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Abstract—Recently, there is a research trend on ad-hoc mi-
crophone arrays. However, most research was conducted on
simulated data. Although some datasets were collected with a
small number of distributed devices, they were not synchronized
which hinders the fundamental theoretical research on ad-hoc
microphone arrays. To address this issue, this paper presents a
synchronized speech corpus, named Libri-adhoc40, which collects
the replayed Librispeech data from loudspeakers by ad-hoc
microphone arrays of 40 strongly synchronized distributed nodes
in a real office environment. Besides, to provide the evaluation
target for speech frontend processing and other applications, we
also recorded the replayed speech in an anechoic chamber. We
trained several multi-device speech recognition systems on both
the Libri-adhoc40 dataset and a simulated dataset. Experimental
results demonstrate the validity of the proposed corpus which can
be used as a benchmark to reflect the trend and difference of the
models with different ad-hoc microphone arrays. The dataset is
online available at https://github.com/ISmallFish/Libri-adhoc40.

I. INTRODUCTION

Deep learning based speech processing has made signifi-
cant progress. However, the progress was mostly made with
single-channel front-ends or multichannel front-ends on single
devices [1]. As we know, the performance of speech pro-
cessing degrades significantly when the distance between the
speech source and the microphone array receiver increases,
which is known as the far-field speech processing problem.
Fortunately, ad-hoc microphone array can significantly reduce
the occurrence probability of far-field pickup scenes [2]. It is
a set of distributed microphones collaborating with each other
[3]. Conventional methods try to organize the microphones in
a blind way, which faces many challenges.

Recently, deep learning has been introduced to the study
of ad-hoc microphone arrays [2], [4]–[9], which provides a
promising solution to the challenges. In [2], [4], a supervised
channel selection strategy based on deep learning was pro-
posed to group the distributed microphones with high signal-
to-noise ratios (SNR) into a local microphone array. However,
the aforementioned studies were conducted on simulated data
only.

Some work was conducted on real-world data. In [6],
the authors first conducted single-channel speech separation
on a selected reference microphone, and then estimated a
beamforming filter for all remaining microphones based on
the output of the reference microphone. In [7], a novel
neural network architecture was proposed to capture both

the inter-channel and temporal correlations from the multi-
channel input of ad-hoc microphone arrays. [8] designed a
speech recognition system which first makes all channels share
the same encoder and then fuses all channels via stream
attention. [9] proposed a speaker recognition system based
on ad-hoc microphone arrays. It first trains a single-channel
speaker recognition system, then applies it to each channel,
and finally fuses the outputs of the channels for the final
decision. However, their experimental data was recorded with
few devices only.

There are already some corpora collected with ad-hoc
microphone arrays [9]–[14]. However, most of them were
collected with a small number of distributed devices too. In
[9], a speaker verification dataset called HI-MIA was collected
with 7 recording devices for both training and test. In [10], the
CHiME-5 dataset employed 6 Kinect microphone arrays and
4 binaural microphone pairs to record natural conversational
speech. To our knowledge, the ad-hoc microphone array in
the Massive Distributed Microphone Array dataset [13], which
consists of 4 wearable arrays and 12 tabletop arrays, is the
largest array that has ever been used for recording publicly
available data. As we known, when the ad-hoc nodes are too
few, it is difficult to fully explore the potential of ad-hoc
microphone arrays.

Moreover, none of the above corpora were collected with
synchronized devices. Because the hardware and software
processing pipelines between devices are different, the col-
lected data may have significant variations [15], [16]. In [11],
the CHiME-6 dataset synchronized the ad-hoc recordings of
CHiME-5 via frame-dropping and clock-drift compensation.
However, the synchronization technique misses the signal
propagation delay information between devices. Although the
SINS dataset [14], which adopted 13 sensor nodes to collect
data, recorded the timestamps of each node, the timestamps
can only provide rough synchronization between the sensor
nodes. Post-processing algorithms are still needed if rigorous
synchronization is required.

To fascinate the fundamental research of ad-hoc micro-
phone arrays on how well it can improve the performance
ideally, we need to collect synchronized data from large ad-
hoc microphone arrays, leaving the device synchronization
problem as a separate topic at the current research stage. To
address this issue, in this paper, we create a dataset, named
Libri-adhoc40, which collects the replayed Librispeech data
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[17] from loudspeakers by ad-hoc microphone arrays of 40
synchronized distributed microphones, where the ‘train-clean-
100’, ‘dev-clean’ and ‘test-clean’ subsets of Librispeech were
used as the speech source. To provide the evaluation target
for speech frontend processing and other applications, we also
recorded the replayed speech in an anechoic chamber. Eventu-
ally, Libri-adhoc40 contains 4510 hours data in total with 110
hours data per microphone. We conducted a speech recognition
evaluation on the test set of Libri-adhoc40, where both the
simulated data and the training set of Libri-adhoc40 were
used for model training. Experimental results demonstrate the
validity of Libri-adhoc40.

The rest of this paper is organized as follows. We first
provide an overview of the dataset and its recording method
in Sections 2 and 3 respectively, then conduct a baseline
evaluation in Section 4, and finally conclude in Section 5.

II. DESCRIPTION OF LIBRI-ADHOC40

The Librispeech corpus [17] is derived from audiobooks
that are part of the LibriVox project. It contains 1000 hours
of clean speech with a sampling rate of 16 kHz. The gender
and per-speaker duration are reasonably balanced. The Libri-
adhoc40 dataset takes the ‘train-clean-100’, ‘dev-clean’, and
‘test-clean’ subsets of Librispeech as the clean speech source,
which contains about 110 hours of US English speech from
331 speakers.

A. Recording environment

We replayed the subsets of Librispeech in an office room
and an anechoic chamber individually which are described as
follows:

• Office room: The plane structure of the office room is
shown in Figure 1. The height of the room is 4.2 m.
Because the room size is large, and because the floor
is laid with smooth tiles, the room is highly reverberant
with the T60 around 900 ms. Because the room is far
from noisy environments, the recorded speech has little
additive noise. A directional loudspeaker and 40 omnidi-
rectional microphones of the same type were placed in
the room. The sampling rate is 16 kHz.

• Anechoic chamber: The size of the net space of the ane-
choic chamber is 11.8×4.2×3.8 m after the installation of
sound-absorbing materials. The same loudspeaker and a
handy recorder were placed in the anechoic chamber. The
speech was recorded at 48 kHz, and further downsampled
to 16 kHz.

B. Training data

As shown in Figure 1(a), the loudspeaker was placed at
9 positions with 10 orientations, where the loudspeaker at
‘pos 9’ has 2 opposite orientations. The distances between
the loudspeaker and the microphones are ranged from 0.8 m
to 7.4 m. The speech source is the ‘train-clean-100’ corpus
of Librispeech, which contains 251 speakers. We replayed
the corpus with about 20 to 40 speakers per position. A

TABLE I: Recording equipment.

Device Product model Quantity
Microphone Superlux ECM 999 40
Preamplifier Focusrite Scarlett Octopre 8 4
Sound card RME Fireface UFX II 2
Handy recorder Zoom H1N 1
Loudspeaker JBL One Series 104 2

detailed configuration, including the coordinates of the loud-
speaker and microphones, as well as the relationship between
the speaker identities and the positions, are described at
https://github.com/ISmallFish/Libri-adhoc40.

C. Development and test data

As shown in Figure 1(b), the loudspeaker was placed at
8 positions. The distance between the loudspeaker and the
microphones ranges from 0.8 m to 7.4 m as well. The
positions of the loudspeaker and 40 microphones for preparing
the development and test data are different from those for
preparing the training data, which is designed for evaluating
the generalization ability of speech processing algorithms on
different array patterns. The speech sources for development
and test are the ‘dev-clean’ and ‘test-clean’ corpora of Lib-
rispeech respectively, each of which contains 40 speakers. We
replayed the corpus with 10 speakers per position.

D. Ground-truth clean speech

The loudspeaker may introduce an unwanted mismatch
between the original recordings and the output of the loud-
speaker, so we replayed the clean speech of Librispeech in
the anechoic chamber to provide the ground-truth clean speech
of Libri-adhoc40. The distance between the loudspeaker and
the recording device was 40 cm. The sound volume of the
loudspeaker was set the same as that in the office room.

III. METHODOLOGY

A. Recording equipment

The equipment for recording the data is listed in Table I.
‘JBL One Series 104’ was selected as the loudspeaker. In this
loudspeaker, a high-frequency driver aligned with a precisely
contoured woofer cone is used to deliver accurate response.
Because its treble and bass units are tightly arranged together,
this design makes the loudspeaker behave like a point source.

To reduce the difference of the distortion between devices
and eliminate device asynchronization, 40 ‘Superlux ECM
999’ microphones and two ‘RME Fireface UFX II’ sound
cards were pre-synchronized.

Specifically, each sound card was connected with 20 mi-
crophones separately, where 4 microphones were connected
to the sound card directly, and the other 16 microphones
were connected indirectly through 2 ‘Focusrite Scarlett Oc-
topre’ microphone preamplifiers, each of which connects 8
microphones. After a careful evaluation, we found that the
time delay caused by the preamplifiers could be neglected.
To reduce the difference in gains between the two sets of
channels, the gains of the sound cards and preamplifiers were
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(a) Training set (b) Development and test sets

Fig. 1: Recording environment and setting of Libri-adhoc40. The red dot indicates the origin of the reference axes. The
blue dots indicate the positions of the microphones, whose coordinates are listed in the upper-left corner. The positions and
orientations of the loudspeaker are marked by loudspeaker icons. The terms ‘pos’ is short for position. The term ‘mic’ is short
for microphone.

adjusted in advance. A ‘Zoom H1N’ handy recorder was
employed to record anechoic signals at a sampling rate of
48 kHz. The recordings were further downsampled to 16 kHz
manually.

B. Recording process

We played back Librispeech in a streaming fashion, where
the sentences from the same speaker were concatenated into a
sequence and played back continuously. A picture of the real
recording environment is shown in Figure 2.

C. Postprocessing

The two independent sound cards introduce a device asyn-
chronization problem into the two sets of the microphones. It
was mainly caused by (i) the asynchronization of the recording
start time and (ii) the random drop of the sample points. To
compensate the start time difference, we conducted a time
delay estimation by playing white noise before the recording,
which makes us possible in inferring the time delay difference.

Although the sample drop happened occasionally, the ac-
cumulation of the negative effect cannot be neglected if we
played a long sequence continuously. To compensate the
sample drop caused by the two independent sound cards, we
first carefully selected one microphone per sound card and
then calculated the time difference of arrival between the two
microphones for each position of the loudspeaker, before the
data recording. Finally, if the time delay difference of the

Fig. 2: A picture of the recording environment for replaying
the ‘dev-clean’ and ‘test-clean’ corpora. The loudspeaker was
placed at pos 2. The microphones 1 to 20 were connected
to one sound card, while the microphones 21 to 40 were
connected to the other sound card.

recorded data changed at some point-in-time, we compensated
the detected sample drop at the time.

At last, we partitioned the recorded continuous speech
according to the original segmentation lengths of the Lib-
rispeech utterances. Each partitioned segment was saved with
the same name of its corresponding Librispeech utterance in
a subdirectory that has the same name with Librispeech.

This strict synchronization setting makes the dataset gener-
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alizable for simulating device asynchronized situations by, e.g.,
performing bandpass filtering, waveform amplitude clipping,
and delay perturbation operations [18] to the data.

IV. EXPERIMENTS

In this section, we evaluate the validity of Libri-adhoc40
in an automatic speech recognition (ASR) task with ad-hoc
microphone arrays.

A. Datasets

To evaluate the performance of the ASR with ad-hoc
microphone arrays, we simulated a similar dataset with Libri-
adhoc40, named Libri-adhoc40-simu. Because all ASR sys-
tems in evaluation were tested on the test set of Libri-adhoc40,
Libri-adhoc40-simu consists of only a training set and a
development set, which were generated from the ‘train-clean-
100’ and ‘dev-clean’ corpora of Librispeech respectively. The
simulation environment is described as follows.

To roughly match the recording environments of Libri-
adhoc40, we simulated a room with a size of 10×10×4 m.
Forty simulated microphones for both training and develop-
ment were placed at the same locations as Libri-adhoc40. For
each utterance, a simulated loudspeaker for playing back the
utterance was placed randomly in the room with its position
located in the covering range of the ad-hoc microphone arrays
and at least 0.6 meter away from the microphones; the room
impulse response was generated by an image source model
[19], where the T60 was sampled from a Gaussian distribution
with a mean value of 0.7 second, a standard deviation of 0.1
second, a lower bound of 0.5 second, and an upper bound of
1.2 second.

We constructed three test scenarios. The first two scenarios
randomly select 10 and 25 channels respectively for each
test utterance. The third scenario uses all 40 channels for
evaluation.

B. ASR systems

We used a single-channel conformer based automatic speech
recognition (ASR) system [20] and a multichannel ASR based
on the Scaling Sparsemax stream attention [21] as the ASR
systems, which are described as follows:

Single-channel conformer (oracle one-best): We trained
the single-channel ASR with the clean speech of the original
Librispeech corpora directly. In the test stage, we picked the
channel that was physically closest to and also faced by the
loudspeaker as the input of the single channel ASR system.

Scaling Sparsemax stream attention based multichannel
ASR (Scaling Sparsemax): We first used the single-channel
ASR trained with the clean speech of Librispeech as the initial-
ization of the multichannel ASR. Then, we trained the stream
attention module of the multichannel ASR with 20 randomly
selected channels per utterance. If the training utterances were
from Libri-adhoc40-simu, the training condition is denoted as
simu train. If the training utterances were from Libri-adhoc40,
the training condition is denoted as real train.

We conducted the evaluation on the test data of Libri-
adhoc40 in terms of word error rate (WER).
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(a) Loudspeaker placed at pos 1
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(b) Loudspeaker placed at pos 3

Fig. 3: Visualization of the WER (%) results of the single-
channel conformer-based ASR system on the test data of Libri-
adhoc40.

C. Results

Figure 3 shows the average WER results of the single-
channel conformer-based ASR system on each channel of the
test set at two positions. From the figure, we see that (i) the
average WER at the closest channel is 9% in Figure 3(a)
and 29% in Figure 3(b); (ii) the WERs of the channels that
the loudspeaker faces to in Figure 3(a) is significantly lower
than those in Figure 3(b). The phenomena indicate that the
performance was not only affected by the distance between
the speaker and the microphone, but also affected by the
orientation of the speaker.

Table II lists the comparison results when the ad-hoc mi-
crophone array contains 10, 25, and 40 channels respectively.
From the table, we can see that the models, no matter trained
on simulated data or semi-real data, can be used on the semi-
real test data of the proposed Libri-adhoc40. The systems in
the real train condition perform better than those in the simu
train condition. When there is no microphone in the orientation
of the loudspeaker, such as ‘pos2’ and ‘pos3’, all methods
behave poorly.

Besides the general phenomena, the results can also reflect
the trend and difference of the models with different ad-
hoc microphone arrays. Specifically, (i) as the number of
channels increases, the performance of the ASR systems is
gradually improved. For example, the WER of the Scaling
Sparsemax in the real train condition is reduced by 46.6%
relatively when the channel number is increased from 10
to 40, which demonstrates the importance of increasing the
number of the channels. (ii) When the channel number is
40, the Scaling Sparsemax achieves a relative WER reduction
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TABLE II: Comparison results (in WER (%)) on the test set
of Libri-adhoc40. The term ‘Pos#’ means that the test data is
a subset of Libri-adhoc40 test data where the loudspeaker was
placed at pos # described in Figure 1(b).

Method Training
condition Pos1 Pos2 Pos3 Pos4 AVG

10 channels
Oracle Librispeech 32.5 46.2 43.6 39.4 40.4
Scaling

Sparsemax
simu train 28.6 43.5 36.3 35.8 36.1
real train 25.7 38.5 33 31.7 32.2

25 channels
Oracle Librispeech 12.4 33 32.4 16.9 23.6
Scaling

Sparsemax
simu train 12.5 32.9 27.4 17.4 22.5
real train 12.3 27.9 24.4 16.5 20.3

40 channels
Oracle Librispeech 9.1 31.7 32.2 12.6 21.4
Scaling

Sparsemax
simu train 8.7 29.1 24.9 12.9 18.9
real train 9.4 25.3 21.8 12.3 17.2

of 19.6% lower than the oracle one-best in the real train
condition, which demonstrates the importance of channel se-
lection. (iii) Although the orientation of the loudspeaker affects
the performance significantly, Scaling Sparsemax reduces the
negative effect. For example, when the channel number is 40,
the average WER of the oracle one-best at ‘pos2’ and ‘pos3’ is
increased by about 66% over that at ‘pos1’ and ‘pos4’, while
the relative WER increase of Scaling Sparsemax in the real
train condition is only 54%, which demonstrates the merit of
ad-hoc microphone arrays.

To summarize, the above phenomena demonstrate the effec-
tiveness of Libri-adhoc40 as an evaluation benchmark.

V. CONCLUSIONS AND DISCUSSION

This paper presents a semi-real dataset recorded by syn-
chronized ad-hoc microphone arrays, named Libri-adhoc40.
Its validity has been evaluated in the speech recognition task.
It facilitates the study and development of speech processing
algorithms based on ad-hoc microphone arrays.

The dataset can be used as a benchmark corpus of many
speech processing tasks beyond speech recognition, including
speech enhancement, dereverberation, given that the anechoic
recordings are provided in Libri-adhoc40. It can also be
used for speech separation by mixing the speech signals at
different positions of the loudspeakers, since the loudspeakers
at different positions replay different speakers. As for speaker
recognition, we may take the entire set of 331 speakers
for evaluation. As for the research on the synchronization
techniques of devices, we may also construct asychronized test
environments by adding various interruptions to the channels.
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