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Abstract
Recently, Bayesian probabilistic model based clustering gets
superior performance in speaker diarization, however, it is much
more complicated than widely used efficient clustering algo-
rithms, which is not convenient for some real-life scenarios.
In this paper, we propose a covariance-asymptotic variant to
Dirichlet process mixture models (DPMM), named Dirichlet
process means (DP-means) clustering for speaker diarization.
Similar to Bayesian nonparametric models (e.g. DPMM), DP-
means can constantly generate new clusters during clustering,
which is suitable to the speaker diarization problem where the
number of speakers is determined on-the-fly. Different from
Bayesian nonparametric models, DP-means is a hard clustering
that does not need to optimize the variance of mixtures, which
is efficient for real-world problems. We further exploited an ini-
tialization method to obtain the prior cluster centroids for DP-
means. Experimental results on the CALLHOME, AMI and
DIHARD III corpora show that the proposed method is more ef-
ficient than the state-of-the-art speaker clustering methods with
slight performance degradation.

1. Introduction

Speaker diarization is a task of labeling the identities of speak-
ers in conversations with time stamps. It aims to solve the prob-
lem of “who spoke when” [1, 2]. It is a key front-end of multi-
speaker speech recognition, and finds its applications in many
real-life scenarios such as meetings. Generally, it has two re-
search directions. One is the stage-wise approach, and the other
is the end-to-end approach [3, 4, 5, 6]. Stage-wise speaker di-
arization usually consists of four steps. Given a speech record-
ing, it first removes silence segments from the raw recording by
voice activity detection (VAD). Then, it partitions the speech
recording into segments that are short enough to ensure that
only a single speaker exists in most segments. Next, the seg-
ments are fed into a feature extractor to obtain speaker embed-
dings, such as the i-vectors [7, 8], d-vectors [9], or x-vectors
[10, 11]. Finally, the sequential embeddings are fed into a clus-
tering algorithm to obtain the final diarization results. An op-
tional resegmentation process is sometimes applied to refine the
result. On the other side, end-to-end diarization obtains the di-
arization result by a single neural network.

This paper focuses on the clustering algorithm of the stage-wise
diarization. Many traditional clustering methods have been
widely utilized, such as AHC and spectral clustering. AHC is
a bottom-up clustering method [7, 12]. First, each segment is
assigned into a single cluster. Then, the two closest clusters are
merged into a new cluster repeatedly. Spectral clustering (SC)
[13] first calculates the pairwise similarity between segments,
which generates an affinity matrix. Then, the affinity matrix is

decomposed into low dimensional features by Laplacian eigen-
value decomposition for the speaker clustering.

Recently, many advanced clustering and feature extracting al-
gorithms have been applied as well. In [14], Li et al. proposed
compositional embeddings to represent two speakers or more
in a single embedding. In [15], a novel deep model is applied
to reduce the noise and small variance of speaker embeddings.
In [16, 17, 18], they used neural networks to learn deep sim-
ilarity matrices between speaker embeddings. When applying
the new representation or similarity matrices to clustering, the
diarization performance is boosted. Besides, in [19], the au-
thors proposed a Bayesian hidden Markov model (HMM) based
clustering method called VBx. It assumes that the input se-
quence of embeddings is generated by a speaker-specific state
distributions, and uses an ergodic HMM with one-to-one cor-
respondence between the HMM states and speakers to extract
a context-dependent representation of speaker embeddings. To
our knowledge, VBx reaches the state-of-the-art performance.
A main problem of the above algorithms is that their computa-
tional complexities are high.

To reduce the time complexity of speaker clustering with guar-
anteed performance, in this paper, we propose to apply a
simplified Dirichlet process mixture models (DPMM), named
Dirichlet process means (DP-means) [20], to speaker clustering.
DPMM is a Bayesian nonparametric model, which determines
the number of mixtures on-the-fly. It is suitable to speaker clus-
tering, however, its main computation is on the variance estima-
tion of the mixtures. To reduce its time complexity, we assume
that the variance of each cluster approaches to zero. With this
variance asymptotic assumption, we obtain a hard clustering al-
gorithm called DP-means [19]. Because DP-means is sensitive
to the initial centroids, we exploit an initial clustering method
to provide the DP-means robust initial centroids. Experimental
results on CALLHOME [21], AMI [22] and DIHARD III [23]
demonstrate that the DP-means yields lower diarization error
rate (DER) than AHC and spectral clustering baselines, and is
more efficient than the state-of-the-art VBx system with slight
performance drop.

The rest of the paper is organized as follows. Section 2 intro-
duces DPMM and our proposed method. Experimental results
are presented in Section 3. Finally, Section 4 draws a conclu-
sion.

2. Proposed Method

The architecture of the proposed method is shown in Fig. 1. Af-
ter the feature extraction by e.g. x-vector, we conduct an initial
clustering. Then, we add a clusters filtering module between
the initial clustering and DP-means, which filters out very small
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Figure 1: Architecture of the DP-means based speaker diariza-
tion system.

clusters. Finally, we use the centroids of the obtained clusters
to initialize DP-means for the final clustering.

In this section, we first introduce DPMM, then present how to
simplify DPMM to DP-means, and finally present the initializa-
tion method for DP-means.

2.1. Dirichlet process mixture models

Before DPMM, we first introduce Gaussian mixture models
(GMM). We suppose that x is a x-vector, which arises from
the distribution:

p(x) =
k∑

c=1

πcN (x|µc,Σc) (1)

where πc, µc and Σc are the mixing coefficient, mean and co-
variance corresponding to the cth component, and k is the num-
ber of the components of GMM.

Then, we place a Dirichlet prior on the mixing coefficients and
assume that the covariances in (1) are fixed to σI , where σ is a
constant and I is an identity matrix. Moreover, we assume that
the means are drawn from the prior distribution. Then, we can
build a Bayesian model as follows:

µj ∼ G0, ∀j = 1, ..., k (2)

π ∼ Dir(k,π0) (3)
zi ∼ Discrete(π), ∀i = 1, ..., n (4)
xi ∼ N (µzi , σI), ∀i = 1, ..., n (5)

where G0 is a prior distribution of the means of speaker clus-
ters, π = {π1, ..., πk} is the mixing coefficients, n denotes the
number of embeddings of the voice segments, zi indicates that
xi belongs to the zith component, Dir(k,π0) denotes a Dirich-
let distribution, and Discrete(π) is a discrete distribution. In
(5), all µzi are draw from µj .

Next, we assume that k tends to∞, and π0 = (α/k)e where
e is an all-one vector. Based on Gibbs sampling utilized in
[24], we conduct the inference for [20] which results in the final
DPMM as follows[19]:

G ∼ DP(α,G0) (6)
φi ∼ G, ∀i = 1, ..., n (7)
xi ∼ N (φi, σI), ∀i = 1, ..., n (8)

where N (φi, σI) is a Gaussian distribution, DP(α,G0) is a
Dirichlet process, whose base measure and parameter are G0

and α respectively, and G is a draw from the Dirichlet process.
We can think of a draw from G as choosing one of the infinite
means µc drawn from G0, with the property that the means
are chosen with probability equal to the corresponding mixing
weights. As a result, each φi is equal to µc for some c.

2.2. DP-means

We assume that the prior distribution G0 of the means of
DPMM is a zero-mean Gaussian distribution with ρI as the co-
variance, where ρ is a constant. Then, a parameter λ is applied
for expressing α as (1 + ρ/σ)1/2 · exp(− λ

2σ
). Now we can de-

rive the probability of the assignment of an x-vector to a speaker
as follows:

γ̂(zic)=
n−i,c · exp(− 1

2σ
‖xi−µc‖2)

exp(− λ
2σ
− ‖xi‖2

2(ρ+σ)
)+

∑k
j=1 n−i,j · exp(− 1

2σ
‖xi−µj‖2)

(9)

γ̂(zi,new)=
exp(− λ

2σ
− ‖xi‖2

2(ρ+σ)
)

exp(− λ
2σ
− ‖xi‖2

2(ρ+σ)
)+

∑k
j=1 n−i,j · exp(− 1

2σ
‖xi−µj‖2)

(10)
where γ̂(zic) and γ̂(zi,new) are the posterior probabilities of

assigning the x-vector to the cth speaker and a new speaker re-
spectively. n−i,c and n−i,j denote the number of the x-vectors
classified previously into the c and j-th components respec-
tively.

We see obviously that the above equations are computationally
heavy. In order to simplify this model, the core idea of DP-
means is to conduct the variance asymptotic approximation, i.e.
σ → 0, to DPMM. Specifically, an asymptotic approximation
is used to the numerator of γ̂(zi,new) which reformulates the
numerator of (10) to:

exp(− 1

2σ
[λ+

σ

ρ+ σ
‖xi‖2]). (11)

Next, let σ tend to 0, we see that λ dominates (11). As
a result, γ̂(zic) and γ̂(zi,new) are only related to the small-
est value of {‖xi −µ1‖2, ..., ‖xi −µ1‖2, λ}. In this vari-
ance asymptotic approximation, only the smallest γ̂ among
{γ̂(zi1), ..., γ̂(zik), γ̂(zi,new))} gets the binary non-zero value.
Then, we turn to the posterior means and covariances of the
model:

µ̃c = (1 +
σ

ρnc
)−1x̄c (12)

Σ̃c =
σρ

σ + ρnc
I (13)

where x̄c and nc are the mean and the number of the x-vectors
assigned to the cth speaker. When σ → 0, µ̃c and Σ̃c tend
to x̄c and 0 respectively. To this end, we obtain the DP-means
algorithm, which is a k-means like algorithm with the parameter
k determined on-the-fly. Fig. 2 demonstrates the difference
between DPMM and DP-means. We see that DP-means is much
simpler than DPMM.

DP-means is optimized by the expectation maximization algo-
rithm. First, it initializes a point as the centroid of the initial
cluster. Then, in the E-step, we assign each point to the near-
est cluster by calculating the cosine similarity between the point
and the centroid of each cluster. If the smallest distance is larger
than λ, we create a new cluster. In the M-step, we update the
means of each cluster according to the assignment in the E-step.
Here, we have to note that when cosine similarity is used to as-
sign x-vectors into clusters, the larger the similarity value is, the
closer the two nearest neighbors are. We repeat this algorithm
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Figure 2: Comparison between DPMM and DP-means.

Algorithm 1 DP-means with the ICCF initialization.
Input: x1, ...,xn: input data, λ: DP-means parameter, p: clus-
ters filtering threshold
Output: Clustering result `1, ..., `n
1: Conduct initial clustering: Y = y1, ..., ym.
2: Remove the clusters with less than p x-vectors: Yinit =
y(init,1), ..., y(init,l).

3: Calculate the means of Yinit: µ1, ...,µl.
4: Initialize k = l, zi = 1, ∀i = 1, ..., n.
5: Repeat until objective function (14) converges

• For each x-vector xi.
- Compute simic= cos(xi,µc), for c=1, ..., k.
- If maxcsimic<λ, set k=k+1, zi=k, and µk=xi.
- Otherwise, set zi = argmaxcsimic.
• Generate clusters `1, ..., `n, where `j = {xi|zi = j}.
• For each cluster `j , compute µc = 1

|`c|
∑

x∈`c x.

until the objective function (14) converges:

k∑

c=1

∑

x∈`c
‖x− µc‖2. (14)

2.3. Initial clustering with cluster filtering for DP-means

DP-means suffers from bad local minimum easily. To overcome
this problem, here we propose an initial clustering with cluster
filtering (ICCF) method to initialize the cluster centroids of DP-
means.

ICCF first generates initial cluster centroids by conventional
clustering methods, which behaves like a reliable prior for DP-
means. Candidate initial clustering algorithms include AHC
and spectral clustering (SC). However, when the number of the
initial clusters are too fragile, the final number of speaker clus-
ters may be uncontrolled to be meaninglessly redundant, given
that DP-means may generates infinite number of new clusters
at the extreme case. To address this problem, a cluster filtering
is utilized after the initial clustering, which simply discards the
initial clusters that have few number of speaker embeddings.
The DP-means algorithm with the ICCF initialization strategy
is summarized in Algorithm 1.

3. Experiments

3.1. Experimental setup

We used CALLHOME [21], AMI [22] and DIHARD III [23]
as our evaluation datasets. CALLHOME consists of single
channel telephone recordings, each of which contains 2 to 7
speakers. The corpus are recorded in Arabic, English, German,
Japanese, Mandarin and Spanish. It consists of 500 recordings.
The average time of the recordings is about two minutes. Be-
cause of the formatting errors of references in a recording, we
used 499 recordings in our experiments.

AMI corpus is about 100 hours long. It consists of 171 meet-
ing recordings, each of which contains 4 to 5 speakers and lasts
about thirty minutes. We merged the development and evalua-
tion sets as our test set, which occupies about 10% data of the
full corpus. Furthermore, AMI was recorded using both headset
and far-field microphones array. In our experiments, we tested
the recordings from both headset and a random channel from
far-field microphones array.

DIHARD III is the third challenge in a series of speaker di-
arization challenges focusing on “hard” diarization[23]. The
data sets consist of 5-10 minute duration samples drawn from
11 domains such as audio books, broadcast interview and clin-
ical conversations. The development set of DIAHRD III was
used for evaluation.

We followed the experimental setting in [19] to extract the
speaker embeddings. Specifically, we used the oracle VAD to
remove silence segments, and extracted 64 log Mel filter bank
acoustic features with a frame length of 25ms and frame shift of
10ms. Then, the acoustic features are fed into a ResNet101 [25]
backbone neural network to extract 256-dimensional x-vectors.
The backbone network contains a 2D convolutional layer, stan-
dard ResNet blocks, a statistical pooling layer and a linear trans-
formation. We further used linear discriminant analysis to re-
duce the dimension of the x-vector to 128.

For the proposed method, AHC and SC are used as the initial
clustering tools for DP-means. The similarity measurement be-
tween the x-vectors for all clustering algorithms are the cosine
similarity. When AHC is used as the initial clustering of our
method, its parameter is the same as that for the AHC baseline.
The hyperparameter λ was set to 0.275 for CALLHOME, 0.15
for AMI headset, 0.05 for AMI far field, and 0.09 for DIHARD
III respectively. The threshold of the cluster filtering was set to
16, 190 and 70 for CALLHOME , AMI corpus and DIHARD III
respectively. The hyperparameters were tuned on the validation
sets of the corpora, just like VBx does.

We compared with AHC, SC, and VBx [19]. DER is used as the
evaluation metric. Similar to previous works on CALLHOME
and AMI, a 0.25 second collar was considered for the DER es-
timation, and no overlap was evaluated. For DIHARD III, in
order to follow the evaluation protocol of DIHARD [23], over-
lap was under consideration, and no forgiveness collar was ap-
plied. The time efficiency was evaluated on a Intel(R) Xeon(R)
Platinum 8160 CPU server.

3.2. Main result

Table 1 lists the comparison results on CALLHOME, AMI and
DIHARD III. From the table, we see that, our method yields
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Table 1: DER (%) and computational time (in seconds) com-
parison on the CALLHOME, AMI and DIHARD III corpus.

Data Method DER Time

CALL
HOME

AHC
SC

VBx
ICCF (AHC)+DP-means
ICCF (SC)+DP-means

8.46
14.26
4.42
5.79
10.76

450
186
6041
1625
989

AMI
Headset

AHC
SC

VBx
ICCF (AHC)+DP-means
ICCF (SC)+DP-means

5.73
6.73
1.93
4.17
5.48

11469
2620

10998
7961
8261

AMI
Far field

AHC
SC

VBx
ICCF(AHC)+DP-means
ICCF (SC)+DP-means

12.39
11.15
7.97
10.50
9.35

11271
2781

11650
8295
6886

DIHARD III
DEV

AHC
SC

VBx
ICCF(AHC)+DP-means
ICCF (SC)+DP-means

21.70
24.55
16.88
18.85
22.69

2027
697

11465
1383
3218

Table 2: DER (%) of DP-means with different initialization
methods on CALLHOME.

Global mean RS30 RS50 IC (AHC) ICCF (AHC)

23.41 10.70 10.42 7.13 5.79

lower DER than AHC and SC. Although the proposed methods
behaves not as good as VBx in terms of DER, they are much
more efficient than VBx, with a 73%, 28%, 41% and 88% time
relative reduction over the VBx system on CALLHOME, AMI
headset, AMI far field and DIHARD III development corpora
respectively. Besides, we sampled a recording to obtain visual-
ized results of different clustering systems in Fig. 3.

3.3. Effect of the initialization of DP-means

To study the effect of different initialization methods of DP-
means on performance, we compare ICCF with the following
three candidate initialization methods. The first one, named
global means, initialize DP-means with a single cluster centroid
which is the mean of all speaker embeddings. The second one,
named random selection (RS), selects N embeddings from the
embedding sequence as the initial centroids for DP-means. In
this experiment, we set N to 30 and 50 respectively, which re-
sults in two initializations, denoted as RS30 and RS50 respec-
tively. To pick the best initial centroids, we ran DP-means mul-
tiple times, and picks the initial centroid set that results in the
minimum objective value. The third one, named initial cluster-
ing without cluster filtering (IC), feeds all centroids from the
initial clustering into DP-means without the cluster filtering.

The evaluation results on CALLHOME are shown in Table 2.

Figure 3: A comparison example of the diarization result pro-
duced from different speaker clustering methods. Different col-
ors represent different speakers

It can be seen that DP-means without ICCF will easily trap into
a local optima. A random initialization reduce the DER of DP-
means over the global mean initialization. Moreover, a reliable
prior from IC could further improve the performance of DP-
means. However, it is still much less effective than the proposed
ICCF.

3.4. Effect of hyperparameters of DP-means

The proposed method has two tunable parameters. One is the
hyperparameter λ in DP-means; the other is the threshold of
clustering filtering p. We tune one of the hyperparameters leav-
ing the other one fixed.

Specifically, for CALLHOME, we set p to 0 and choose λ from
0.2 to 0.32; then, we set λ to 0.275 and choose p ranging from
5 to 17. Similarly, for AMI, we set p to 130, and choose λ from
a range of [0.05, 0.18]; then, we select p from [130, 200] with
λ set to 0.05. For DIHARD, we set p to 10 and choose λ from
0.08 to 0.26; then, we set λ to 0.09 and choose p ranging from
10 to 80. The result is shown in Fig. 4.
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Figure 4: Effect of the hyperparameters of DP-means. (a) and (d) are the results on CALLHOME. (b) and (e) are the results on the
AMI far field corpus. (c) and (f) are the results on DIAHRD III.

From Figs. 4(a), 4(b) and 4(c), we can see that DER varies from
7.15 to 7.31 on CALLHOME, from 11.08 to 12.47 on AMI, and
from 20.11 to 21.85 on DIAHRD III respectively with respect
to λ. Figs. 4(d), 4(e) and 4(f) show that DER ranges from 5.79
to 6.72 on CALLHOME, from 10.5 to 11.03 on AMI, and from
18.94 to 20.03 on DIAHRD III respectively with respect to p.
The results demonstrate that the proposed method is insensi-
tive to the hyperparameters. Thus, just with a coarse tuning we
could also obtain a good performance.

4. Conclusions

In this paper, we proposed a hard clustering algorithm named
DP-means for speaker diarization, which could generate new
clusters during clustering. DP-means is a simplified Dirich-
let process mixture models whose variances asymptotically ap-
proach to zero. Because DP-means is relatively sensitive to the
initialization, we exploited the ICCF initialization method to
provide DP-means robust initial centroids. Comparing with the
AHC baseline using AHC initialization, our method achieved
31.6% , 27.2% and 13.1% relative DER reduction on the CALL-
HOME, AMI and DIHARD III corpora respectively. Moreover,
our method could improve the performance and efficiency si-
multaneously over different initial clustering methods.
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