio and text classification tasks show that the proposed de-

coding method only leads to slightly better performances than

others in the case of discrete outputs of the dichotomizers,

the proposed method provides a new screen on the decoding

methods of the ECOC.

Index Terms— Decoding, error-correcting output codes,

machine learning, multiclass classification.

1. INTRODUCTION

The multiclass classification methods in literature can be prin-

cipally partitioned into two groups. The first group gets a nat-

ural extension from its binary predecessor, such as linear dis-

criminant analysis. The second group involves decomposing

the multiclass problem into a number of binary classification

problems. The Error-Correcting Output Codes (ECOC) pro-

vides a general framework for the second group [1].

Generally, the research contents of the ECOC include

coding designs, decoding algorithms and dichotomizers. Be-

sides the works on the coding designs [2–4] and the choices

of the dichotomizers, such as AdaBoost and Support Vector

Machines (SVM), some researchers dedicate to the decoding

algorithm, including Hamming Distance (HD) decoding, eu-

clidean Distance (ED) decoding, etc.. Recently, the training

This work was supported by the National Natural Science Funds of

China under Grant 61170197.

loss based decoding algorithm has attracted much attention.

Allwein et al. proposed the Loss Based (LB) decoding algo-

rithm [5], and showed the superiority of the LB decoding to

the HD decoding. Escalera et al. [6–8] added a weight matrix

to the LB decoding and tuned the matrix for better classifica-

tion performance. However, the weight matrix is determined

empirically from the accuracy of each dichotomizer, which

might not be the best choice.

In this paper, we are to optimize the weight matrix for

the minimal risk on the training set. We call the decoding

algorithm with an optimized weight matrix the Optimized

Weighted (OW) decoding algorithm. In Section 2, we briefly

review the ECOC framework. In Section 3, we present the

OW decoding algorithm. In Section 4, extensive experiments

are conducted on a wide range of real-word datasets. In

Section 5, some conclusion remarks are drawn.

2. REVIEW OF ECOC AND PROBLEM
FORMULATION

Given a P class classification problem with a set of labeled

samples {(ρi, yi)}ni=1 where ρi is a d dimensional sample,

and yi ∈ {1, 2, . . . , P} is the label of ρi, the ECOC tries to

use Q dichotomizers to address this problem. The relation of

the classes and the dichotomizers can be expressed by a code
matrix M ∈ {−1, 0, 1}P×Q. The pth row of M is the code-

word of the pth class, denoted as cp, p = 1, . . . , P . The qth

column of M denotes the qth dichotomizer hq , q = 1, . . . , Q.

An example of M is shown in Fig. 1 with P = 4 and

Q = 7 [8]. The meaning of the elements of M and the train-

ing method of the dichotomizers are also summarized in the

caption of Fig. 1. During the decoding process, taking a test

sample ρ into h1, . . . , hQ successively can get a test code-

word of ρ, denoted as x = [x1, . . . , xQ]
T . Given an existing

decoding strategy f(x, cp), the prediction of ρ can be formu-

lated as a minimization problem mincp∈M f(x, cp), where

M = {cp}Qp=1 is the codeword set. Fig. 1 gives an example

of the decoding process of ρ with the HD and ED decodings.

Note that besides being the multiclass extension of some

dichotomizers, another key advantage of ECOC is to utilize
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Fig. 1. Example of an ECOC code matrix M for a 4 class

classification problem [8]. The pth row of M is the codeword

of the pth class, denoted as cp, and the qth column expresses

the qth dichotmizer, denoted as hq . Now, consider the pth

position (element) of hq , if the position is colored black, it

means that the data of the pth class is trained as part of the

“negative” class (coded by −1) of hq; if the position is col-

ored in white, it means that the pth class is trained as part of

the “positive” class (coded by +1) of hq; if the position is

colored grey, it means that hq doesn’t take the data of the pth

class into classifier training (coded by 0). The vector x is the

codeword of a test sample ρ. The function fHD(x, cp) =∑Q
q=1 (1− sign (xqcp,q)) /2 is the Hamming Distance de-

coding, and fED(x, cp) = sqrt
(∑Q

q=1 (xq − cp,q)
2
)

is the

Euclidean Distance decoding.

the redundant information provided by a special design of M
for high classification accuracies. From Fig. 1, we can see

that ρ is assigned to class c1, correcting one position error.

In [8], Escalera et al. presented that a good decoding strat-

egy should make each class have the same decoding dynamic
range and zero decoding dynamic range bias. Based on above

two criterions, the Loss-Weighted (LW) decoding algorithm

was proposed. The LW introduces a predefined weight ma-

trix W = [wT
1 , . . . ,w

T
P ]

T =

[w1,1 . . .w1,Q
...

. . .
...wP,1. . .wP,Q

]
, which has the

same size as M and satisfies the following constraints

wp,q

{
= 0 , if mp,q = 0
∈ [0, 1], if mp,q �= 0

, ∀p = 1, . . . , P, ∀q = 1, . . . , Q,

Q∑
q=1

wp,q = 1, ∀p = 1, . . . , P (1)

where mp,q is an element of the code matrix M. We denote

the set of all feasible weight matrices that are constrained by

(1) as W (W ∈ W). The prediction function of the LW

decoding algorithm is given by

min
cp∈M

fLW (x, cp) = min
cp∈M

Q∑
q=1

wp,q�(xqcp,q) (2)

where �(·) is a user defined loss function. The two com-

mon loss functions are �(θ) = −θ (Linear LW, LLW) and

�(θ) = exp(−θ) (Exponential LW, ELW). However, in [8],

W is assigned empirically according to the training accuracy

of each dichotomizer. This assignment might be sub-optimal.

3. OPTIMIZED WEIGHTED DECODING
ALGORITHM

Given a sample ρ with a test codeword being x and its true

class being y, where y ∈ {1, . . . , P}. If ρ is classified cor-

rectly, according to (2), the following criterion should be sat-

isfied

Q∑
q=1

wy,q�(xqcy,q) ≤
Q∑

q=1

wp,q�(xqcp,q), ∀p = 1, . . . , P.(3)

Let up = [�(x1cp,1), . . . , �(xQcp,Q)]
T , (3) can be rewritten

as

wT
y uy −wT

p up ≤ 0, ∀p = 1, . . . , P. (4)

Given a training dataset {ρi, yi}ni=1 =
{
{ui,p}Pp=1 , yi

}n

i=1
.

If the training dataset is separable, we can get W by solving

the following minimization problem, and no training error oc-

curs

min
W∈W,μ≥0

−μ

s.t.wT
p ui,p −wT

yi
ui,yi ≥ μδ(i, yi),

∀i = 1, . . . , n, ∀p = 1, . . . , P (5)

with δ(i, yi) defined as

δ(i, yi) =

{
0, if i = yi
1, otherwise.

(6)

However, often, the solution of problem (6) is infeasible,

since the training set is inseparable. Inspired by the transi-

tion from hard-margin SVM to soft-margin SVM [9], we in-

troduce a slack variable to each constraint of (6), and extend

problem (6) to the following soft-margin optimization prob-

lem

min
W∈W,μ,ξi,p

−μ+
C

n

n∑
i=1

P∑
p=1

ξi,p

s.t.μ ≥ 0, ξi,p ≥ 0,

wT
p ui,p −wT

yi
ui,yi ≥ μδ(i, yi)− ξi,p, ∀i, ∀p(7)

where {ξi,p}i,p are called slack variables, C is a user defined

constant, and hinge-loss is used. Because problem (7) is a

convex linear programming problem, it can be solved glob-

ally and efficiently in time O(n log n), and the minimal risk

can be reached in the training set.

Although the hinge-loss is used in problem (7), other loss

function can be attempted. Although our optimization method

is constructed on the Loss-Weighted decoding algorithm, in

fact, it can be easily extended to other weighted decoding al-

gorithms. The Optimized Loss-Weighted (OLW) decoding

algorithm is just a special case of the Optimized Weighted

(OW) decoding algorithm. Moreover, if we regard {ui,p} as

the new features of the sample ρi, kernel methods might be

used in (7) for better performance.
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Table 1. Descriptions of the datasets. “n” is the data set size,

“d” is the dimension, “c” is the number of the classes.
Data n d c Data n d c
Dermathology 366 34 6 Yeast 1484 8 10

Iris 150 4 3 Satimage 6435 36 7

Ecoli 336 7 8 Pendigits 10992 16 10

Wine 178 13 3 Segmentation 2310 19 7

Glass 214 9 7 OptDigts 5620 64 10

Thyroid 215 5 3 Vhicle 846 18 4

Vowel 990 10 11 ShortMessage 50870 87 5

Balance 625 4 3 Music 1886 112 9

4. EXPERIMENTS

4.1. Experimental Setup

4.1.1. Datasets

The data used for experiments consists of 14 multiclass

datasets from the UCI Machine Learning Repository database1,

one real-world text classification dataset from the ShortMes-
sage classification job of China Mobile company, and the

Dortmund Music genre classification dataset [10]2. For the

Music dataset, the Modulation spectral analysis of the Mel-

Frequency Cepstral Coefficients (MMFCC) is used as the

acoustic feature [11]. Table 1 lists the detailed information of

the datasets.

4.1.2. Comparison Schemes and Experimental Settings

We combine the OW decoding with the two loss functions

defined in Section 2. The two implementations are called the

discrete Optimized Linear Loss Weighted (OLLWD) decod-

ing and discrete Optimized Exponential Weighted (OELWD)

decoding algorithms respectively, where “discrete” means

that the output of the dichotomizer is binary (hard-decision).

To examine the effectiveness of the OLLWD and OELWD de-

coding algorithms, we compare them with 6 existing decod-

ing methods, including HD decoding, ED decoding, discrete

Linear Loss Based (LLBD) decoding [5], discrete Exponen-

tial Loss Based (ELBD) decoding [5], discrete LLW (LLWD)

decoding [8], and discrete ELW (ELWD) decoding [8] strate-

gies.

All above decoding algorithms are combined with 4 state-

of-the-art ECOC coding designs, including one-versus-one

[12], one-versus-all [13], ECOC-ONE [6], and Discrimina-

tive ECOC (DECOC) [3]. We follow the ECOC library [14]3

for the implementations of the referenced methods.

The Discrete Adaboost [15] and the linear kernel SVMperf

[16]4,5 are used as two base dichotomizers. For the linear

kernel SVM, the regularization constant C is searched from

1http://archive.ics.uci.edu/ml/
2http://www-ai.cs.uni-dortmund.de/audio.html
3http://sourceforge.net/projects/ecoclib/
4http://svmlight.joachims.org/svm perf.html
5The SVMperf in use is a MATLAB version implemented by ourselves.

the exponential grid 2[20:1:40]. For the proposed OLLWD and

OELWD decoding algorithms, because they are insensitive to

the constant C (in (7)), we set C to 1000 for simplicity.

4.2. Experimental Results

To measure the performance of different decoding methods

on a dataset, each decoding method is applied on the 4 cod-

ing designs and the two dichotomizers with a tenfold cross-

validation experiment. Finally, we pick up the best perfor-

mances as the measurements of the decoding methods on the

dataset. Table 2 lists the classification accuracies of the de-

coding methods. From the table, we can see that the proposed

decoding methods are slightly better in half of the datasets,

and achieve comparable performances in another half. We

can also see that one-versus-one coding can achieve better

performances than other coding designs in most of the data

sets, but need much more dichotomizers than the others. But

from the table, we can’t decide which dichotomizer is better

than the other. It depends on the datasets.

5. CONCLUSIONS

In this paper, we have proposed a new ECOC decoding al-

gorithm that optimizes the weight matrix of the weighted de-

coding methods for minimal training risk. Specifically, the

weight matrices of existing weighted decoding methods are

assigned empirically from the dichotomizers, which might

not leads to minimal risk. We have proposed to get the weight

matrices via theoretical optimization method. Experimental

results on image, text and audio classification tasks show that

the proposed method can achieve slightly better performances

than existing decoding methods. Furthermore, the algorithms

used for experimental comparison are just special cases of the

proposed optimization method, and only the discrete outputs

of the dichotomizers are studied in our experiments. More

advantages are to be developed.
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