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A B S T R A C T

Sound Source Localization (SSL) involves estimating the Direction of Arrival (DOA) of sound sources. Since
the DOA estimation output space is continuous, regression might be more suitable for DOA, offering higher
precision. However, in practice, classification often outperforms regression, exhibiting greater robustness.
Conversely, classification’s drawback is inherent quantization error. Within the classification paradigm, the
DOA output space is discretized into several intervals, each treated as a class. These classes show strong
inter-class correlations, being inherently ordered, with higher similarity as intervals grow closer. Nevertheless,
this characteristic has not been fully exploited. To address this, we propose Unbiased Label Distribution (ULD)
to eliminate quantization error in training targets. Furthermore, we introduce Weighted Adjacent Decoding
(WAD) to overcome quantization error during the decoding stage. Finally, we tailor two loss functions for
the soft labels: Negative Log Absolute Error (NLAE) and Mean Squared Error without activation (MSE(wo)).
Experimental results show our approach surpasses classification quantization limits, achieving state-of-the-art
performance. Our code and supplementary material are available at https://github.com/linfeng-feng/ULD.
1. Introduction

Sound Source Localization (SSL) encompasses the task of deter-
mining the spatial coordinates of sound sources. Typically, this task
is simplified to estimating the Direction of Arrival (DOA) of sound
sources relative to microphones (Grumiaux, Kitić, Girin, & Guérin,
2022). The obtained DOA information can enhance the performance of
various downstream applications. One common example is Sound Event
Localization and Detection (SELD) (Bai et al., 2023; Shimada, Koyama,
Takahashi, Takahashi, & Mitsufuji, 2021; Shimada et al., 2022). Ac-
curate DOA estimates facilitate effective multichannel speaker separa-
tion (Wang & Wang, 2022) and can serve as a criterion for ordering
labels of multiple speakers during training (Taherian, Tan, & Wang,
2022). It can aid speech recognition to reduce word error rates. Sub-
ramanian et al. (2021), Subramanian, Weng, Watanabe, Yu, and Yu
(2022). In complex acoustic environments, speaker diarization sys-
tems leveraging DOA information have exhibited substantial improve-
ments (Gburrek, Schmalenstroeer, & Haeb-Umbach, 2023; Taherian &
Wang, 2023; Zheng et al., 2021).
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1.1. Motivation and challenges

Over the past few decades, most researchers mainly focused on
developing SSL algorithms based on traditional array signal processing
techniques (DiBiase, 2000; Knapp & Carter, 1976; Schmidt, 1986). In
recent years, SSL research has shifted towards deep learning methods,
where Deep Neural Networks (DNNs) have demonstrated consider-
able promise and robustness in challenging acoustic environments,
e.g. ambient noise, high reverberation, and multiple speakers (Gru-
miaux et al., 2022). Based on the training objectives of DNN, deep
learning-based DOA estimation can be typically categorized into two
categories: regression and classification.

One of the early regression-based methods (Vesperini, Vecchiotti,
Principi, Squartini, & Piazza, 2016) designs an output layer with two
neurons, which are used to estimate the 𝑥 and 𝑦 coordinates of a sound
source in a Cartesian coordinate system. The works (Adavanne, Politis,
Nikunen, & Virtanen, 2018; Vera-Diaz, Pizarro, & Macias-Guarasa,
2018) add a neuron to estimate the 𝑧 coordinate. Vecchiotti, Pepe,
Principi, and Squartini (2019) employs a similar output structure, but
https://doi.org/10.1016/j.neunet.2024.106679
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with an additional neuron for voice activity detection. Shimada et al.
(2021, 2022) introduce the concept of Activity-coupled Cartesian DOA
(ACCDOA), combining DOA with sound activity to form labels for the
trajectory regression task in SELD. In addition, there are also regression
methods that estimate the DOA of a source in the spherical coordinate
system (Diaz-Guerra, Miguel, & Beltran, 2020, 2022). The soft-argmax
regression-based method (Diaz-Guerra et al., 2022) can be considered
a specific type of classification-based approach.

One of the early classification-based methods (Xiao et al., 2015)
is implemented through a fully connected neural network. A common
approach is to set the class corresponding to an active source to
1 and the rest to 0 (Grumiaux et al., 2022). Due to this property,
classification-based methods have a natural advantage for multi-source
localization, which can simply set the classes corresponding to active
sources to 1. At the beginning, some work assumes that the number of
sound sources are known. For example, Chakrabarty and Habets (2019)
used phase spectra as the input of convolutional neural networks and
selected the top classes with the highest probabilities from the network
output as the predicted locations of multi sources. Subramanian et al.
(2022) conducted experiments only considering scenarios with two
speakers. It separates the problem of double-speaker localization into
two independent single-speaker localization problems. Later on, some
work shifts into the scenario where the source count is unknown. For
example, He, Motlicek, and Odobez (2019) compares the predicted
distributions produced by a DNN with a threshold, where classes ex-
ceeding the threshold are considered to have source activity. Nguyen,
Gan, Ranjan, and Jones (2020) constructs a DNN with two output
branches, one for outputting the locations of sound sources, and the
other for outputting the number of sources. In Fu et al. (2022), an
iterative SSL method was proposed, which extracts the DOA of each
sound source iteratively from predicted distributions without using a
threshold.

The experiments conducted by Tang, Kanu, Hogan, and Manocha
(2019) demonstrate that the regression-based methods are inferior to
the classification-based methods in the spherical coordinate system,
while the regression-based methods outperform the classification-based
methods in the Cartesian coordinate system. This finding is consistent
with Perotin, Défossez, Vincent, Serizel, and Guérin (2019), which
emphasizes the precision of regression-based approaches and the ro-
bustness of classification-based approaches in the Cartesian coordinate
system. Feng, Gong, and Zhang (2023) pointed out that the localization
error of classification-based methods can be decomposed into quanti-
zation error and learning error, where the quantization error refers to
the localization error when the one-hot-encoding based classification
reaches an accuracy of 100%. The reason why the classification-based
models in Feng et al. (2023), Perotin et al. (2019), Tang et al. (2019)
do not perform well is due to the large quantization errors.

The quantization errors in one-hot labels not only directly impact
localization accuracy but also introduce non-smoothness in the labels.
Here are some examples to illustrate. Given a classification resolution
of 5 degrees. Two samples have ground-truth DOA values of 87.6
and 92.4, resulting in identical one-hot labels representing 90. Since
their DOA difference is 4.8, this leads to low intra-class similarity.
Conversely, if the ground-truth DOA values are 92.4 and 92.6, their
respective labels represent 90 and 95, with a DOA difference of 0.2,
indicating high inter-class similarity. To this end, Gaussian Label Cod-
ing (GLC) (He, Motlicek, & Odobez, 2018) and Soft Label Distribution
(SLD) (Subramanian et al., 2022) were proposed as soft labels alter-
native to one-hot encoding. Both assign non-zero values to multiple
classes near the ground-truth, smoothing labels. A GLC vector exhibits
highly smooth intra- and inter-class transitions without the constraint
of its elements sum to 1 for one speaker. Thus, this flexibility prohibits
the use of softmax activation in the output layer. In contrast, a SLD
has elements that sum to 1. Their advantage over one-hot encoding
lies in the smoothness. Note that these methods do not completely
resolve the issue of label quantization errors during the training phase.
Furthermore, during the decoding phase, they still select the only peak

class from the output vector, reintroducing quantization errors.

2 
1.2. Goals and contributions

Based on the aforementioned analysis, we propose a novel out-
put architecture designed for classification. This architecture not only
retains robustness of classification but also incorporates the high pre-
cision of regression. Across experiments in diverse environments, from
ideal to challenging, we substantiate our proposed architecture’s effec-
tiveness. The contributions can be summarized as follows:

• We introduce Unbiased Label Distribution (ULD) to elimi-
nate quantization errors in the labels. ULD’s one-to-one encod-
ing permits unbiased inverse mapping to ground truth position.
Notably, ULD exhibits smooth transitions within and between
classes. Furthermore, ULD retains advantages of one-hot encoding
for classification.

• We propose Weighted Adjacent Decoding (WAD) to address
shortcomings of sole reliance on peak probability. Selecting
the class with peak probability as the estimated DOA, denoted as
Top-1 decoding , suffers from quantization errors. We incorporate
sidelobes of the peak class into decoding design, yielding WAD.
This overcomes the quantization error limit of Top-1 decoding.

• We utilize two loss functions for soft labels: Negative Log
Absolute Error (NLAE) and Mean Squared Error without ac-
tivation (MSE(wo)). Cross Entropy (CE) loss may be suboptimal
for soft labels because its optimization objective does not directly
point to the soft label itself. We analyzed compatibility between
cross-entropy-like loss functions and classification models, and
advantages of MSE loss for soft labels. After analysis, our strategy
is to combine these loss types for the soft label family.

The remainder of this paper is organized as follows. Section 2 outlines
the classification paradigm to introduce the issues. In Sections 3 to 4,
we provide a detailed description of our contributions. Sections 6
and 7 demonstrate the effectiveness of our proposed method through
experimental results. Finally, Section 8 presents the conclusions of our
study.

2. Supervised sound source localization

In this paper, we focus solely on azimuth DOA estimation. We begin
with the single-source localization problem. The DOA is measured in
degrees. Assuming the maximum output range of DOA is denoted as 𝑟,
if microphones are collinear, then 𝑟 is 180; if microphones are coplanar
but not collinear, then 𝑟 is 360. The classification model discretizes the
output space of DOA into several cells, with the standard cell length
denoted as 𝑙. We set 𝐼 = 𝑟∕𝑙 with 𝐼 ∈ N, yielding the set of class
values {0, 1,… , 𝐼 −1, 𝐼}, so the output space of DOA is discretized into
{0, 𝑙,… , (𝐼 − 1) ⋅ 𝑙, 𝐼 ⋅ 𝑙}. We use the 𝐼 + 1 classes to cover boundaries,
and an explanation will be presented in Section 3.2.

Without loss of generality, we assume that 𝑢 denotes an utterance.
A DNN-based SSL model 𝑓 (⋅) can be formulated as:

𝜿 = 𝑓 (𝑢;𝜽)

𝒚̂ = 𝜎(𝜿)
(1)

where 𝜽 denotes learnable parameters, and the operation 𝜎(⋅) maps
𝜿 ∈ R𝐼+1 to a predicted distribution 𝒚̂ ∈ [0, 1]𝐼+1.

We assume that 𝒚 ∈ [0, 1]𝐼+1 represents the label distribution of
the sound source’s ground-truth position 𝑝 ∈ [0, 𝑟], and the process of
obtaining 𝒚 can be formalized as follows:

𝒚 = Encoding(𝑝) (2)

where Encoding(⋅) represents the mapping from 𝑝 to 𝒚. In general, if
∑𝐼

𝑖=0 𝑦𝑖 = 1, then softmax activation is suitable as a candidate of 𝜎(⋅) in
Eq. (1), otherwise sigmoid activation is more appropriate.

The training objective of a DNN is to find its optimal learnable

parameters 𝜽 that minimize the loss function , while producing an
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Fig. 1. Workflow of a supervised sound source localization, where 𝑀 is the number
of microphones. The output architecture is highlighted in the red box.

output 𝒚̂ that is as close as possible to the ground-truth label distribu-
tion 𝒚. This can be achieved through supervised training, which can be
formulated as:

𝜽∗ = argmin
𝜽

(𝒚, 𝒚̂;𝜽) (3)

After obtaining 𝒚̂ in the test stage, it becomes feasible to map 𝒚̂ to
a corresponding predicted position 𝑝̂ ∈ [0, 𝑟], which can be referred to
as a decoding process:

𝑝̂ = Decoding(𝒚̂) (4)

where Decoding(⋅) represents the mapping from 𝒚̂ to 𝑝̂.
The workflow for supervised single-source localization can be rep-

resented by Fig. 1, where the red box represents the output architecture
that is our main focus. The ultimate goal of our design is to improve
the predictive accuracy of 𝑝̂.

Concerning the challenge of localizing multiple sound sources, we
suggest utilizing the source splitting mechanism proposed in Subrama-
nian et al. (2022) to decompose the problem into multiple single-source
localization tasks.

3. Unbiased label distribution

This section primarily concentrates on the label encoding presented
in Eq. (2), where we discuss the label distribution of a single source in
a simple yet general manner.

3.1. Analysis

First, note that the true position of a sound source, 𝑝, is a real
number, where 𝑝 ∈ [0, 𝑟]. Given that 𝐼 = 𝑟∕𝑙, we define a scaled variable
𝛾 = 𝑝∕𝑙, where 𝛾 ∈ [0, 𝐼]. Typically, a common classification method is
to apply an operation, round(⋅), to assign 𝛾 to its nearest integer and
then encode it as a one-hot label distribution. From the perspective
of probability, it can be interpreted as that, the probability of the
sound source located in the round(𝛾)-th class is 1, while the probabilities
in other classes are all 0. Formally, the one-hot label distribution is
𝒚1-hot = {𝑦1-hot

𝑖 }𝐼𝑖=0, with the code for the 𝑖th class 𝑦1-hot
𝑖 defined as:

𝑦1-hot
𝑖 =

{

1, if 𝑖 = round(𝛾)
0, otherwise , ∀𝑖 = 0,… , 𝐼 (5)

From the above description, we can infer that the reason why the
encoding from 𝑝 to the one-hot distribution is not one-to-one mapping
lies in the operation round(⋅). In other words, it is inevitable to have
quantization errors when using a single integer, round(𝛾) ∈ N, to
represent a real number 𝑝.

Theorem 1. The operation of round(⋅) results in an absolute quantization
error whose mathematical expectation is 𝑙∕4.

Proof. See Appendix A for the proof. □
3 
Fig. 2. Wasserstein distance between a distribution of any angle between [0, 180]
degrees and the distribution of 0 degree, where the label distribution is one-hot or
ULD.

However, as ∑𝐼
𝑖=0 𝑦

1-hot
𝑖 = 1, the one-hot distribution is consistent

with probability theory interpretation, suitable for supervised models
improving classification accuracy. Hence, we fine-tune this distribution
to address strengths and weaknesses.

3.2. Definition

Theorem 2. Let 𝛾 be a non-negative real number, with int(𝛾) denoting its
integer part, and deci(𝛾) denoting its decimal part. Then, for any 𝛾 between
two adjacent integers, int(𝛾) and int(𝛾) + 1, an unbiased approximation is
given by:

𝛾 = (1 − deci(𝛾)) × int(𝛾) + deci(𝛾) × (int(𝛾) + 1)

Proof. See Appendix B for the proof. □

Based on Theorem 2, we can easily derive our novel unbiased label
distribution 𝒚u = {𝑦u𝑖 }

𝐼
𝑖=0 as follows:

𝑦u𝑖 =

⎧

⎪

⎨

⎪

⎩

1 − deci(𝛾), if 𝑖 = int(𝛾)
deci(𝛾), if 𝑖 = int(𝛾) + 1
0, otherwise

, ∀𝑖 = 0,… , 𝐼 (6)

Theorem 2 justifies our use of 𝐼 + 1 classes. Specifically, we always
require two adjacent integers. Thus, we use the 0-th class and the
𝐼th class, which represent the boundaries of the output space, to
consider boundary cases. Clearly, the sum of the elements of a ULD
vector, ∑𝐼

𝑖=0 𝑦
u
𝑖 = 1, has a probabilistic interpretation, indicating the

probability of a sound source appearing in the respective class. The
main advantage of ULD lies that:

Theorem 3. ULD is free of quantization errors.

Proof. It is clear that the encoding mapping from 𝑝 to 𝒚u is a one-to-one
mapping, such that when 𝑝1 ≠ 𝑝2, we have 𝒚u1 ≠ 𝒚u2, enabling 𝒚u to be
accurately inverse-mapped to 𝑝. □

3.3. Connection between ULD and one-hot distribution

When deci(𝛾) < 0.5, int(𝛾) = round(𝛾), otherwise int(𝛾) + 1 = round(𝛾).
Therefore, ULD can be regarded as a smoothed one-hot distribution,
which can inherit the advantages of the one-hot distribution, while
avoiding the problem of disproportionate distribution similarity to the
DOA distance.
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Fig. 3. An example on the advantage of BCE over CE for SSL. Consider a sound source with 𝑟 is 180, 𝑙 is 5 and 𝑝 is 0. In conventional classification problems, it is easy to have a
predicted distribution like distribution A. However, for SSL, it is easy to have predicted distributions like the latter three. Distribution B has unwanted sidelobes, while distributions
C and D even have pseudo peaks. The occurrence of pseudo peaks means that classification errors have already occurred. These four distributions have equal probability values
in the ground-truth class, so the CE loss of these distributions is equal. However, the BCE losses of these four are 1.52, 1.60, 1.65 and 1.71 respectively, meaning that BCE gives
greater penalty to these negative factors that are easily encountered in SSL. The theoretical analysis of the results above is provided in the supplementary material.
We use Wasserstein distance (WD) (Rubner, Tomasi, & Guibas,
2000) to analyze the connection between ULD and one-hot distribution.
WD is a metric that can be used to measure the distance between two
discrete probability distributions. Fig. 2 shows the WD between the
any-angle label distribution and 0-angle distribution of either ULD or
one-hot. We see that the WD curves of the ULD and one-hot are closely
related. However, unlike the sudden changes in the WD curve of the
one-hot distribution, the WD curve of ULD is smooth.

4. Weighted adjacent decoding

This section primarily concentrates on the decoding presented in
Eq. (4). After training a DNN, we can obtain a predicted distribution
𝒚̂. This section describes our new approach for decoding 𝒚̂ into a DOA
estimation 𝑝̂.

4.1. Analysis

Naturally, we first extract the peak class 𝑘̂ corresponding to the peak
probability in 𝒚̂, which can be represented as:

𝑘̂ = argmax
𝑖
{𝑦̂𝑖}𝐼𝑖=0 (7)

Then, the source location can be obtained from 𝑘̂ as:

𝑝̂ = 𝑘̂ ⋅ 𝑙 (8)

which we refer to as the Top-1 Decoding. However, as discussed in
Section 3.1, this formulation inevitably introduces quantization error.
Even if a DNN achieves 100% classification accuracy, the mathematical
expectation of the absolute quantization error using this decoding is
𝑙∕4.

4.2. Definition

For the predicted distributions produced from DNN, the classes
adjacent to the peak often have non-negligible probabilities due to
strong correlation and ordering in the discretized DOA output space.
Leveraging this, we propose Weighted Adjacent Decoding (WAD). The
classes adjacent to 𝑘̂ are 𝑘̂ − 1 on the left and 𝑘̂ + 1 on the right,
respectively. Specifically, in cases where the index is out of bounds,
such as 𝑖 < 0 or 𝑖 > 𝐼 , we assign 𝑦̂𝑖 = 0. This can be interpreted as
setting the probability of the source being outside the output space to
0.

Initially, we consider the scenario where only the peak class 𝑘̂
and the adjacent class 𝑘̂ℎ with relatively high probability are used.
Specifically, 𝑘̂ℎ is defined as argmax𝑖{𝑦̂𝑖}𝑖={𝑘̂−1,𝑘̂+1}. Since two classes
are involved, we refer to this as WAD-2. Hence, WAD-2 is formalized
as:

𝑝̂ =

∑

𝑖={𝑘̂,𝑘̂ℎ}
𝑦̂𝑖 × 𝑖 × 𝑙

∑ (9)

𝑖={𝑘̂,𝑘̂ℎ}

𝑦̂𝑖

4 
Similarly, WAD-3 can be formalized as follows:

𝑝̂ =
∑

𝑖={𝑘̂−1,𝑘̂,𝑘̂+1} 𝑦̂𝑖 × 𝑖 × 𝑙
∑

𝑖={𝑘̂−1,𝑘̂,𝑘̂+1} 𝑦̂𝑖
(10)

Substituting the ULD from Eq. (6) into Eq. (8), the quantization
error remains the same as one-hot. However, substituting the ULD into
Eq. (9) or Eq. (10) yields zero quantization error. Hence, this integrated
output architecture is self-consistent.

Here is the generalization of WAD. We denote 𝐼𝑠 as the number of
classes selected for decoding. To simplify, we restrict 𝐼𝑠 to be an odd
number, which ensures that 𝑘̂ is at the center of the 𝐼𝑠 classes. Then, we
can generalize to WAD-𝐼𝑠 with 𝑖 = {𝑘̂− 𝐼𝑠−1

2 ,… , 𝑘̂,… 𝑘̂+ 𝐼𝑠−1
2 }. However,

the actual classes are {0, 1,… , 𝐼 − 1, 𝐼}, so any out-of-bounds class will
have a probability value of zero. We can thus compute the upper limit
of 𝐼𝑠, where WAD can use all classes. Considering the extreme case
where 𝑘̂ = 0, we have 𝑘̂+ 𝐼𝑠−1

2 = 𝐼 , thus the upper limit of 𝐼𝑠 is 2𝐼 + 1.

4.3. Connection between WAD, Top-1, and Soft-argmax

From the above formulation, we see that Top-1 decoding, defined in
Eq. (8), is a special case of WAD with 𝑖 = {𝑘̂}. Essentially, WAD extends
Top-1 decoding by using a weighted combination of multiple classes to
reduce quantization error.

Soft-argmax is similar to WAD with all classes, eliminating the need
for label encoding; instead, it directly uses the sound source location as
the training target.

5. Loss functions

This section is to design a reasonable loss function  in Eq. (3) to
train the DNN for yielding a predicted distribution closely matching the
label distribution.

5.1. Analysis

We think that a reasonable  should have two key properties: (i) the
direction of backpropagated gradient should always be correct, and (ii)
the magnitude of backpropagated gradient should be proportional to
the deviation from the training target to the DNN’s output 𝜿. However,
none of the common loss functions, including CE, BCE, and MSE, satisfy
both properties for soft labels, as will be analyzed in Section 5.1.
This analysis motivates deriving the NLAE loss and MSE (wo) loss in
Section 5.2, satisfying both properties simultaneously.

5.1.1. CE loss function
The CE loss function is commonly used in conventional classification

problems:

CE = −
𝐼
∑

𝑖=0
𝑦𝑖 log 𝑦̂𝑖 (11)

where CE does not directly impose penalties on the classes with zero
values in ground-truth label 𝒚.
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Table 1
Specifications of the simulated data.

Dataset C1 C2 A1 L1 L2

Shape of array (m) Circular, radius = 0.05 Linear, aperture = 0.08

Self-rotation angle of array (degree) 0 0 0 [0, 180] [0, 180]
Distance from speaker to array (m) 1.5 1.5 1.5 [0, 14.1] [0, 14.1]

Minimum distance from speaker to wall (m) 0.5 0.5 0.5 0.0 0.0
Number of sound sources 1 2 1 1 2

Reverberation (s)
train [0.2, 0.7] [0.2, 0.7] anechoic [0.2, 1.2] [0.2, 1.2]
validation [0.2, 0.7] [0.2, 0.7] anechoic [0.2, 1.2] [0.2, 1.2]
test [0.2, 0.8] [0.2, 0.8] anechoic [0.2, 1.2] [0.2, 1.2]

Segments
train 36 000 36 000 18 000 36 000 72 000
validation 3600 3600 1800 3600 7200
test 4320 4320 1800 3600 7200
5
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5.1.2. BCE loss function
In contrast to CE, the BCE loss function imposes a penalty for each

class:

BCE = −
𝐼
∑

𝑖=0
𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖) (12)

Generally, BCE is paired with sigmoid activation for multi-label
lassification, which treats each class as an independent binary clas-
ification problem, such as in object detection (Wu, Xu, Yang, & Li,
024) and image segmentation (Jing et al., 2024). However, in this
aper, BCE is not restricted to pairing with sigmoid. For one-hot and
LD vectors, where the elements sum to 1, the output layer’s activation

s softmax.
Fig. 3 provides an example to visually convey our motivation for

alculating a loss for each class. Unlike the conventional classification,
he SSL problem is more likely to occur in distributions that signifi-
antly deviate from Fig. 3(a). Therefore, we recommend using a loss
unction with a global view, such as BCE, to suppress pseudo peaks.

When the optimization target is soft labels, focusing on the non-zero
alue classes, we find that BCE simultaneously propagates gradients in
wo opposing directions. The first part directs 𝑦̂𝑖 towards 1, while the
econd part directs 𝑦̂𝑖 towards 0, rather than towards 𝑦𝑖.

.1.3. MSE loss function
The MSE loss function, which also possesses a global view, is defined

s follows:

MSE =
𝐼
∑

𝑖=0
(𝑦𝑖 − 𝑦̂𝑖)2 (13)

It is self-evident that the gradient direction passed back through the
SE function ensures that 𝑦̂𝑖 consistently points towards 𝑦𝑖. In Eq. (1),

he function 𝜎(⋅) is a highly nonlinear transformation when 𝜅𝑖 is either
ery large or very small. As a result, the MSE function often suffers from
he problem of gradient disappearance when 𝑦̂𝑖 approaches 0 or 1, and
s therefore not frequently used for optimizing classification models.

.2. Definition

.2.1. NLAE loss function
Given the aforementioned analyses, we have devised a loss function

alled Negative Log Absolute Error (NLAE). It can be defined as follows:

NLAE = −
𝐼
∑

𝑖=0
log(1 − |𝑦𝑖 − 𝑦̂𝑖|) (14)

It is evident that the optimization direction of NLAE is to make
− |𝑦𝑖 − 𝑦̂𝑖| approach 1, which is equivalent to make 𝑦𝑖 = 𝑦̂𝑖. In

articular, when 𝑦𝑖 is 0 or 1, NLAE and BCE are equivalent, so the
agnitude of the gradient passed back through NLAE is reasonable.
ence, the NLAE loss function is theoretically more suitable for the

amily of soft labels.
 s
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.2.2. MSE(wo) loss function
Alternatively, we can use a trick to address the problem. Since the

onlinearity is caused by 𝜎(⋅), we can consider discarding it. The MSE
oss function can be modified to directly operate on 𝜿, formulated as:

MSE(wo) =
𝐼
∑

𝑖=0
(𝑦𝑖 − 𝜅𝑖)2 (15)

here MSE(wo) represents the MSE loss function without 𝜎(⋅). However,
f we take this approach, we need an additional operation to ensure that
he predicted distribution does not exceed the boundary values, which
s 𝒚̂ = {min(max(0, 𝜅𝑖), 1)}𝐼𝑖=0.

The above discussion is suit for loss functions for single label. If
ecessary, calculating the loss for multiple labels separately and then
dds them with weights to jointly optimize the DNN, may improve
erformance.

. Experimental setup

.1. Datasets

In this section, we conducted experiments on both simulated and
eal-world data. All source speech came from the LibriSpeech cor-
us (Panayotov, Chen, Povey, & Khudanpur, 2015). The train-clean-
60, dev-clean and test-clean subsets were used to generate corre-
ponding subsets of simulated datasets. We utilized the Pyroomacous-
ics (Scheibler, Bezzam, & Dokmanić, 2018) module to generate room
mpulse responses. For each utterance, we randomly set a room size
nd selected a 2-second segment. Each multi-source speech signal was
ixed from different speakers. Additionally, we introduced additive
oise to the reverberant speech. The additive noise was randomly
elected from a large-scale noise set (Tan & Zhang, 2021) containing
26 h of various types of noises. Without specific instructions, the
ignal-to-noise ratio (SNR) of each utterance was randomly selected
rom a range of [10, 20] dB. The training, validation, and testing sets
ad non-overlapping subsets of additive noise.

As shown in Table 1, we created five sets of simulated datasets,
enoted as C1, C2, A1, L1, and L2 respectively, with different acoustic
onditions to test the effectiveness and reliability of the proposed
ethod. All datasets use microphone arrays consisting of 4 micro-
hones. The complexity of the acoustic environment is mainly reflected
n the reverberation and far-field, covering a wide range from anechoic
o highly reverberant. The impact of number of sound sources is also
onsidered in our datasets.

The length and width of a room were randomly chosen within
4, 10] m, the height of the room was fixed at 3.2 m, and the height
f the sound sources and microphones was fixed at 1.3 m. The rever-
eration time T60 of the room was randomly selected within a given
ange, or the room was set to be anechoic.

For the C1, C2, and A1 datasets, each random room produces a
ingle utterance. For the L1 and L2 datasets, a random room plays an
udio once, but with 10 microphone arrays in the room to capture

ignals. Consequently, each room in L1 and L2 generates 10 distinct
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DOA segments. The placement of both microphones and sound sources
is randomized. As a result, L1 and L2 are two datasets without any
constraints on the distance between sound sources and microphone
arrays or between sound sources and walls.

We recorded a real-world dataset (Liu, Gong, & Zhang, 2022) in two
scenarios: an office and a conference room respectively. The office room
is approximately 10.3 × 9.8 × 4.2 m with a T60 of approximately 1.39 s.

he conference room is approximately 4.26×5.16×3.16 m with a T60 of
pproximately 1.06 s. The ambient noise in both rooms can be ignored.
e used the test-clean subset of LibriSpeech as the source sound to

lay back in the room, with different speakers corresponding to sound
ources played at different locations. The equipment used to record
he dataset was one speaker and 10 linear arrays, each with the same
hape as those used in L1 and L2. After being divided into 2-second
egments, each room had a total of 97,480 samples. We randomly
elected segments to generate a subset with two speakers. Therefore,
ach room contains a total of 7200 multi-speaker samples. We used
he real-world data only for testing, while the simulated datasets of L1
nd L2 were used for training and selecting models.

.2. Comparison among different methods

The comparison methods include both traditional methods and
NN-based methods. The traditional methods include MUSIC (Schmidt,
986) and SRP-PHAT (DiBiase, 2000). For DNN-based methods, we
ompared with different training targets and loss functions.

.2.1. Training targets
We compare ULD with four training targets, which are:

• One-hot.
• Gaussian Label Coding (GLC) (He et al., 2018): We followed (He

et al., 2018) and set the standard deviation to 8.
• Soft Label Distribution (SLD) (Subramanian et al., 2022).
• Soft-argmax (SA) (Diaz-Guerra et al., 2022).

.2.2. Loss functions
We compare NLAE and MSE (wo) with four loss functions, which

re:

• Cross Entropy (CE).
• Binary Cross Entropy (BCE).
• Mean Squared Error (MSE).
• Wasserstein Distance (WD) (Subramanian et al., 2022).

Both CE and WD only apply to label with a sum of 1, so they
re not suitable for GLC. During training, soft-argmax is equivalent to
egression, thus only MSE can be used.

.3. Neural networks

Four neural networks served as backbone networks, and the specific
rchitectures are detailed in the supplementary material. The first
etwork is the Phase Neural Network (PNN) (Chakrabarty & Habets,
019), comprising three convolutional layers and three dense layers.
he second network is PNN-Split (Subramanian et al., 2022), a modi-
ied version of PNN. Notably, PNN-Split routes the output of the first
ense layer through a recurrent layer for implicit speech separation.
inally, the separated features are passed through another dense layer.
he third network is SNet (He, Motlicek, & Odobez, 2021), while
he fourth network is a hybrid model combining PNN-Split and SNet,
nown as SNet-Split. SNet-Split adopts all feature extraction modules
f SNet, flattens the embedding features from the last residual block,
nd follows the subsequent operations consistent with PNN-Split.
 w
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Table 2
Experimental results on the dataset of A1, where the loss function is NLAE, and the
backbone network is PNN. QE is short for quantization error, which is calculated by
directly decoding the ground-truth one-hot labels.

ACC MAE

QE limit 100.00 1.223
Regression – 0.642
SA – 0.310

Top-1 WAD-2 WAD-3
One-hot 98.56 1.225 0.920 0.924
GLC 97.50 1.231 1.036 0.697
SLD 97.44 1.237 1.437 1.144
ULD 98.67 1.224 0.065 0.061

6.4. Inputs of networks

We used a sampling rate of 16 kHz, a window length of 512 samples,
a hop length of 256 samples, a Hanning window, and 512 FFT points
to extract Short-Term Fourier Transform (STFT) features. For PNN, the
input is a single frame of the phase spectrum. For SNet, the input is 7
consecutive frames of STFT, with the real and imaginary parts of the
STFT concatenated along the microphone channel dimension.

6.5. Training and evaluation details

For all experiments, we employed the AdamW (Loshchilov & Hutter,
2019) optimizer with a batch size of 32 and a maximum of 30 training
epochs. The learning rate was initialized at 0.001 and reduced to
0.0001 if the validation loss did not improve over 3 consecutive epochs.
The PNN and SNet were trained and tested on single-source datasets,
while the Split networks was used for multi-source datasets. Since the
DOA space is inherently ordered, it is easy to train multi-source models
using location-based training (Taherian et al., 2022). By default, for C1
dataset, 𝑙 was set to 3; for C2, 𝑙 was set to 8; for A1, L1, and R1, 𝑙 was
set to 5; and for L2 and R2, 𝑙 was set to 7.5.

6.6. Evaluation metrics

Suppose a dataset has 𝑁 test speakers. As we primarily discusses
classification models, a natural evaluation metric is classification accu-
racy (ACC), which can be formalized as follows:

ACC(%) = 𝑁acc

𝑁
× 100 (16)

where 𝑁acc is the number of speakers for which the peak class of the
redicted distribution equals to the ground truth class.

The most intuitive evaluation metric for SSL should be the mean ab-
olute error (MAE) between the predicted source position and ground-
ruth source position, which can be described as follows:

AE(◦) = 1
𝑁

𝑁
∑

𝑛=1
min(|𝑝̂𝑛 − 𝑝𝑛|, 360 − |𝑝̂𝑛 − 𝑝𝑛|) (17)

. Experimental results

.1. Empirical study on WAD

.1.1. Results on anechoic environment
As the aforementioned, the data for A1 is anechoic. The distance

etween the source and the microphone array is fixed at 1.5 m. Overall,
his is a very simple dataset that we primarily use to investigate the
ssue of quantization error. As shown in Table 2, the quantization
rror limit is 1.223, which confirms our theoretical analysis that the
uantization error is approximately 𝑙∕4 (in this case, 5/4=1.250). If
e use classical Top-1 decoding, then the MAE is bounded by the
uantization error limit. However, when we use ULD in conjunction
ith WAD, the quantization error limit has been significantly broken
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Table 3
Results on the dataset of C1, the loss function is NLAE, the encoding method is ULD, and the backbone network is PNN.

𝑙 Regression SA 360 180 90 45 20 10 5 3 2 1

ACC – – 99.21 97.18 97.64 96.30 96.39 94.68 92.27 87.59 80.51 54.77

QE limit – – 89.056 45.740 22.519 11.407 5.059 2.481 1.244 0.752 0.504 0.249

MAE

Top-1

21.725 14.996

89.056 46.012 22.666 11.522 5.102 2.538 1.307 0.853 0.676 0.625
WAD-2 17.562 7.336 3.226 1.847 1.028 0.793 0.649 0.557 0.547 0.541
WAD-3 17.562 10.055 3.756 1.865 1.005 0.719 0.540 0.476 0.486 0.561
Table 4
Results on the lightly-reverberant dataset C1, where the backbone network is PNN.

Method Loss ACC MAE

Top-1 WAD-2 WAD-3

SA (Diaz-Guerra et al., 2022) MSE – 14.996

One-hot

CE 86.57 0.869 0.572 0.517
MSE 85.93 0.881 0.558 0.522
WD 53.61 1.681 1.716 1.701

NLAE 86.39 0.868 0.565 0.514
MSE (wo) 84.63 0.905 0.591 0.558

GLC (He et al., 2018)

BCE 81.34 0.954 0.895 0.894
MSE (He et al., 2018) 80.23 0.961 0.889 0.898

NLAE 80.42 0.950 0.882 0.880
MSE (wo) 82.59 0.921 0.881 0.846

SLD (Subramanian et al., 2022)

CE 80.00 0.947 0.800 0.765
BCE 81.62 0.929 0.794 0.744
MSE 83.84 0.881 0.791 0.713
WD (Subramanian et al., 2022) 55.51 1.536 1.665 1.636

NLAE 82.22 0.918 0.775 0.716
MSE (wo) 84.95 0.881 0.781 0.688

ULD

CE 86.71 0.852 0.574 0.490
BCE 87.18 0.852 0.572 0.489
MSE 87.41 0.853 0.561 0.487
WD 55.69 1.567 1.629 1.606

NLAE 87.59 0.853 0.557 0.476
MSE (wo) 87.69 0.854 0.600 0.503
Fig. 4. The impact of selecting different numbers of classes on the performance of
weighted adjacent decoding. The dataset is C1. Each training target is paired with
the best loss function as indicated in Table 4. Given the inter-class interval 𝑙 of 3
degrees, we have 𝐼 = 360

𝑙
= 120. Consequently, the upper limit for selected classes 𝐼𝑠

is 2𝐼 + 1 = 241.

through. Interestingly, applying WAD to the one-hot encoding actually
reduces the MAE and breaks the quantization error limit as well, due
to the presence of sidelobes (the loss is not 0).

7.1.2. Results on reverberant environment
In the previous section, we have observed that WAD could break

the quantization error limit in the anechoic environment, here we
7 
study WAD in a reverberant environment. To study the effect of WAD
integratively, we tune the parameter 𝑙 in a wide range. Specifically,
the parameter 𝑙 determines the azimuth range of a cell (i.e. a class),
so as to the number of classes. When 𝑙 decreases from 360 to 1, the
number of classes naturally increases, which results in an increased
model complexity accordingly.

Table 3 lists the performance of decoding methods along with the
parameter 𝑙 in the reverberant data C1. We see that WAD breaks the
quantization error limit. Specifically, when 𝑙 ≥ 3, WAD yields smaller
MAE than the quantization error limit, while the Top-1 decoding always
yields larger MAE than the limit. The best performance of WAD appears
at 𝑙 = 3, and when 𝑙 = 1, the MAE of WAD becomes larger than the
quantization error limit. This phenomenon is caused by the decrease in
ACC with the increase in the number of classes. Specifically, reducing
𝑙 from 3 to 2 requires increasing the number of classes from 121 to
181, and reducing 𝑙 from 2 to 1 even requires increasing the number
of classes from 181 to 361. As ACC decreases, classification error
gradually replaces quantization error as the dominant factor. Another
interesting result is that, even when 𝑙 is as large as 360 (i.e., it is a
binary classification), the MAE of the proposed WAD is still smaller
than the regression model.

7.1.3. Effect of selecting different numbers of classes for WAD
Fig. 4 illustrates the effect of selecting different numbers of classes

for WAD on performance. The model trained with ULD achieves the
lowest error when the number of classes 𝐼𝑠 is 3 (i.e. WAD-3). As 𝐼𝑠
increases, the MAE gradually rises because the classes far from the peak
class 𝑘̂ become less reliable. When 𝐼𝑠 reaches 241, incorporating all
classes in the decoding process is akin to using soft-argmax decoding. At
this point, the model trained with SA shows an MAE of approximately
15, consistent with the results in Table 4.
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Table 5
Results on the heavily-reverberant dataset of L1, where the backbone network is PNN.

Method Loss ACC MAE

Top-1 WAD-2 WAD-3

SA (Diaz-Guerra et al., 2022) MSE – 17.430

One-hot

CE 68.17 3.947 3.696 3.649
MSE 68.53 3.985 3.751 3.693
WD 62.94 4.408 4.184 4.154

NLAE 65.50 3.814 3.592 3.539
MSE (wo) 65.78 4.040 3.874 3.787

GLC (He et al., 2018)

BCE 62.08 3.938 3.921 3.789
MSE (He et al., 2018) 60.94 3.924 3.883 3.761

NLAE 62.75 3.936 3.932 3.760
MSE (wo) 59.56 3.693 3.652 3.552

SLD (Subramanian et al., 2022)

CE 62.67 3.670 3.694 3.537
BCE 61.61 3.804 3.791 3.669
MSE 62.19 4.011 3.973 3.866
WD (Subramanian et al., 2022) 57.78 4.337 4.313 4.185

NLAE 60.67 4.763 4.725 4.630
MSE (wo) 63.78 4.005 4.006 3.871

ULD

CE 67.03 3.988 3.713 3.649
BCE 69.08 3.689 3.459 3.363
MSE 68.53 4.012 3.735 3.663
WD 65.75 4.427 4.233 4.137

NLAE 65.44 4.632 4.385 4.295
MSE (wo) 65.39 3.481 3.179 3.148
Table 6
Main results on the real-world data, where the backbone neural network is PNN.

Test data Method ACC MAE

Top-1 WAD-2 WAD-3

Office

MUSIC – 50.866
SRP-PHAT – 44.890
SA – 20.505
One-hot + CE 62.60 3.168 3.181 3.077
One-hot + NLAE 63.17 3.071 3.087 2.978
GLC + MSE(wo) 57.93 3.518 3.926 3.500
SLD + MSE(wo) 60.43 3.184 3.582 3.163
ULD + MSE(wo) 64.12 3.008 3.116 2.925

Conference

MUSIC – 48.724
SRP-PHAT – 43.709
SA – 23.176
One-hot + CE 54.32 6.888 6.905 6.805
One-hot + NLAE 53.84 5.192 5.268 5.138
GLC + MSE(wo) 49.90 5.816 6.078 5.814
SLD + MSE(wo) 53.71 6.052 6.498 6.052
ULD + MSE(wo) 54.18 5.431 5.635 5.420

7.2. Single-source localization

7.2.1. Results on simulated data
Table 4 lists the performance of various combinations of encod-

ing methods, loss functions, and decoding methods on the lightly-
reverberant dataset C1. From the table, it can be seen that ULD is the
best label encoding method in this environment; NLAE is the best loss
function; and WAD-3 is the best decoding method in almost all cases
except with the WD loss function. The reason for the poor performance
of the ‘‘ULD+WD loss’’ scheme, we think that WD can essentially be
viewed as a special form of global regression, therefore inheriting the
vulnerability of global regression when used for SSL. Compared to
the most common paradigm of one-hot encoding with CE and Top-1
decoding, the combination of ULD with NLAE and WAD-3 reduces the
MAE by 45.22%.

Table 5 further lists the performance of comparison methods on
the heavily reverberant L1 dataset, where the distances between sound
sources and microphone arrays are unconstrained. The table shows
the proposed strategy of ULD, MSE(wo), and WAD-3 achieves top
 f
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performance, 20.24% above conventional one-hot paradigm. We find
NLAE performs poorly in this adverse condition.

7.2.2. Results on real-world data

First, we note that, due to space constraint of the paper, we only
report main experimental results in the following sections, leaving
full results in the supplementary material.

Table 6 lists the performance of comparison models on two real-
world datasets, trained on simulated data L1. From the table, we see
that: (i) the proposed ULD, MSE(wo), and WAD-3 strategy performs
best on the office room dataset; (ii) the proposed NLAE and WAD-
3, combined with one-hot encoding, performs best on the conference
room dataset, closely followed by the proposed ULD, MSE(wo), and
WAD-3 strategy; (iii) as analyzed earlier, the CE loss function under-
performs compared to the proposed NLAE and MSE(wo), highlighting
the importance of using a loss function with a global view.

7.2.3. Effect of SNR on performance
We studied the effectiveness of various methods in different noisy

environments. We added noise at different SNRs to the test set of C1
dataset, creating three test subsets with SNRs of {−20,−10, 0} dB. For
each utterance, the same noise segment was used three times, only
changing the SNR.1

Table 7 shows the performance of the comparison methods at
various SNR levels. When the SNR level increases, the ACC of all
classification-based models increases, leading to smaller MAEs. ULD
remains the optimal one. For example, it produces an MAE reduction of
14.56%, 5.04%, and 6.26% relatively over the method of one-hot with
WAD-3 in −20dB, −10dB, and 0dB. Additionally, it can be observed that
the MAE for all classification models remains low, even at very low SNR
levels. We think this is due to that (i) the speakers in the C1 dataset are
only 1.5 meters away from the microphones, and (ii) the individual
noise segments in the noisy dataset do not cover all time–frequency
bins. As shown in Fig. 5, even at an SNR of −20 dB, the speech is not
completely masked by noise, allowing the DNNs to still be able to locate
the speaker in the noisy audio.

1 Some testing audio samples are available at https://github.com/linfeng-
eng/ULD.
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Table 7
Results on different SNR, where the original test set is C1, and the backbone models
that perform the best in Table 4 are selected.

SNR −20 dB −10 dB 0 dB −20 dB −10 dB 0 dB
ACC MAE

SA — 39.044 27.913 20.338
One-hot 76.44 80.22 82.31 0.886 0.655 0.591
GLC 76.28 79.06 80.22 1.159 0.964 0.928
SLD 79.08 81.86 83.11 1.072 0.909 0.885
ULD 77.47 81.50 83.64 0.757 0.622 0.554

Fig. 5. A set of spectrograms is shown, with time (seconds) and frequency (kHz). (a)
is clean speech; (b) is the reverberant speech generated by playing (a) as the source
in a room; (c) is a noise segment; (d) is the combination of (b) and (c) with the SNR
of −20 dB.

Fig. 6 shows the impact of 𝐼 , the number of quantization levels, on
the localization performance with different SNR levels. The three curves
exhibit a similar trend. For 𝐼 < 120, the MAE gradually decreases as
𝐼 increases. At 𝐼 = 120 (i.e. 𝑙 = 3), the MAE reaches its minimum.
However, as 𝐼 continues to increase, the MAE rises instead of falling.

7.2.4. Effect of backbone networks on performance
In previous experiments, all backbone networks were PNN. In this

subsection, we study how backbone networks affect performance. Ta-
ble 8 lists comparison method performance using SNet as the backbone
network on both simulated data L1 and real-world data. Compared
to Table 6, we see the proposed ULD, MSE(wo), and WAD-3 strategy
performs best on L1 and the office room, consistent with results using
the PNN backbone network. Although the best performance in the con-
ference room appears with proposed MSE(wo) and WAD-3 combined
with GLC, proposed ULD, MSE(wo), and WAD-3 performance follows
closely, consistent with the PNN backbone results.

7.3. Multi-source localization

Table 9 lists the performance of the comparison methods on the
multi-source data C2. From the table, we see that WAD-3 remains the
best decoding method in almost all cases; MSE(wo) still fits the soft
labels best, including GLC, SLD, and the proposed ULD. We also observe
that GLC is slightly better than the proposed ULD. This phenomenon
may be caused by the extreme smoothness of GLC, making it more
conducive to model training in challenging scenarios.
9 
Fig. 6. The impact of 𝐼 , the number of quantization levels, on localization performance
under different SNR levels.

Table 8
Main results on the single-source data, where the backbone network is Snet, and the
loss function for soft labels is MSE (wo).

Test data Method ACC MAE

Top-1 WAD-2 WAD-3

Simulated data L1

SA – 8.074
One-hot 75.79 2.612 2.265 2.236
GLC 71.44 2.292 2.214 2.055
SLD 69.93 2.543 2.544 2.360
ULD 76.88 2.176 1.782 1.696

Office

SA – 16.247
One-hot 67.48 2.285 2.197 2.169
GLC 61.11 2.474 2.766 2.413
SLD 59.88 2.555 2.894 2.521
ULD 68.96 2.177 2.208 2.145

Conference

SA – 17.439
One-hot 56.57 4.616 4.488 4.483
GLC 53.70 4.337 4.462 4.257
SLD 52.97 4.519 4.696 4.465
ULD 57.18 4.583 4.476 4.456

Table 9
Main results on the simulated multi-source dataset C2, where the backbone network is
PNN-Split.

Method Loss ACC MAE

Top-1 WAD-2 WAD-3

SA MSE – 23.163
One-hot WD 68.22 7.189 6.573 6.576
GLC MSE (wo) 77.09 5.855 5.391 5.043
SLD MSE (wo) 71.88 5.588 5.386 5.203
ULD MSE (wo) 79.33 6.089 5.291 5.114

Note that GLC and ULD exhibit distinct advantages—while one
emphasizes greater smoothness, the other prioritizes higher precision,
suggesting their combined use. We designed a joint training method
using weighted loss with training objectives for both ULD and GLC:
‘‘𝛼ULD+(1 − 𝛼)GLC’’, where 𝛼 ∈ [0, 1] is a tunable parameter. Table 10
lists the performance of the combined encoding method with respect to
𝛼. From the table, we see the combined encoding method significantly
outperforms its components, i.e. GLC and ULD. The best performance
of the combined method appears at 𝛼 = 0.2.

Finally, Table 11 lists the results on a set of highly challenging
datasets, L2, and real-world datasets featuring two speakers with signif-
icant reverberation and considerable distance from microphones. Given
the adverse conditions, ACC is notably low. Classification error predom-
inates over quantization error, limiting performance gains. As shown
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Table 10
Results of the combined encoding method with respect to the parameter 𝛼 on C2, where
he backbone network is PNN-Split, and the loss function is MSE(wo).
Method 𝛼 ACC MAE

Top-1 WAD-2 WAD-3

𝛼ULD+(1 − 𝛼)GLC

0.0 77.09 5.855 5.391 5.043
0.2 78.40 5.334 4.815 4.465
0.4 78.65 5.595 5.073 4.710
0.6 77.29 5.939 5.347 5.049
0.8 79.22 6.082 5.423 5.167
1.0 79.33 6.089 5.291 5.114

Table 11
Results on the highly-reverberant multi-source data, where the backbone network is
the SNet-Split. When using one-hot encoding, the training loss function is WD, while
for all others it is MSE(wo). The parameter 𝛼 in ‘‘𝛼ULD+(1 − 𝛼)GLC’’ is set to 0.2.

Subset Method ACC MAE

Top-1 WAD-2 WAD-3

Simulated data L2

SA – 15.647
One-hot 62.56 6.145 5.892 5.896
GLC 70.74 4.760 4.386 4.093
SLD 70.64 4.798 4.765 4.495
ULD 73.53 5.296 4.554 4.524
𝛼ULD+(1 − 𝛼)GLC 73.01 4.446 4.008 3.739

Office

SA – 27.577
One-hot 60.47 6.422 6.309 6.291
GLC 64.23 6.130 6.756 6.180
SLD 63.62 6.204 7.005 6.244
ULD 62.79 6.505 6.500 6.434
𝛼ULD+(1 − 𝛼)GLC 65.22 6.107 6.620 6.081

Conference

SA – 29.279
One-hot 44.96 12.723 12.552 12.543
GLC 53.86 11.349 11.442 11.211
SLD 53.63 11.714 11.941 11.640
ULD 54.58 12.776 12.655 12.591
𝛼ULD+(1 − 𝛼)GLC 53.68 10.519 10.459 10.229

in Table 11, results are overall consistent with previous experiments,
showcasing sustained superior performance of our method.

8. Conclusions

In this paper, we propose a novel output architecture for SSL,
incorporating three components: (i) ULD as the encoding method, (ii)
WAD as the decoding method, and (iii) NLAE and MSE(wo) as the
training loss functions. Specifically, unlike one-hot encoding, ULD is a
one-to-one encoding method, resulting in the unbiased inverse mapping
between label distribution and sound source position. Unlike Top-1
decoding, WAD considers not only peak class but also sidelobes during
decoding. NLAE and MSE(wo) integrate benefits of cross-entropy-like
and MSE-like functions. They can be viewed as regression-based loss
functions applied per class. Experimental results on both simulated and
real-world data show WAD significantly outperforms quantization error
limits, especially with ULD encoding. The proposed NLAE is best for
soft labels in simple environments, while MSE(wo) performs best for
soft labels in challenging environments. The overall output architecture
performs best in most cases.
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Appendix A. Proof of Theorem 1

Proof. Let 𝐼 be a positive integer. We have 𝛾 ∼  (0, 𝐼), and 𝑛 = ⌊𝛾⌋.
Further, we have round(𝛾) = argmin𝑖{|𝛾 − 𝑖|}𝑖={𝑛,𝑛+1}. Then, the expected
value of |𝛾 − round(𝛾)| is:

E(|𝛾 − round(𝛾)|) = ∫

𝑛+1

𝑛
|𝑥 − round(𝑥)|𝑑𝑥

We can split the interval [𝑛, 𝑛 + 1] into two parts: [𝑛, 𝑛 + 0.5) and
𝑛 + 0.5, 𝑛 + 1]. In the interval [𝑛, 𝑛 + 0.5), round(𝑥) = 𝑛; in the interval
𝑛 + 0.5, 𝑛 + 1], round(𝑥) = 𝑛 + 1. Therefore:

(|𝛾 − round(𝛾)|)

= ∫

𝑛+0.5

𝑛
|𝑥 − 𝑛|𝑑𝑥 + ∫

𝑛+1

𝑛+0.5
|𝑥 − (𝑛 + 1)|𝑑𝑥

= ∫

𝑛+0.5

𝑛
(𝑥 − 𝑛)𝑑𝑥 + ∫

𝑛+1

𝑛+0.5
((𝑛 + 1) − 𝑥)𝑑𝑥

=
[

(𝑥 − 𝑛)2

2

]𝑥=𝑛+0.5

𝑥=𝑛
+
[

(𝑛 + 1)𝑥 − 𝑥2

2

]𝑥=𝑛+1

𝑥=𝑛+0.5

= 1
8
+ 1

8

= 1
4
Through the above formula, we can further calculate the mathemat-

ical expectation of the quantization error as follows:

E(𝑞𝑒) = E(|𝑝 −
𝐼
∑

𝑖=0
𝑦1-hot
𝑖 × 𝑖 × 𝑙|)

= E(|𝛾 × 𝑙 − 1 × round(𝛾) × 𝑙|)

= E(|𝛾 − round(𝛾)|) × 𝑙

= 𝑙
4

□

Appendix B. Proof of Theorem 2

Proof. Let 𝛾 be a non-negative real number. We have int(𝛾) = ⌊𝛾⌋, and
eci(𝛾) = 𝛾 − ⌊𝛾⌋, which derives:

(1 − deci(𝛾)) × int(𝛾) + deci(𝛾) × (int(𝛾) + 1)

= int(𝛾) − deci(𝛾) × int(𝛾) + deci(𝛾) × int(𝛾) + deci(𝛾)

= int(𝛾) + deci(𝛾)

= 𝛾 □

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.neunet.2024.106679.
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