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Abstract—In this letter, we propose a new robust feature and an
unsupervised learning approach for statistical voice activity detec-
tion (VAD). Maximum margin clustering (MMC), as an unsuper-
vised classifier, can improve the robustness of support vector ma-
chine (SVM) basedVADwhile requiring no data labeling formodel
training. In the MMC framework, the multiple observation com-
pound feature (MO-CF) is proposed to improve accuracy. MO-CF
is composed of two subfeatures—multiple observation signal-to-
noise ratio (MO-SNR) and multiple observation maximum proba-
bility (MO-MP). The contributions of the two subfeatures are bal-
anced by a factor which is chosen to yield the largest area under the
ROC curve (AUC) of the performance. The proposed approach ob-
tains improved performance over seven commonly used VAD tech-
niques in the experiments covering various noisy scenarios with
low SNRs.

Index Terms—Maximum margin clustering, multiple observa-
tion compound feature, support vector machine, unsupervised
learning, voice activity detection.

I. INTRODUCTION

V OICE activity detection (VAD), which is used to identify
the speech portion of utterances, finds its applications in

a wide spectrum of modern speech communication systems. A
statistical model based VAD approach with impressive perfor-
mance was proposed by Sohn [1]. Later on, multiple observa-
tion likelihood ratio test (MO-LPT) was developed in [2], [3]
to further improve its robustness. In addition, Jo [4] and Shin
[5] combined the statistical approaches and SVM with different
features. The SVM based VADs rely on the labels of training
samples. The labeling process could be expensive, time-con-
suming and the labels might be unreliable. Besides, the features
extracted from the statistical model usually take no considera-
tion of the contexts of the observations. In this letter, we pro-
pose an unsupervised learning approach for VAD by combining
maximum margin clustering (MMC) [6], [7] and multple obser-
vation compound feature (MO-CF) attempting to improve its
overall robustness and accuracy.
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II. MAXIMUM MARGIN CLUSTERING BASED VAD

A. Review of MMC

Given training samples in the -dimensional space
, and a possibly nonlinear kernel function ,

an embedding kernel space is defined over with a mapping
function , where is the kernel matrix
with each entry defined as . MMC
extends the idea of SVM, and aims at finding not only the max-
imum margin hyperplane in the feature space but also
the optimal label vector that maximizes the
margin among all possible label vectors. It can be formulated as
the following optimization problem [6]:

(1)

where is a user defined constant. Equation (1) can be solved
by semidefinite programming, which has a high computational
complexity. Some recent work has been conducted towards
more efficient solutions. For instance, Wang [7] presented
an equivalent form of (1) which can be solved iteratively by
efficient quadratic programming. In this letter, we follow [7]
for the implementation of MMC.

B. MMC Based VAD

If the labeling is perfect in SVM based VAD, one maximum
margin hyperplane could be found in the feature space which
will lead to the minimal classification error. From the MMC
theory, the hyperplane found byMMC is very close to that found
by SVM with perfect labeling. However, in practical applica-
tions, especially under noisy conditions, the perfect labeling re-
quirement is hard to satisfy. There are always somewrong labels
(noisy labeling) in the training samples which result in a subop-
timal maximummargin hyperplane, and therefore can not obtain
the minimal classification error. If the labeling errors increase
beyond certain level, the performance of SVMbasedVAD could
be be inferior to its MMC counterpart. The MMC based VAD
is presented as follows.
The MMC in [7] is only applicable to linear kernel, or to the

original sample , but nonlinear kernels, such as the radius
basis function (RBF) kernel, have shown superior performance
on VAD [4], [5]. Hence, in order to use the nonlinear kernel,
the kernel principle component analysis (KPCA) basis [8] is
used to calculate the coordinates of each training samples,
or , in the high-dimensional kernel space , and then
the MMC [7] uses as the feature for training and
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classification instead of the original samples . There are
two steps to obtain. .
1) Construct from training data. The training kernel
matrix is calculated from

, and then is diagonalized [8]
to . For efficiency, the largest eigenvalues

of corresponding with their
eigenvectors are chosen to construct
approximately.

2) Calculate in . The test kernel matrix
is calculated from and

, and then is diagonalized to with the help
of . Finally, the coordinates are computed
as , with in model training
procedure and being the feature of any observation
in VAD detection procedure.

In MMC training procedure, after getting
, the maximum margin hyperplane

is calculated by [7], and the MMC model is defined
as . In the VAD detection procedure, the
coordinates of the VAD feature is calculated from step
2 and the decision rule is defined as

(2)

where (or 1) denotes the speech absence (or presence)
in the th observation, is regarded as the distance be-
tween and the hyperplane or regarded as the soft output
of MMC, is used to tune the operating point of VAD.
We note that the diagonalization [8] of is important for the

realization of the VAD, and the approximation of is signifi-
cant for the VAD’s efficiency.

III. FEATURE EXTRACTION
Inspired by [2], [3], [5], a new feature called multiple-obser-

vation compound feature (MO-CF) is proposed. It takes the ad-
vantages of the statistical model and the multiple-observation
techniques. Specifically, it consists of two subfeatures. The first
subfeature ofMO-CF is themultiple observation signal-to-noise
ratio (MO-SNR) feature which is derived from single-ob-
servation SNR (SO-SNR) [5]. It has a better control over the
randomness of the SNR estimation and leads to better perfor-
mance on speech detection rate (SD) than SO-SNR. However,
MO-SNR increases the false alarm rate (FA) simultaneously. To
overcome this drawback, multiple observation maximum prob-
ability (MO-MP) is included as the second subfeature. The
vector is derived from revised MO-LRT (RMO-LRT) [3] and

inherits the good ability of RMO-LRT on FA. The major differ-
ence between MO-MP and RMO-LRT is that MO-MP consists
of LRT scores of all DFT-bins under the maximum probabilistic
global hypotheses [3] while RMO-LRT is a sum of the LRT
scores. Obviously, the former is more informative than the latter.
Although MO-MP could yield higher SD than RMO-LRT, it is
still inferior to MO-SNR on SD. In order to combine the merits
of the two proposed subfeatures, the MO-CF is defined as

(3)

where the factor is to balance the contributions of the two
subfeatures for the best overall performance. The construction

of MO-CF is different from the scheme that the MO-SNR and
MO-MP are applied individually. In that case, the MO-SNR and
MO-MP are separately applied and added up with scaling by
a soft decision scoring function of MMC. The latter is
simply one compromising scheme. The optimal balance factor
is defined as the that will yield the largest area under the

ROC curve (AUC) [9]. In practice, is obtained by grid search
in a range of . The two subfeatures are presented as
follows.
For MO-SNR, it is assumed that the speech is corrupted

by uncorrelated additive noise. The discrete Fourier trans-
form (DFT) analysis is applied on each observation. The
DFT coefficients of the th observation are denoted as

. For the th DFT-bin of , we take the
same definition of a posteriori SNR and a priori SNR
as [10] and estimate them in the same way as [1]. Finally, the
SO-SNR feature is obtained similarly as [5]

(4)

The proposed MO-SNR feature is defined as the moving
average of the observation vectors :

(5)

For MO-MP, the th global hypotheses of an arbitrary
observation vector with observations is defined as

with the central local hypotheses
representing the class of the present observation, where is
defined as [3]:

It is trivial to show that there are global hypotheses
in total. Under the same assumption as [3] that there is up to
one speech-to-noise or noise-to-speech transition in a small
enough window, the number of global hypotheses is reduced
to . By selecting the global hypotheses whose cen-
tral element is 0 (or 1) from , the global
hypotheses set (or ), which represents the speech absent
(or present), can be formed as (or

). Then for the th DFT bin of ,
under and sets, two probability vectors and
can be defined as

(6)

(7)

with for and
computed as

(8)

If the Gaussian model is used in (8), the conditional probability
is calculated in the same way as [1]. Finally, two matrices is
defined as

(9)
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For the maximum probability of the observation under the
“0” or “1” global hypotheses set, two row indices are given:

(10)

where means the element of the th row and the th
column of matrix. The proposed MO-MP feature is defined as

(11)

where .
To summarize, given the MO-SNR in (5) and the MO-MP in

(11), the proposed MO-CF of is constructed as (3).

IV. EXPERIMENTS AND PERFORMANCE ANALYSIS
TIMIT [11] corpus is used for the experiments with its word

transcription for the VAD evaluation. All recorded speech sig-
nals are downsampled from 16 kHz to 8 kHz. 120 clean utter-
ances are randomly selected from the training set of TIMIT.
Half of them are concatenated for VAD training with another
half for parameter development. Another 60 randomly chosen
utterances from the test set of TIMIT are concatenated for the
VAD evaluation. After the above processing, three concatenated
long utterances are obtained with each of them being about 260
s long with about 63% of speech signals. In order to simulate
the practical noisy environments, the original long utterances
and NOISEX-92 [12] corpus are filtered by intermediate ref-
erence system (IRS) [13] to simulate the phone handset. The
SNR estimation algorithm based on active speech level [14]
is used to add babble and vehicle noises at an SNR level of 5
dB. After DFT analysis of an observation, the spectrum is di-
vided into 16 critical bands which is analogous to
that of the IS-127 speech enhancement technique [15], so that
the MO-CF feature has a dimension of 48. The Gaussian RBF
kernel is chosen as the
kernel operator of MMC or SVM based VADs. The number of
the selected eigenvectors is set to 10. We only randomly ex-
tract part of the samples that have low spectral energy in the
training set for MMC\SVM training [16]. Based on our experi-
mental environments, setting the window length to 16 helps
the MO-based VADs reach the optimal performance.
Fig. 1 gives an example of the optimization process of in

vehicle noise at a 5 dB SNR. From the figure, the MO-SNR
feature has the advantage of detecting trivial speeches but ob-
viously has a higher FA. On the other hand, the MO-MP fea-
ture has a good ability of controlling FA but a lower SD than
MO-SNR. The MO-CF with is able to take the advantages
from both of them. Also, the s in the development set and the
test set appear in the same position, which proves the robust-
ness of the feature. Note that the development set and the test set
might match well in our task. In other applications, mismatching
might happen, but the worst case is no worse than using each
subfeature separately.
As mentioned previously, when the SNR is low, the labels

would be obviously inaccurate (noisy). Fig. 2 gives an example
of comparison of manual labeling in clean environment and
noisy labeling in vehicle noise. From Fig. 2(b), if we label the
utterance in a noisy environment, there will be 33.08% of speech
wrongly labeled as noise by Ramirez VAD [2] and 24.19% of

Fig. 1. Optimization process of (vehicle noise, dB).

Fig. 2. Noisy labeling assumption. (a) Manual labeling in clean environment;
(b) machine labeling by Ramirez VAD [2] (solid line) and the best manual la-
beling by human experience (dashed line); (c) error labeling assumption: the
speech observations whose LRT scores are very small (below the dashed line)
will be labeled as noise observations in probability. The utterance is randomly
chosen from TIMIT with “/train/dr1/fvmh0/sx206.wav” as its directory.

that by human with significant efforts. Therefore, error labeling
can not be totally avoided. Fig. 3 shows that the performances of
the SVM-based and unsupervised SVM (USSVM) based VADs
would degrade under noisy labeling assumption, while the pro-
posed VAD shows robust performance. The USSVM means
that the labels are generated by some available classifier (Here,
Ramirez VAD [2] is the classifier). The same phenomenon is
also observed in other scenarios.
For general comparison, besides the proposed VAD and the

SVM based VAD by using MO-CF, the G.729B VAD, VAD for
noise estimation from ETSI AFE (AFE WF VAD) [17], Sohn
VAD [1], MO-LRT VAD [2], and RMO-LRT VAD [3] proposed
by Ramirez, Tahmasbi VAD [18], and Jo VAD [4] are also tested
and compared. Note that the Jo VAD is an SVM based method.
Figs. 4 and 5 show the performance comparisons of the pro-
posed VAD with other referenced VADs in vehicle and babble
noise environments. From Fig. 4, althoughMO-CF based VADs
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Fig. 3. Performance comparison of the MMC-based VAD and the SVM-based
VAD under noisy labeling assumption in vehicle noise ( dB).

Fig. 4. Performance comparison of the VADs in vehicle noise ( dB).

Fig. 5. Performance comparison of the VADs in babble noise ( dB).

show some degradation on SD when compared with MO-LRT,
they have better operating points and have a better control on
FA. From Fig. 5, the MO-CF based VADs yield superior perfor-
mances over all referenced VADs.
The main purpose of constructing the data set artificially from

an open corpus is to simulate a continuous speech detection task
with long detection time, which is the main working environ-
ment of VAD in practice. Although the proposed approach in
this paper is aimed for a task-independent generic VAD solu-

tion and the optimization process of the feature parameter has
shown to be quite consistent in both development and test sets,
it’s possible that the proposed approach is still biased towards
certain tasks. To that end, besides the experiments on TIMIT,
we also tested the algorithm on several real-world records of
the telephone dialogs and directory enquiries. It achieved com-
petitive performance compared to other VADs.

V. CONCLUSION

In this letter, we present a statistical VAD approach based on
the unsupervised MMC algorithm. Compared to SVM based
VAD, it does not rely on labeling of the training data and can
improve the robustness of the VAD. Furthermore, a new robust
feature with two complimentary subfeatures is proposed. Ex-
perimental results show that the proposed VAD could achieve
good performances at a low level SNR.
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