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Abstract—Recently, ad-hoc microphone array has been widely
studied. Unlike traditional microphone array settings, the spatial
arrangement and number of microphones of ad-hoc microphone
arrays are not known in advance, which hinders the adapta-
tion of traditional speaker verification technologies to ad-hoc
microphone arrays. To overcome this weakness, in this paper,
we propose attention-based multi-channel speaker verification
with ad-hoc microphone arrays. Specifically, we add an inter-
channel processing layer and a global fusion layer after the
pooling layer of a single-channel speaker verification system.
The inter-channel processing layer applies a so-called residual
self-attention along the channel dimension for allocating weights
to different microphones. The global fusion layer integrates all
channels in a way that is independent to the number of the
input channels. We further replace the softmax operator in the
residual self-attention with sparsemax, which forces the channel
weights of very noisy channels to zero. Experimental results with
ad-hoc microphone arrays of over 30 channels demonstrate the
effectiveness of the proposed methods. For example, the multi-
channel speaker verification with sparsemax achieves an equal
error rate (EER) of over 20% lower than oracle one-best system
on semi-real data sets, and over 30% lower on simulation data
sets, in test scenarios with both matched and mismatched channel
numbers.

I. INTRODUCTION

In the past decades, the performance of automatic speaker
verification (ASV) has been improved significantly, such as
the i-vector based methods [1] and deep neural network
(DNN) based methods [2]. However, such advances are mainly
achieved on closed-talking scenarios with less interference.
With the fast development of smart devices, such as smart
speakers and various voice-enabled IoT gadgets, the need for
far-field speech interaction will continue to grow. Recognizing
who is speaking is essential to such smart devices for provid-
ing customized services. Far-field speech processing tasks in-
cluding ASV remain challenging yet due to attenuated speech
signals, noise interference, as well as room reverberations.

In order to solve the above challenging problem, various
methods have been proposed at different stages of ASV
systems. DNN based denoising methods [3] for single-channel
speech enhancement [4], [5] and multi-channel speech en-
hancement [6]–[8] were explored for ASV systems under
complex environments [9]. Linear prediction inverse modu-
lation transfer function [10] and weighted prediction error
[11] methods were used for dereverberation. Warped minimum
variance distortionless response (MVDR) cepstral coefficients
[12], power-normalized cepstral coefficients (PNCC) [13] and
DNN bottleneck features [14] have been applied to ASV

system for suppressing the adverse impacts of reverberation
and noise.

The above research mainly focuses on single channel front-
ends or multi-channel front-ends on single device. A micro-
phone array with a known geometry is an important way to
improve the performance of ASV. However, because speech
quality degrades significantly when the distance between the
speaker and microphone array enlarges, the performance of
ASV is upper-bounded physically no matter how many mi-
crophones are added to the array [15]. Compared with the
fixed microphone array, an ad-hoc microphone array consists
of a set of microphone nodes randomly placed in an acoustic
environment [16]. It provides more flexibility, and allows users
to use their own mobile devices to virtually form a microphone
array system. Recently, ad-hoc microphone arrays have been
widely studied. [17] proposed deep ad-hoc beamforming based
on speaker extraction for speech separation. In [18], a neural
network architecture was proposed to capture both the inter-
channel and temporal correlations from the multi-channel in-
put of ad-hoc microphone arrays for speech separation. In [19],
the authors provided a set of baseline systems that are trained
with the far-field speaker verification data in the transfer
learning manner, and then performed the system fusion at the
score level.

In this paper, we propose an attention-based multi-channel
ASV with ad-hoc microphone arrays. Specifically, we first
propose an inter-channel processing layer based on residual
self-attention and a global fusion layer. Compared with single-
channel ASV models, we add the inter-channel processing
layer and the global fusion layer after the pooling layer. The
softmax function in the residual self-attention of the inter-
channel processing layer transforms the similarity matrix to
attention weights. Then, we further replace the softmax func-
tion with a so-called sparsemax function, which can force the
channel weights of the noisy channels that do not contribute
to the performance improvement to zero. We first train the
single-channel ASV with clean speech data, then train the
multi-channel ASV with ad-hoc data. This training strategy
is motivated by the following two points: i) when we take
some very noisy channels into training, the ASV system may
not to be trained successfully; ii) the data of all channels is
very large.

We conducted an extensive experiment on Librispeech sim-
ulated with ad-hoc microphone arrays and semi-real Libri-
adhoc40 [20] corpora. Experimental result on the simulated
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Fig. 1. Singel-channel speaker verification.

dataset shows that the proposed multi-channel ASV with
sparsemax achieves a relative EER reduction of 36.2% over
the oracle one-best system, and 6.2% over the multi-channel
ASV with softmax on the matched 20-channel test scenario.
Experimental result on the semi-real dataset shows that the
proposed methods perform well in all test scenarios, and the
model with sparsemax is slight better than the model with
softmax.

II. PROPOSED SYSTEM

In this section, we first introduce the single-channle ASV
model. Then, we introduce the proposed attention-based multi-
channle ASV. Finally, we introduce cross-channel multi-head
residual self-attention with sparsemax.

A. Single-channel speaker verification system

As shown in Figure 1, the network structure of the single-
channel ASV is the same as in [21]. The network architec-
ture contains three main components: a front-end residual
convolution neural network (ResNet) [22], a self-attentive
pooling (SAP) [23] layer and a fully-connected layer. The
front-end ResNet transforms the raw feature into a high-level
abstract representation. The subsequent SAP layer outputs a
single utterance-level representation. A fully-connected layer
then further processes the utterance-level representation to be
a more abstract utterance-level speaker embedding. All the
components are jointly optimized in an end-to-end manner
with a unified loss function. We adopt the angular prototypical
loss [21]. It constructs training batches in the same way as that
in the original prototypical loss [24].

B. Multi-channel speaker verification system

As shown in Figure 3, compared with the aforementioned
single-channel system, the proposed multi-channel ASV sys-
tem adds a novel inter-channel processing layer based residual
self-attention and a global fusion layer after the SAP layer.

1) Inter-channel processing layer: The inter-channel pro-
cessing layer collects the utterance-level representations from
all channels, and outputs channel-reweighted utterance-level
representations. As shown in Figure 4(a), the weights are
calculated by a multi-head residual self-attention mechanism
along the channel dimension, which is able to extract cross-
channel information for the weight calculation. As shown in
Figure 2, a residual self-attention layer takes the raw attention
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Fig. 2. The residual self-attention layer.

scores from previous layer as additive residual scores of
the current attention function [25]. The detailed calculation
process is as follows:

We stacked multiple inter-channel processing layers. For
each layer, let X = [x1, · · · ,xC ] denote the input, where
xc ∈ Rd is an utterance-level feature of the c-th channel.
while C represents the number of channels and d denotes the
dimension of the feature. We assume that the number of the
attention heads of the self-attention is h. For each attention
head, the input features X are transformed into query, key,
and value embedding subspaces of dimension E respectively
as follows:

Qi = XWi
Q,K

i = XWi
K ,V

i = XWi
V (1)

where dk = E/h; the matrices Q, K, and V denote the
query, key, and value embeddings respectively, all of which
are in RC×dk ; Wk ∈ Rd×dk (k ∈ {K,Q, V }) are model
parameters; and the superscript i denotes the i-th attention
head. Within each head, the cross-channel similarity matrix
is obtained from the multiplication of the query and key
matrices. A softmax function is applied to each column of the
cross-channel similarity matrix to obtain an attention matrix
Ai ∈ RC×C :

Ai = softmax

(
Qi ·

(
Ki
)>

√
dk

+ prev

)
, (2)

where prev is the attention scores from the previous inter-
channel processing layer. Finally, the new attention scores
Qi·(Ki)

>

√
dk

+prev are sent to the upper layer. The value matrix
Vi is multiplied by the attention matrix as

Hi = Ai ·Vi, (3)

where Hi ∈ RC×dk is the output of the i-th attention head,
which is concatenated across the subspaces as:

Z = Concat
[
H1,H2, . . . ,Hh

]
WO (4)

where WO ∈ Rd×d is the weight matrix of the linear
projection layer.

The position-wise feed-forward network (FFN) with ReLU
activation is applied to Z to generate the output of the
current inter-channel processing layer. A residual connection
is applied between the input and output of the cross-channel
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Fig. 3. Multi-channel speaker verfication. The green block is first trained by a
single-channel ASV on clean speech, and then fixed. The blue block is trained
with the multichannel data collected from ad-hoc microphone arrays in noisy
environments.
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Fig. 4. (a) Inter-channel processing layer. (b) Global fusion layer.

multi-head self-attention layer as well as the FFN layer to
mitigate the gradient vanishing problem.

2) Global fusion layer: After multiple layers of inter-
channel processing, the global fusion layer is added above the
top inter-channel processing layer. As shown in Figure 4(b),
it is implemented by a cross-channel multi-head residual
self-attention module, followed by a mean pooling operator.
It fuses the information of all channels in a way that is
independent to the number of the input channels.

C. Cross-channel multi-head self-attention with sparsemax

The common softmax has a limitation for ad-hoc micro-
phone arrays that the elements of its output can never be zero,
which cannot be used for channel selection. As we know,
if some channels are very noisy, they may hurt the system
when their weights are nonzero. To address this problem, we
replace softmax with sparsemax [26] in (2), where sparsemax
is defined as:

Sparsemax(z) = arg min
p∈∆K−1

‖p− z‖2 (5)

where ∆K−1 =
{
p ∈ RK |

∑K
i=1 pi = 1, pi ≥ 0

}
represents

a (K − 1)-dimensional simplex. Sparsemax will return the

Euclidean projection of the input vector z onto the simplex,
which is a sparse vector. Its solution has the following closed-
form:

Sparsemaxi(z) = max (zi − τ(z), 0) (6)

where τ : RK → R is a function to find a soft threshold.
Let z(1) ≥ z(2) ≥ . . . ≥ z(K) be the sorted coordinates of z,
and define k(z) := max

{
k ∈ [K] | 1 + kz(k) >

∑
j≤k z(j)

}
.

Then,

τ(z) =

(∑
j≤k(z) z(j)

)
− 1

k(z)
. (7)

III. EXPERIMENTS

A. Dataset

Our experiments use three data sets, which are the Lib-
rispeech corpus [27], Librispeech simulated with ad-hoc mi-
crophone arrays (Libri-adhoc-simu), and Librispeech played
back in real-world scenarios with 40 distributed microphone
receivers (Libri-adhoc40) [20]. Librispeech contains more than
1000 hours of read English speech. In our experiments, we
selected 960 hours of data including 2338 speakers to train
single-channel ASV system, and selected 10 hours of data
including 40 speakers for development.

Libri-adhoc-simu uses ’train-clean-100’ subset of the Lib-
rispeech data as the training data, which contain 251 speakers.
It uses ’dev-clean’ subset as development data, and takes ’test-
clean’ subset as test data, which contain different 40 speakers
respectively. For each utterance, we simulate a room. The
length and width of the room are selected randomly from a
range of [5, 25] meters. The height is selected randomly from
[2.7, 4] meters. Multiple microphones and one speaker source
are placed randomly in the room. We constrain the distance
between the source and the walls to be greater than 0.2 meters,
and the distance between the source and the microphones to
be at least 0.3 meters [15]. We use an image-source model1

to simulate a reverberant environment and selected T60 from
a range of [0.2, 0.4] second. A diffuse noise generator2 is
used to simulated uncorrelated diffuse noise. The noise source
for training and development is a large-scale noise library
containing over 20000 noise segments [28], and the noise
source for test is the noise segments from CHiME-3 dataset
[29] and NOISEX-92 corpus [30]. We randomly generate 20
channels for training and development, and 20, 30 and 40
channels respectively for test.

Libri-adhoc40 is collected by playing back the ’train-clean-
100’, ’dev-clean’, and ’test-clean’ subset of Librispeech in a
large room [20]. The recording environment is a real office
room with one loudspeaker and 40 microphones. It has strong
reverberation with little additive noise. The distances between
the loudspeaker and microphones are in a range of [0.8, 7.4]
meters. The positions of the loudspeaker and microphones are
different in the training and test set. We randomly select 20

1https://github.com/ehabets/RIR-Generator
2https://github.com/ehabets/ANF-Generator
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channels for each training and development utterances, and
20, 30, 40 channels for each test utterance which corresponds
to three test scenarios.

B. Model structure

Figure 1 shows the architecture of the proposed single-
channel model. We set the widths of the residual blocks to
{16, 32, 64, 128}. The embedding size in the fully-connected
layer is 512. As shown in Figure 3, multi-channel speaker
verification system adds the Inter-channel processing layer and
the Global fusion layer after the SAP layer. Four inter-channel
processing layers are stacked. The output dimensions of each
self-attention layer and FFT layer are both 256. The number
of the attention heads in each attention layer is 4. We use
voxceleb trainer3 to build our models.

C. Model training

During training, we use a fixed length 2 second temporal
segment, extracted randomly from each utterance. A Hamming
window with a width of 25ms and a step length of 10ms is used
to extract the spectrum. The 40-dimensional Mel filterbanks
are used as the input. Mean and variance normalisation (MVN)
is performed by applying instancde normalisation [31] to the
network input.

For each epoch, we randomly sample a maximum of 100
utterances from each speaker to reduce class imbalance. No
data augmentation is performed during training, apart from the
random sampling. We use the Adam optimizer with an initial
learning rate of 0.001 decreasing by 5% every 10 epochs. First,
the single-channel ASV system is trained for 200 epochs on
the Librispeech corpus. Then, the parameters of the single-
channel ASV are fixed and sent to the multi-channel ASV.
Finally, we trained the multi-channel ASV system with Libri-
adhoc-simu data and Libri-adhoc40 data respectively.

After training, we sample five 4-second temporal crops at
regular intervals from each test segment, and compute the
similarities between all possible combinations (5 × 5 = 25)
from each pair of segments. The mean of the 25 similarities
is used as the score. We arrange all utterances in test set to
get 6861780 trails for testing, including 183922 positive trails
and 6677858 negative trails.

D. Results

We compare the proposed multi-channel ASV with softmax
and sparsemax. Moreover, we construct an oracle one-best
baseline, which picks the channel that is physically clos-
est to the sound source as the input of the single-channel
ASV model. Note that, for the oracle one-best baseline, the
distances between the speaker and microphones are known
beforehand.

Table I lists the preformance of the comparison methods
on Libri-adhoc-simu. From the table, we see that all of
the proposed methods perform well in both test scenarios.
Particularly, the multi-channel ASV with softmax achieves an
EER of 31.9% lower than oracle one-best baseline on the

3https://github.com/clovaai/voxceleb trainer

TABLE I
EER(%) COMPARISON ON LIBRI-ADHOC-SIMU. THE TERM ”CH”

IS SHORT FOR CHANNELS IN TEST. MC-ASV IS SHORT FOR
MULTI-CHANNEL ASV.

Method 20-ch 30-ch 40-ch

Oracle one-best 11.90 10.99 10.77
MC-ASV with softmax (proposed) 8.10 7.94 7.88
MC-ASV with sparsemax (proposed) 7.59 7.53 7.47

TABLE II
EER(%) COMPARISON ON LIBRI-ADHOC40 SEMI-REAL DATA.

Method 20-ch 30-ch 40-ch

Oracle one-best 17.29 14.86 13.56
MC-ASV with softmax (proposed) 11.18 10.95 10.84
MC-ASV with sparsemax (proposed) 10.89 10.62 10.53

20-channel test scenario, and 27.7% on the mismatched 30-
channel test scenario. The generalization performance in the
mismatched 30-channel and 40-channel test environment is
even better than the performance in the matched 20-channel
environment, which demonstrates the advantage of adding
channels to ad-hoc microphone arrays. Sparsemax achieves
significant performance improvement over softmax. For ex-
ample, sparsemax achieves a relative EER reduction of 6.2%
over softmax on the matched 20-channel.

Table II lists the results on the Libri-adhoc40 semi-real data.
From the table, we see that the proposed model performs well.
The model with softmax achieves a relative EER reduction of
35.3% over the oracle one-best baseline on the 20-channel
test scenario, and 26.3% on the mismatched 30-channel test
scenario. Sparsemax is slightly better than softmax, with a
relative EER reduction of 3% in all test scenarios. The above
results show the proposed models is effective for ad-hoc
microphone arrays.

IV. CONCLUSIONS

In this paper, we first present the multi-channel ASV
model with ad-hoc microphone arrays using the inter-channel
processing layer based residual self-attention and global fusion
layer, which is proposed to take advantage of multi-channel
information in a way that is independent of the number and
permutation of the microphones. The inter-channel processing
layer, which aims to learn the channel weights, consists of
a residual self-attention and FFN. Multiple inter-channel pro-
cessing layers are stacked, followed by a mean pooling layer
for global information fusion. Then, we further replace the
softmax opterator in the residual self-attention with sparsemax,
which forces the channel weights of the noisy channels to zero.
We evaluate our model on Libri-adhoc-simu with background
noise and Libri-adhoc40 with high reverberation. Experimental
results show that the proposed multi-channel ASV with sparse-
max outperforms that with softmax and the oracle baseline
in both simulated data and semi-real corpus. The results also
demonstrate the importance of channel selection to ASV with
large-scale ad-hoc microphone arrays.
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