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Abstract—Transformer-based end-to-end speech recognition
models have received considerable attention in recent years
due to their high training speed and ability to model a long-
range global context. Position embedding in the transformer
architecture is indispensable because it provides supervision for
dependency modeling between elements at different positions in
the input sequence. To make use of the time order of the input
sequence, many works inject some information about the relative
or absolute position of the element into the input sequence. In
this work, we investigate various position embedding methods in
the convolution-augmented transformer (conformer) and adopt a
novel implementation named rotary position embedding (RoPE).
RoPE encodes absolute positional information into the input
sequence by a rotation matrix, and then naturally incorporates
explicit relative position information into a self-attention module.
To evaluate the effectiveness of the RoPE method, we conducted
experiments on AISHELL-1 and LibriSpeech corpora. Results
show that the conformer enhanced with RoPE achieves superior
performance in the speech recognition task. Specifically, our
model achieves a relative word error rate reduction of 8.70%
and 7.27% over the conformer on test-clean and test-other sets
of the LibriSpeech corpus respectively.

I. INTRODUCTION

The sequential order of an input sequence plays a vital
role in many sequence learning tasks, particularly in speech
recognition. Recurrent neural networks (RNNs) based mod-
els can learn the sequential order by recursively computing
their hidden states along the time dimension. Convolutional
neural networks (CNNs) based models can implicitly learn
the position information of an input sequence by a padding
operator [1]. In recent years, transformer-based models have
shown great superiority in various sequence learning tasks,
such as machine translation [2], language modeling [3] and
speech recognition [4]. The transformer-based models utilize
a self-attention mechanism to model the dependency among
different elements in the input sequence, which provides more
efficient parallel computing than RNNs and can model longer
context-dependency among elements than CNNs.

The transformer-based models dispense with recurrence,
and instead rely solely on a self-attention mechanism to draw
global dependencies among elements in the input sequence.
However, the self-attention mechanism cannot model the se-
quential order inherently [5]. There are various works injecting
some information about the relative or absolute position of
the elements of the input sequence into the transformer-based
models.

One line of works focuses on absolute position embedding

methods. The position embedding is added to the input embed-
dings usually. The original work [2] injected absolute position
information to the input embeddings via a trigonometric
position embedding. Specifically, the absolute position of each
element in the input sequence is encoded into a vector, whose
dimension is equal to the dimension of the input embeddings.
Another work [6] added absolute position information via
the learned positional embedding instead of the pre-defined
function, the learned position embedding can achieve compet-
itive performance with the trigonometric position embedding.
However, it cannot be extrapolated to a sequence length longer
than the maximum sequence length of training utterances.

The other line of works focuses on relative position em-
bedding, which typically inject relative position information
into the attention calculation. Originally proposed by [7],
the relative position embedding method replaced absolute
positions by taking into account the distance between sequence
elements. It demonstrates significant improvement in two ma-
chine translation tasks. The method has also been generalized
to language modeling [8], which helps the language model
capture very long dependency between paragraphs. Some
works also utilized relative position embedding to acoustic
modeling in the speech recognition task [9], [10], which help
the self-attention module deals with different input lengths
better than the absolute position embedding methods.

In addition to these approaches, [11] proposed to model
the position information in a complex space. [12] proposed
to model the dependency of position embedding from the
perspective of Neural ordinary differential equations [13]. [14]
proposed to encode relative position by multiplying the context
representations with a rotation matrix.

In this paper, we investigated various position embed-
ding methods in the convolution-augmented transformer (con-
former) for speech recognition. Motivated by [14], we adopt
a novel implementation named rotary position embedding
(RoPE). RoPE formulates the relative position naturally by an
inner product of the input vectors of the self-attention module
in the conformer, right after the absolution position informa-
tion being encoded through the rotation matrix. Experiments
were conducted on AISHELL-1 and LibriSpeech corpora.
Results show that the conformer enhanced with the RoPE
performs superior over the original conformer. It achieves a
character error rate of 4.69% on the test set of AISHELL-1
dataset, and a word error rate of of 2.1% and 5.1% on the ‘test-
clean’ and ‘test-other’ sets of LibriSpeech dataset respectively.
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The remainder of this paper is organized as follows. Section
III describes the RoPE method and the architecture of our
model. Section IV presents experiments. Conclusion is given
in Section V.

II. RELATED WORK

The core module of transformer-based models is the self-
attention module, assuming that X ∈ RT×d denotes the
input sequence, where T is the sequence length, d is the
dimension, the self-attention module first incorporates the
position information to the input sequence and transforms
them into queries, keys, values vectors respectively:

qm = fq (xm,m)

kn = fk (xn, n)

vn = fv (xn, n)

(1)

where qm,kn,vn incorporate m-th and n-th position infor-
mation via the function fq(·), fk(·), fv(·) respectively. The
attention weights calculated using the query and key vectors,
and the output is the weighted sum of the value vector:

am,n = softmax

(
qmk>n√

d

)

om =
T∑
n=1

am,nvn

(2)

A. Absolute position embedding

Assuming that xm ∈ Rd is the m-th element in the input
sequence. The implementation of absolute position embedding
can be formulated as:

fq (xm,m) = (xm + pm)W q

fk (xm, n) = (xm + pm)W k

fv (xm, n) = (xm + pm)W v

(3)

where W q,W k,W v ∈ Rd×dm is the weight matrix of
the linear projection layer of query, key and value vectors
respectively, dm is the hidden size of the attention module,
pm ∈ Rd is a vector depending of the position information of
xm. In [15], [16], pm ∈

{
pj
}T
j=1

is a set of trainable vectors.
Ref. [2] has proposed to generate pm using the sinusoidal
function:

pm,2j = sin
(
m/100002j/d

)
pm,2j+1 = cos

(
m/100002j/d

) (4)

where m is the position and j is the dimension.

B. Relative position embedding

In [8], the relative distance between elements in the input
sequence was taken into account. Specifically, keeping the
form of (3), the term qmk>n can be decomposed to:

qmk>n = fq(xm,m) f>k (xn, n)

= xmW qW
>
k x
>
n + xmW qW

>
k p
>
n

+ pmW qW
>
k x
>
n + pmW qW

>
k p
>
n

(5)

In [8], (5) was modified to:

qmk>n = xmW qW
>
k,Ex

>
n + xmW qW

>
k,RR

>
m−n

+ uW>
k x
>
n + vW>

kR
>
m−n

(6)

where u,v are trainable parameters, and Rm−n is the relative
position embedding. Comparing the (6) and (5), we can see
that there are three main changes:
• Firstly, the absolute position embedding pm for comput-

ing key representation is replaced with relative counter-
part Rm−n.

• Secondly, the query pmW q is replaced by two trainable
parameters u,v.

• Finally, the weight matrix of the linear projection layer
of key vector is separated to two matrices W k,E ,W k,R

for producing the content-based key vector and location-
based key vector respectively.

III. METHOD

In this section, we describe the rotary position embedding
(RoPE) and illustrate how we apply it to the self-attention
module in transformer-based models.

A. Formulation

Considering the dot-product attention does not preserve
absolute positional information, so that if we encode the
position information via absolute position embeddings, we will
lose a significant amount of information. On the other hand,
the dot-product attention does preserve relative position, so
if we can encode the positional information into the input
sequence in a way that only leverages relative positional
information, that will be preserved by the attention function.

To incorporate relative position information, we hope the
inner product encodes position information in the relative form
only:

〈fq (xm,m) , fk (xn, n)〉 = g (xm,xn,m− n) (7)

where the inner product of qm and kn is formulated by a
function g(·), which takes only xm, xn and their relative
position m − n as input variables. Actually, finding such an
encoding mechanism is equivalent to solving the function fq(·)
and fk(·) that conform (7).

B. Rotary position embedding

We start with a simple case with dimension d = 2, the
RoPE provides a solution to (7):

fq (xm,m) = (xmW q) e
imθ

fk (xn, n) = (xnW k) einθ

g (xm,xn,m− n) = Re
[
(xmW q) (xnW k)

∗
ei(m−n)θ

]
(8)

where Re[·] denotes the real part of a complex number
and (xnW k)

∗ represents the conjugate complex number of
(xnW k), θ ∈ R is a non-zero constant.

Considering the merit of the linearity of the inner product,
we can generalize the solution to any dimension when d is
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Fig. 1. Illustration of rotary position embedding (RoPE). X is the input
sequence without position embedding and Xp is the sequence encoded with
position information.

even, we divide the d-dimension space to d/2 sub-spaces and
combine them:

fq(xm,m) = Rd
Θ,mxmW q

fk(xn, n) = Rd
Θ,nxnW k

(9)

where

Rd
Θ,m =


M1

M2

. . .
Md/2

 (10)

Θ =
{
θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]

}
(11)

M i =

(
cosmθi − sinmθi
sinmθi cosmθi

)
(12)

The illustration of rotary position embedding is shown in
Figure 1.

C. Enhanced conformer with RoPE

In this work, we adopt conformer [9] as the speech recog-
nition model, which is a state-of-the-art transformer-based
model. The architecture of the conformer is given in Figure 2.
The audio encoder of conformer first processed the input with
a convolution subsampling module and then with E conformer
encoder blocks. Each conformer encoder block contains two
feed-forward (FFN) modules sandwiching the multi-head self-
attention (MHSA) module and the convolution (Conv) module,
as shown in Figure 3. Because the decoder of conformer is
identical with transformer [2], we will not describe the decoder
anymore.

In contrast to the additive position embedding method used
by other works [2], we adopt the multiplicative position
embedding method in the encoder. Moreover, we do not add
the position embedding at the beginning of the encoder, but
rather, we add the position embedding to the query and key
vectors at each self-attention layer. The position embedding in

Fig. 2. The architecture of conformer.

Fig. 3. The architecture of conformer encoder blocks.

the decoder is absolute position embedding, which is identical
with the one in transformer [2].

IV. EXPERIMENTS

A. Datasets

Our experiments were conducted on a Mandarin speech
corpus AISHELL-1 [17] and an English speech corpus Lib-
riSpeech [18]. The former has 170 hours labeled speech,
while the latter consists of 970 hours labeled speech and
an additional 800M word token text-only corpus for building
language model.

B. Setup

We used 80-channel log-mel filterbank coefficients (Fbank)
features computed on a 25ms window with a 10ms shift. The
features for each speaker were rescaled to have zero mean and
unit variance. The token vocabulary of AISHELL-1 contains
4231 characters. We used a 5000 token vocabulary based on
the byte pair encoding algorithm [19] for LibriSpeech. More-
over, the vocabularies of AISHELL-1 and LibriSpeech have
a padding symbol ’〈PAD〉’ , an unknown symbol ’〈UNK〉’,
and an end-of-sentence symbol ’〈EOS〉’.

Our model contains 12 encoder blocks and 6 decoder
blocks. There are 4 heads in both the self-attention and the
encoder-decoder attention. The 2D-CNN frontend utilizes two
3 × 3 convolution layers with 256 channels. The rectified
linear units were used as the activation. The stride was set
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TABLE I
COMPARISON RESULTS ON LIBRISPEECH.

Model
WER(%)

Dev Test
Clean Other Clean Other

LAS [20] - - 2.5 5.8
DC [27] 3.5 10.5 3.6 10.8
SA-DC2D [27] 3.5 9.6 3.9 9.6
Conformer [26] 2.1 5.5 2.3 5.5
Conformer (RoPE) 1.9 5.0 2.1 5.1

to 2. The hidden dimension of the attention layer is 256.
The hidden dimension and output dimension of the feed-
forward layer are 256 and 2048 respectively. We used the
Adam optimizer and a transformer learning rate schedule [2]
with 30000 warm-up steps and a peak learning rate of 0.0005.
We used SpecAugment [20] for data augmentation. We set
the CTC weight to 0.3 for the joint training with the attention
model. In the test stage, we set CTC weight to 0.6 for the
joint decoding. We used a transformer-based language model
to refine the results.

To evaluate the effectiveness of our model, we compare our
model with 9 representative speech recognition models, which
are TDNN-Chain (kaldi) [21], LAS [20], SA-Transducer [22],
Speech-Transformer [23], LDSA [24], GSA-Transformer [25],
Conformer [26], Dynamic convolution (DC) [27] and Self-
attention dynamic convolution 2D (SA-DC2D) [27]. There are
4 state-of-the-art transformer-based models in the compari-
son methods. Speech-Transformer uses the transformer archi-
tecture for both acoustic modeling and language modeling.
LDSA uses a local dense synthesizer attention module in
the transformer encoder as an alternative of the self-attention
module. GSA-Transformer replaces the self-attention module
with a gaussion-based attention module. Conformer combines
the transformer architecture with a convolution module.

C. Main results

Table I lists the comparison result on LibriSpeech dataset.
From the table, we can see that the proposed conformer
enhanced with RoPE achieves the best performance among
these methods. Our model achieves a WER of 2.1% and 5.5%
on the on test-clean and test-other sets respectively, which
gets a relative WER reduction of 8.70% and 7.27% over the
conformer.

Table II lists the comparison result on AISHELL-1 dataset.
From the table, we see that the proposed model achieves a
CER of 4.34% on the development set and 4.69% on the
test set respectively, which gets a relative CER reduction of
4.00% and 3.90% on the development set and test set over
the conformer. Moreover, the proposed model significantly
outperforms the other comparison methods.

D. Comparison of different position embedding methods

We also compare the rotary position embedding with other
position embedding in the conformer architecture, i.e. absolute
position embedding and relative position embedding. Table

TABLE II
COMPARISON RESULTS ON AISHELL-1.

Model CER(%)
Dev set Test set

TDNN-Chain (kaldi) [21] - 7.45
SA-Transducer [22] 8.30 9.30
Speech-Transformer [23] 6.57 7.37
LDSA [24] 5.79 6.49
GSA-Transformer [25] 5.41 5.94
Conformer [26] 4.52 4.88
Conformer (RoPE) 4.34 4.69

TABLE III
COMPARISON BETWEEN POSITION EMBEDDING METHODS ON THE

LIBRISPEECH DATASET. APE DENOTES ABSOLUTE POSITION EMBEDDING,
RPE DENOTES RELATIVE POSITION EMBEDDING RESPECTIVELY.

Model
WER(%)

Dev Test
Clean Other Clean Other

Conformer (APE) 2.1 5.5 2.3 5.5
Conformer (RPE) 2.0 5.2 2.2 5.5
Conformer (RoPE) 1.9 5.0 2.1 5.1

III lists the result on LibriSpeech dataset and Table IV lists
the result on AISHELL-1. From Table III and Table IV,
we can see that the relative position embedding performs
better than the absolute position embedding, and the rotary
position embedding achieves the best performance among
these position embedding methods on both LibriSpeech and
AISHELL-1 dataset.

TABLE IV
COMPARISON BETWEEN POSITION EMBEDDING METHODS ON THE

AISHELL-1 DATASET.

Model CER(%)
Dev set Test set

Conformer (APE) 4.52 4.88
Conformer (RPE) 4.49 4.82
Conformer (RoPE) 4.34 4.69

V. CONCLUSIONS

Transformer-based models have received great popularity
in the speech recognition task. Position embedding of the
input sequence plays a significant role in transformer-based
models. In this paper, we propose to apply the rotary position
embedding into the conformer. The rotary position embedding
incorporates explicit relative position information in the self-
attention module to enhance the performance of the conformer
architecture. Our experimental results on the AISHELL-1 and
LibriSpeech corpora demonstrate that the enhanced conformer
with rotary position embedding performs superior over the
vanilla conformer and several representative models.
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