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ABSTRACT

Recently, an end-to-end two-dimensional sound source local-
ization algorithm with ad-hoc microphone arrays formulates
the sound source localization problem as a classification prob-
lem. The algorithm divides the target indoor space into a set
of local areas, and predicts the local area where the speaker lo-
cates. However, the local areas are encoded by one-hot code,
which may lose the connections between the local areas due to
quantization errors. In this paper, we propose a new soft label
coding method, named label smoothing, for the classification-
based two-dimensional sound source location with ad-hoc mi-
crophone arrays. The core idea is to take the geometric con-
nection between the classes into the label coding process.The
first one is named static soft label coding (SSLC), which mod-
ifies the one-hot codes into soft codes based on the distances
between the local areas. Because SSLC is handcrafted which
may not be optimal, the second one, named dynamic soft label
coding (DSLC), further rectifies SSLC, by learning the soft
codes according to the statistics of the predictions produced
by the classification-based localization model in the training
stage. Experimental results show that the proposed methods
can effectively improve the localization accuracy.

Index Terms— Ad-hoc microphone arrays, sound source
localization, soft label coding

1. INTRODUCTION

Sound source localization is a problem of estimating the rel-
ative positions of sound sources to the locations of micro-
phone arrays. It has a wide range of applications, such as
speech enhancement and separation [1], speech recognition
[2], hearing aids [3], etc. Conventionally, the problem is sim-
plified to the estimation of the direction of arrival (DOA) of
sound sources [4]. Representative approaches include time
difference of arrival (TDOA) [5], steered response power with
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phase transform (SRP-PHAT) [6], and multiple signal classi-
fication (MUSIC)[7]. Recently, there is increased research
interest in using deep neural network (DNN) for localizing
sound sources. It takes spatial features, e.g. phase spectro-
gram [8], cross-correlation [9], or spatial pseudo-spectra [10],
as the input of DNN to estimate the DOA. The aforemen-
tioned methods are based on a single microphone array.

If we jointly use multiple microphone arrays for sound
source localization, then we might get the two-dimensional
(2D) localization of sound sources directly. Ad-hoc micro-
phone array, which collaboratively organizes a set of ran-
domly distributed microphone arrays in space, is a solution
to the problem. Early methods are mostly based conventional
signal processing methods [11]. Recently, deep-learning-
based methods were studied [12], which is the focus of the
paper. Although the pioneering works in [13] made signifi-
cant contribution to the direction, they make strong assump-
tions to the ad-hoc microphone arrays, such as fixed positions
of microphone nodes at both the training and test stages,
which do not fully utilize the advantage of the flexibility of
ad-hoc arrays. Although the method in [14] can handle flex-
ible ad-hoc arrays that consists of any number of randomly
distributed ad-hoc nodes, it is a stage-wise method. Its deep
models are used only at each ad-hoc node, leaving the 2-
dimensional localization process an independent geometric
approach.

As we know, a key advantage of deep learning is that it
can address a task in an end-to-end manner. In [15], an end-
to-end 2D sound source localization model with ad-hoc arrays
was proposed. It formulates the 2D sound source localization
problem as a classification problem, where each class repre-
sents a local area of a targeted room and is encoded by a one-
hot code. Moreover, the method is effective in the situation
where each ad-hoc node contains only a single microphone.
However, the position of a speaker is estimated as a one-hot
code, which can be problematic. For one-hot, the correct class
is the same distance from any incorrect class.

To address the problem, we propose a label smoothing al-
gorithm to remedy the weakness of the one-hot codes. Specif-
ically, we first propose static soft label coding (SSLC) basedIC
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Fig. 1. The classification-based formulation of 2D sound
source location with ad-hoc microphone arrays, where a room
is partitioned into multiple local areas.

on the distances between the centers of local regions instead
of the one-hot codes. Because SSLC is handcrafted that may
not be accurate enough, we further propose to remedy SSLC
by dynamic soft label coding (DSLC). DSLC is learned from
the inference statistics produced by the localization model at
the training stage. Experimental results demonstrate the ef-
fectiveness of the proposed method.

2. RELATED WORK

The proposed method is related to the weakness of one-hot
codes. Specifically, one-hot codes set the distance between
any pair of classes the same, and do not consider the inter-
class similarity within classes. To address the problem, label
smoothing was originally proposed for computer vision [16],
which improves the generalization performance of classifica-
tion models. However, it still ignores the inter-class similar-
ity. An online label smoothing method based on the statistics
of the predictions was proposed in [17]. The generated soft
labels reflect the inter-class similarity. However, directly ap-
plying the above methods to sound source localization makes
the classification model non-convergence and yields poor per-
formance. In this paper, we propose to jointly optimize the
above two soft labels for the weakness of the one-hot coding
in the end-to-end sound source localization.

3. METHOD

3.1. End-to-end sound source localization

As shown in Fig. 1, the end-to-end sound source localiza-
tion with ad-hoc microphone arrays partitions a targeted room
space into local areas, each of which is encoded by a one-hot
code. The architecture of the method, which is shown as part
of Fig. 2 that does not include the module in the red box, takes
the one-hot codes of the positions of the ad-hoc nodes as spa-
tial input features, and takes the short-term Fourier transform
(STFT) from the ad-hoc nodes as acoustic features. It formu-
lates the sound source localization problem as a classification

Fig. 2. The proposed end-to-end sound source localization
model with soft labels. The soft label generation module is
highlighted in the red box.

problem, which aims to classify a sound source into one of
the grids. Because the spatial information is encoded in the
one-hot codes, it could work with a special scenario where
each ad-hoc node contains only a single microphone, which
is the working scenario of this paper.

The original end-to-end sound source localization takes
the one-hot coding to encode the room space. Suppose the
set of the one-hot codes for an n-class classification problem
is S1−hot = {S1−hot

i }ni=1, with the code for the ith class
S1−hot
i = [S1−hot

i,1 , . . . , S1−hot
i,k , . . . , S1−hot

i,n ] defined as:

S1−hot
i,k =

{
1, if k = i
0, otherwise , ∀k = 1, . . . , n (1)

where n is the total number of local areas.
In the following of this section, we focus on introducing

the novel module highlighted in the red box in Fig. 2.

3.2. Static soft label coding

Unlike conventional classification problems where the classes
may be fundamentally different and uncorrelated, the classes
in our sound source localization problem are correlated. For
example, we know the geometric location and similarity of
the local areas, such as the distance between the centers of
any two local areas. Therefore, one-hot coding may not be
suitable to our problem.

Here we propose SSLC to address this issue. The SSLC
for the ith class, denoted as SSSLC

i = [SSSLC
1 , . . . , SSSLC

i ,
. . . , SSSLC

n ], sets its kth element according to the distance be-
tween the centers of the ith and kth local areas. Formally,
SSLC is defined as a Gaussian function of the distance:

SSSLC
i,k =

{
1√
2πσ

∫ −di,k
−∞ e

− θ2

2σ2 dθ, if k ̸= i

1−
∑n

∀1≤j≤n,j ̸=i Sj,k, otherwise
∀k = 1, . . . , n

(2)
where di,k is the distance between the ith and kth local ar-

eas, σ is the standard deviation that controls the spread of the
Gaussian distribution. We set σ = lave/αs where lave is the
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average diagonal length of the local areas of all rooms in the
training set, and αs is a tunable hyperparameter.

Given the above formulation, we are able to train the clas-
sification model by using SSLC, i.e. {SSSLC

i }ni=1, as the
ground-truth label instead of the one-hot coding. The train-
ing loss of a single utterance can be:

LSSLC = −
n∑

k=1

SSSLC
i,k log ŷk (3)

where x is the input feature of the model, and ŷk is the soft-
max output at the kth unit.

3.3. Dynamic soft label coding

SSLC is a handcrafted label, which may not reflect the cor-
relation between the local areas fully. To address this issue,
here we propose to learn a coding book, named DSLC, via
online label smoothing [17] in the training stage.

DSLC is obtained with the guidance of the ground-truth
one-hot labels in the training stage. Specifically, for the tth
epoch (t ≥ 1), suppose the softmax output of the classifica-
tion model for an input utterance is ŷj = [ŷ1, . . . , ŷn], and
the ground-truth one-hot code of the speaker position of the
utterance is S1−hot

i . If the speaker position is predicted cor-
rectly, i.e. argmax ŷ = i, then we pick ŷ into a set denoted
as Y(t)

i ; otherwise, we discard ŷ.
Then, we generate a DSLC for the ith class by averaging

the elements of Y(t)
i :

S
(t)
i =

1∣∣∣Y(t)
i

∣∣∣
∑

∀ŷ∈Y(t)
i

ŷ, ∀i = 1, . . . , n (4)

Finally, for the (t + 1)th epoch, we use DSLC generated
in the tth epoch, i.e. {S(t)

i }ni=1, as the supervision to guide
the training, where the training loss of of a single utterance in
this epoch is defined as:

LDSLC
(t+1) = −

n∑
k=1

S
(t)
i,k log ŷk (5)

where S
(t)
i,k is the kth element of S(t)

i .
Note that, before the first epoch, i.e. t = 0, we use the

vanilla label smoothing [16] to initialize {S(0)
i }ni=1.

3.4. Joint training

The reliability of DSLC at the (t+1)th epoch depends on the
deep model at the tth epoch. Because the initial deep model is
too weak, training DSLC from the beginning is very difficult
and sometimes unconverged.

To address this issue, we propose a joint training strategy,
which uses static labels, such as SSLC or one-hot codes, to
assist the training of DSLC:

Ljoint
(t) = α

(t)
d LDSLC

(t) + (1− α
(t)
d )LSSLC (6)

where α
(t)
d is a tunable hyperparameter at the tth epoch.

This raises a question of how to set α(t)
d . The first choice

is to set α(1)
d = α

(2)
d = . . . = α

(T )
d to a constant αd. An-

other choice is to adaptively adjust α(t)
d according to the im-

portance of LDSLC
(t) . In this paper, we set α(t)

d = ACC(t) ,

where ACC(t) is the prediction accuracy of the tth model on
the training set. Of course, we also can set α(t)

d a learnable
parameter of the deep model.

4. EXPERIMENTS

4.1. Experimental setup

We conducted experiments on simulated data. The source
speech is from the LibriSpeech corpus [18]. The train-clean-
360 subset, dev-clean subset and test-clean subset of the cor-
pus contain 921, 40 and 40 speakers respectively. We used
voice activity detection (VAD) provided by the Torchaudio
module [19] to remove silent segments. The speech segments
that are less than 2 seconds after VAD were discarded. For
each of the remaining segments, we randomly selected a 2-
second piece to generate multi-channel data with reverbera-
tion. We used the Pyroomacoustics [20] module to generate
room impulse responses. The reverberation time T60 of all
simulated speech follows a uniform distribution ranging from
[0.3, 1.0] second. We further added additive noise to the re-
verberant speech. The additive noise was randomly selected
from a large scale noise set that contains 126 hours of differ-
ent types of noise segments. The signal-to-noise ratio of an
utterance was selected randomly from a range of [20, 50] dB.
Eventually, the number of utterances in the training, valida-
tion, and test sets are 18000, 2500, and 2500, respectively.

We generated 15 rooms of different sizes, where 10 rooms
were used for training, and 5 rooms were used for testing.
The length and width of the rooms range from 4m to 10m.
The height of the rooms was fixed at 3m. The height of the
microphone arrays and sound source was fixed at 1m. Each
room was divided into 15 × 15 local areas in 2D. For each
utterance, we first randomly picked a room, then randomly
set its speech source in one of the 225 local areas, and finally
randomly placed 30 ad-hoc microphone nodes in the other
224 local areas.

We used the DNN model in [15] as our backbone net-
work. First, it uses the ad-hoc node’s position code and STFT
acoustic feature as the inputs for two encoders, respectively.
The concatenated outputs of the two encoders are fed into
a spatial-temporal attention network in the following phase.
The attention network sequentially performs cross-channel at-
tention, channel fusion, and cross-frame attention. The local
region of the speaker is considered to be the average output
along the time axis of the spatial-temporal attention network.
ReLU was used as the activation function, and Adam was
used as the optimizer to train the model.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on August 01,2023 at 15:29:08 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. MAE (in meters) and ACC (%) results of the proposed five soft label coding methods and the one-hot coding.

Method
Room1 Room2 Room3 Room4 Room5 Average

MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC MAE ACC

One hot [15] 0.2135 54.6 0.2471 51.0 0.2959 46.6 0.3283 49.8 0.3207 54.0 0.2811 51.2
SSLC 0.2260 53.4 0.2566 49.2 0.3001 48.8 0.3363 43.6 0.3344 52.8 0.2907 49.6
DSLC+One hot (αd is a constant) 0.2226 54.2 0.2592 47.6 0.3079 43.0 0.3234 47.4 0.3225 55.4 0.2871 49.5
DSLC+SSLC (αd is a constant) 0.2115 57.6 0.2448 52.4 0.2873 47.0 0.3088 48.2 0.3185 56.0 0.2742 52.2
DSLC+One hot (α(t)

d is a variable) 0.2149 56.0 0.2689 45.0 0.3052 45.0 0.3239 49.6 0.3408 47.8 0.2907 48.7
DSLC+SSLC (α(t)

d is a variable) 0.2059 57.2 0.2577 47.8 0.2974 47.8 0.2998 47.4 0.3351 53.2 0.2792 50.7

Table 2. Learning error (in meters) comparison betwen one-
hot coding and the proposed DSLC+SSLC (αd is a constant)
method.

Room One hot DSLC+SSLC Relative reduction (%)

Room1 0.0701 0.0681 2.83
Room2 0.0942 0.0919 2.44
Room3 0.1310 0.1224 6.56
Room4 0.1484 0.1289 13.14
Room5 0.1156 0.1134 1.90
Average 0.1119 0.1049 6.26

We used mean absolute error (MAE) to evaluate the pro-
posed method:

MAE =
1

I

I∑
i=1

√(
xspkr
i − x̃spkr

i

)2

+
(
yspkri − ỹspkri

)2

(7)
where I is the number of the test utterances, (xspkr

i , yspkri )
is the ground truth coordinate of the ith speaker position, and
(x̃spkr

i , ỹspkri ) is the coordinate of the center of the local area
of the predicted speaker position ỹi.

Because the region in a local area is quantized to the cen-
ter of the local area, the quantization error inevitably exists
as an upperbound of any methods based on the classification
formulation of the sound source localization. We denote the
upperbound as UB-MAE. In this paper, the average UB-MAE
over the 5 test rooms is 0.1693m.

4.2. Results

We trained sound source localization models with 6 label cod-
ing methods, as summarized in Table 1. From the results, we
see that the proposed joint training method DSLC+SSLC (αd

is constant) generally outperforms one-hot. In most cases,
the higher the ACC, the smaller the MAE. The performance
of the joint training is always better than the one-hot cod-
ing, no matter whether α(t)

d is a constant or a variable. The
schemes of adaptively adjusting αd does not achieve better
results than the schemes of setting αd to a constant. This is
probably caused by that setting α

(t)
d = ACC(t) makes DSLC

overfit to the training set.

Table 3. Effect of αs in SSLC on performance.
αs 2.6 2.7 2.8 2.9 3

MAE (m) 0.2793 0.2796 0.2778 0.2782 0.2822
ACC (%) 50.5 51.7 51.0 51.6 50.7

Table 4. Effect of αd in “DSLC+SSLC (αd is a constant)” on
performance.

αd 0.2 0.4 0.5 0.6 0.8

MAE (m) 0.2839 0.2741 0.2726 0.2772 0.2845
ACC (%) 49.2 50.6 51.4 49.6 50.2

Because the quantization error always exist, the error in
Table 1 contains two parts, one from the quantization error,
and the other one from the learning error caused by the cod-
ing methods. We further investigated the learning error inde-
pendently in Table 2 and found our proposed method achieved
a relative 6.26% average reduction.

There are two tunable hyperparameters, αs in SSLC and
αd in “DSLC+SSLC (αd is a constant)”. Here we study the
their effects on performance. For αs in SSLC, when αs <
2.6, the probability that the speaker falls in the ground-truth
local region is lower than 0.8 which results in poor perfor-
mance; when αs > 3.0, SSLC approaches very close to one-
hot coding. Therefore, we studied αs ∈ [2.6, 3.0] in Table
3. From the table, we see that the optimal value of αs is 2.8.
For αd in “DSLC+SSLC (αd is a constant)”, we searched αd

from a range of (0, 1), and find that, as shown in Table 4, the
optimal value of αd is 0.5.

5. CONCLUSION

In this paper, we propose a label smoothing algorithm against
the weakness of the one-hot coding in the end-to-end sound
source localization with ad-hoc microphone arrays. It in-
cludes a handcrafted SSLC, calculated from local area center
distances, and a learnable DSLC, updated during training pro-
cess using correctly classified sample statistics. Experimental
results show the effectiveness of the proposed algorithm over
the one-hot coding, without increasing the model complexity
and training time.
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