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ABSTRACT

We propose a theoretical analysis of quantum projection learn-
ing (QPL) that employs multiple kernels, highlighting its ad-
vantages through representation error analysis. Building upon
previous studies that utilized a single quantum kernel-based
method, we further investigate a quantum projection framework
that incorporates multiple Gaussian kernels for low-resource
spoken command recognition. Our empirical results align with
our theoretical insights, suggesting that methods based on mul-
tiple kernels can further enhance the performance of QPL. By
leveraging the quantum-to-classical projected output embed-
dings, we integrate this with a prototypical network for acoustic
modeling. When evaluated using Arabic, Chuvash, Irish, and
Lithuanian low-resource speech from CommonVoice, our pro-
posed method surpasses the recurrent neural network and single
kernel-based classifier baselines by an average of +5.28%.

Index Terms— quantum kernel projection, multiple kernel
learning, low-resource speech classification

1. INTRODUCTION

Quantum machine learning (QML) [1–3] is a subfield of ma-
chine learning that harnesses the principles and capabilities of
quantum computing to perform certain types of computations
more efficiently than classical computers [4–6]. QML sits at
the intersection of quantum computing and machine learn-
ing, and it aims to leverage quantum computing’s advantages
to solve machine learning problems more efficiently, such as
quantum speech signal processing [7, 8] and quantum natural
language processing [9]. Moreover, the development of quan-
tum algorithms like quantum convolutional neural network [10]
and quantum reinforcement learning [11,12] holds promise for
improving the performance of classical deep learning mod-
els. Qi et al. [7, 13] and Chen et al. [8] attempt to exploit
hybrid quantum-classical neural networks, such as quantum
convolutional neural network (QCNN) [10], for spoken com-
mand recognition and achieve competitive experimental results
compared to classical machine learning counterparts. To fur-
ther develop the use of QML algorithms for spoken command
recognition, this work focuses on a new quantum projection
learning (QPL) method with multiple Gaussian kernels.

∗Xiao-Lei Zhang is the corresponding author.
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Fig. 1: Computing diagram of quantum kernel learning.
Quantum kernel projection occurs on near-term quantum pro-
cessing units (QPU) or simulators (e.g., CPU or TPU).

Quantum kernel learning (QKL) [14] is an exciting area of
research within QML. It focuses on leveraging quantum com-
puting to enhance the efficiency and capabilities of kernel meth-
ods, which are fundamental in classical machine learning. By
harnessing the unique properties of quantum computing, such
as quantum parallelism and quantum entanglement, researchers
aim to develop quantum kernels that can potentially outperform
their classical counterparts in various machine learning tasks.
For the spoken command recognition task, Chen et al. [15] ini-
tially investigates the deployment of QKL for spoken command
recognition, where even better empirical performance has been
attained than classical machine learning approaches.

In this work, we exploit a quantum multiple kernel learning
(QMKL) and employ it for the application of spoken command
recognition. QMKL is an extension of QKL to deal with the
combination of multiple kernel functions in quantum comput-
ing for machine learning tasks. QMKL takes advantage of
quantum computing’s capabilities to efficiently compute com-
binations of multiple kernels, which can be challenging and
computationally expensive in classical settings. By harness-
ing quantum algorithms and quantum data representations1,
QMKL aims to enhance the effectiveness of combining these

1A tutorial and guidelines for QKL can be found in https://www.
tensorflow. org/quantum/tutorials/quantum_data
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kernels to improve machine learning models. Additionally, the
basic idea behind QMKL is to represent multiple kernels using
quantum states and perform quantum operations to combine
them effectively. This can lead to more expressive and powerful
feature representations on machine learning tasks, potentially
resulting in better predictive performance. Inspired by the
quantum advantages of QMKL, in this work, we focus on
using the QMKL approach for spoken command recognition.

2. QUANTUM KERNEL LEARNING

Quantum kernel learning (QKL) refers to a quantum version
of kernel methods. A kernel method transforms each input to
another vector in a high-dimensional vector space, which is
known as the reproducing kernel Hilbert space (RKHS). The
kernel method tries to learn a linear function in RKHS. Since
the dimension of RKHS could be infinite, it enables the kernel
method to own a powerful representation capability. Further-
more, a kernel trick is employed to allow for an efficient com-
putation of the inner product between these high-dimensional
vectors. Quantum kernel learning considers using the compu-
tation of kernel functions built upon quantum computers.

More specifically, given a quantum circuit map Φ and a
training dataset S = {(x1, y1), (x2, y2), ..., (xN , yN )}, for two
feature data xi and xj , a quantum kernel function k owns the
form as:

k(xi, xj) := |⟨Φ(xi)|Φ(xj)⟩|. (1)

Through the representer theorem [16], we can express the clas-
sified function f as:

f(x) =
N∑

n=1

βnk(xn, x), (2)

where βi ∈ R is an element of the N -dimensional vector β that
requires to be estimated using an additional classical supervised
learning method like support vector machine. The quantum ker-
nel function k can be constructed by using a randomized quan-
tum circuit as shown in Figure 1.

3. QUANTUM MULTIPLE KERNEL LEARNING

3.1. Quantum Multiple Kernel Learning Methodology

In recent years, multiple kernel learning (MKL) has been used
to boost the expressive power of kernel machines. The idea
of MKL is to use a combination of kernel functions instead
of a single kernel function for learning. Similarly, QMKL ap-
plies multiple quantum kernel functions to construct the ker-
nels, which is a linear combination of M different quantum
kernels km. The mathematical form of quantum multiple ker-
nel function k̂ can be expressed as:

k̂(xi, xj) =

M∑
m=1

km(xi, xj ; θm), (3)

where θm parameterizes each quantum kernel function.

Furthermore, the quantum multiple kernel function k̂ can
be generated by using the QKL architecture as shown in Fig-
ure 1 for k times. Then, the updated classified function f is

f(x) =
N∑

n=1

βnk̂(xn, x). (4)

3.2. Theoretical Understanding of QMKL

Given the number of qubits Q and a prediction target function
h(x), we show that QMKL demonstrates a theoretical advan-
tage by providing an upper bound as:

Ex∼D|h(x)− f(x)| ≤ O
(

2Q√
NM

)
, (5)

where for a given arbitrary error ϵ, the amount of training data
N ∝ 22Q

ϵ2
. Compared to the approximation upper bound in [3],

we attain a lower upper bound as Eq. (5) which is inversely
proportional to the number of quantum kernels M .

3.3. QMKL for Spoken Command Recognition

Our theoretical results as Eq. (5) suggest that the enhancement
of expressive power for a QKL is to employ multiple quan-
tum kernels. Particularly, the estimation of quantum kernels in
QMKL is not explicitly shown in the training process, while al-
lowing for the quantum kernels to be fine-tuned in each training
stage to attain better representation capability.

To associate with the the task of spoken command recog-
nition, we use an angle encoding method to transform classical
spoken data into quantum state features which have been
discussed in [3, 15]. More specifically, we leverage the tech-
nique of quantum multiple kernels to map acoustic features
like MFCC into latent feature embeddings by using quantum
measurement projections. Furthermore, the generated feature
embeddings are fed into a prototype network supervised by a
kernel metric loss function. The optimization of QMKL param-
eters is related to the enhancement of the feature representation
by maximizing the inter-class distances and also minimizing
the inter-class similarities in the latent feature space, which
facilities the subsequent kernel SVM for classification. In
particular, we utilize three different Gaussian kernels, each
of which is responsible for mapping the input features into
high-dimensional space.

4. EXPERIMENTS AND RESULT ANALYSIS

4.1. Dataset

Our experiments of spoken command recognition are built upon
the open Google Command Dataset [17]. The dataset con-
sists of totally 11, 165 training examples and 6, 500 test data,
respectively, which cover ten command classes like ’down’,
’up’, and etc. Moreover, white background noises are added to
the original speech samples to simulate real scenarios. In par-
ticular, four low-resource language subsets, including Lithua-
nian [18], Arabic [19], and two other two languages from [20],
are considered in the dataset to compare the performance of our
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methods on the low-resource tasks for spoken command recog-
nition.

4.2. Experimental Setups

We first employ the tools Librosa [21] and Keras [22] to trans-
form the original audios into MFCC features based on 60 bands
and 1024-point FFT computation. Besides, we conduct our
experiments on a classical GPU to simulate the empirical re-
sults of quantum machine learning models, which accounts for
the fact that lower accuracies for the quantum baseline models
could be probably attained in our experiments.

Our baseline models comprise recurrent neural network
(RNN) with attention mechanism [23], QCNN combined with
RNN (QCNN-RNN) [8], and the QKL approach [15]. To
build up our QMKL architecture, we utilize the combinato-
rial quantum kernel projection in the stage of quantum data
encoding, which maps the extracted MFCC features into high-
dimensional quantum states in the Hilbert space. Furthermore,
the metric learning method is applied to capture the encoded
features from the post-quantum kernel projection. Further-
more, by taking the quantum states as discriminative features,
we could take advantage of the classical SVM for multi-class
classification of spoken command recognition, where a pro-
totype loss function [24] is used to maximize an inter-class
distance of the latent feature space.

Besides, Eq. (5) provides a mathematical analysis on ap-
proximating quantum multiple kernels using different combi-
nations of kernel multiplications. However, the selection of
kernel parameters in the composite kernel is still a challeng-
ing problem. In our experiments, we employed a non-universal
quantum computing model known as Deterministic Quantum
Computation with One Quantum Bit (DQC1) [25] to estimate
the trace of the unitary operator, i.e., the composite kernel func-
tion, without the need for an explicit computation of each ker-
nel. This approach also allows for the adjustment of composite
kernel parameters to achieve the enhancement of expressive-
ness [26].

To obtain the optimal parameter set for the model, we al-
located 80% of the data samples for training and 20% for test-
ing. To mitigate the complexity of parameter optimization in
QMKL, we utilized 50% of the training datasets. By employ-
ing various random seeds, the dataset is divided into 20 train-
ing and testing set instances. These twenty different splits were
used for hyperparameter tuning. Subsequently, we computed
the average and standard deviation of classification accuracy
over 100 iterations of training and testing to acquire the set.

4.3. Experimental Results

4.3.1. English Spoken Command Recognition

Table 1 shows the empirical results of the proposed QMKL and
the different classification baseline systems. Inspired by the
classification models as discussed in 4.2, we employed cross-
validation to mitigate the impact of data insufficiency, aiming
to train models and attain a more competitively robust average
accuracy.

As shown in Table 1, in comparison of the average classifi-
cation accuracy on English speech commands across different

training set sizes, our proposed QMKL exhibits higher accu-
racy than the results in the work [15], where a Gaussian-QKL
is built with a single kernel. Moreover, our proposed QMKL
consistently attains the best empirical performance, achieving
the highest accuracy increase of 9.8% on 1k dataset.

Besides, as the amount of training data is progressively
decremented to below 1k, the experimental performance of
QMKL witnesses a significant performance improvement. The
baseline results of QMKL not only outperform QKL, but it
also attains better performance than the deep learning methods
based on RNNs and the hybrid quantum-classical algorithm
QCNN-RNN in terms of average accuracy.

Furthermore, in the presence of limited training data, com-
pared to the existing models such as RNNs, hybrid quantum
RNN models, and QKL models, our proposed QMKL achieves
more stable and superior validation accuracy.

Table 1: Experimental results of spoken command recognition
in the context of different sizes of training data.

Number of training Utterances 500 1k 5k 11k

RNN [23] 38.6 57.5 84.9 95.1
QCNN-RNN [8] 42.2 63.8 79.6 93.2
Gaussian-QKL (reproduced) 45.4 67.6 82.8 93.4
QMKL (proposed) 51.6 77.4 85.6 94.0

Table 2: Experimental results of spoken command recognition
on the tasks of four low-resource languages: Arabic, Chuvash,
Irish, and Lithuanian.

Language Utterances Classes Model Accuracy(%)

Arabic (ar) 1600 16 RNN 66.5
QCNN-RNN 67.1

QKL [15] 69.1
QMKL (proposed) 70.5

Chuvash (cv) 706 10 RNN [23] 17.6
QCNN-RNN [8] 27.4

QKL [15] 40.6
QMKL (proposed) 51.3

Irish (ir) 1200 10 RNN [23] 43.3
QCNN-RNN [8] 45.8

QKL [15] 58.9
QMKL (proposed) 60.4

lithuanian (it) 489 15 RNN [23] 45.1
QCNN-RNN [8] 44.4

QKL [15] 57.7
QMKL (proposed) 65.2

4.3.2. An Visualization of the Classification Based on Multi-
kernel and Single-kernel

Figure ?? illustrates the visualized impact of QKL and QMKL
on the classification performance of the spoken command
recognition. We utilized the Arabic dataset containing 1600 ut-
terances distributed across 16 distinct classes. Initially, acousti-
cal features undergo processing through quantum single-kernel
and multi-kernel methods, resulting in latent feature embed-
dings based on the output measurement projections. These
features are subsequently taken as inputs into a prototype net-
work, with the prototype loss function as the optimization

3

12933

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on April 28,2024 at 02:21:14 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 2: A visualization of the classification performance of QKL and QMKL for spoken command recognition.. a A single
quantum kernel is used; b Two quantum kernels are employ. The QMKL exhibits more discriminative capabilities among the
classes. T-SNE is abbreviated as t-distributed Stochastic Neighbor Embedding, which is an unsupervised, non-linear technique
primarily used for visualizing high-dimensional data.

objective during the training of kernel SVM. At this stage, we
gather the features following the fully connected layer and em-
ploy T-SNE for visualizing the feature data in high-dimensional
space. This process enables us to observe the low-dimensional
manifolds even within the high-dimensional space.

From Figure 1, it is discernible that the latent feature em-
beddings collected after multi-kernel quantum processing ex-
hibit a more compact representation on the low-dimensional
plane compared to those derived from quantum single-kernel
processing. The boundaries between different classes become
more distinct, thereby substantially reducing category overlap,
which suggests a diminished clustering tendency among data
categories. Furthermore, we can interpret this as an indication
that the Cluster Distances of feature points, post-multi-kernel
processing, can be obviously reduced, which corresponds to an
improved feature representation. Consequently, this can facili-
tate subsequent classification tasks in learning meaningful fea-
tures with higher average classification accuracy.

4.3.3. Low-resource Spoken Command Recognition

Table 2 presents the classification average accuracies for the
four low-resource languages. As shown in Table 2, it is evi-
dent that the classification task for the low-resource language
’cv’ presents the most formidable challenge, with all models
exhibiting notably low accuracy. Following this, the classifi-
cation difficulty for languages ’ir’ and ’it’ ranks slightly lower
than that of ’cv’, with marginal disparities in accuracy.

When the number of utterances falls below 1000, we ob-
serve that RNN exhibits notably lower accuracy on ’cv’ and
’it’, at 17.6% and 45.1%,Conversely, QKL demonstrates rela-
tively superior performance compared to RNNs and the hybrid
quantum-classical model QCNN-RNN.

Additionally,in cases of limited training data for these four
languages, our proposed MQKL consistently achieves higher
accuracy than RNNs and QCNN-RNN.It surpasses the perfor-
mance of the single-kernel QKL baseline, particularly excelling
in the case of ’cv’, where MQKL exhibits a remarkable 10.7%

performance improvement over QKL.

4.4. Disscussion

To investigate the effectiveness of our quantum machine learn-
ing approach, we considered two classification tasks: the
English-spoken command dataset and four low-resource spo-
ken language datasets. Our simulation results suggest that
QMKL surpasses a single quantum kernel.QMKL improved
the average test accuracy by 9.8% and 10.7% on the English
spoken command dataset and low resource spoken classifica-
tion dataset, respectively.Thus, the related experimental results
highlight the advantages of QMKL under both sufficient and
limited training data, and they corroborate our theoretical anal-
ysis in Eq. (5).

5. CONCLUSION

In this work, we exploit the quantum multiple kernel learn-
ing as an approach for classifying low-resource spoken com-
mands.Our method emphasizes three key points: (1) We pro-
vide a QMKL framewor for spoken command recognition,
along with a theoretical upper bound to analyze its advantage
over QKL when multiple kernels are used; (2) In low-resource
spoken command recognition system, our proposed QMKL ex-
hibits better experimental performance than both QKL and the
existing models like RNN, QCNN-RNN and QKL; (3) Despite
limited training data for languages,our proposed QMKL even
achieves better empirical performance than the baseline results
of the existing models.
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