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decision result of the SV system. In addition, many works

have contributed to exploring robust adversarial examples in

the aspects of universality [4, 5], realistic scenarios [5, 6], and

imperceptibility [7].

In order to defend against adversarial attacks, a number of

countermeasures including proactive defense and reactive de-

fense have been proposed. Proactive defense approaches need

to modify the SV model, which is inconvenient to deploy. For

example, Wang et al. [8] added an adversarial regularization

loss term to improve the robustness of the model against

adversarial examples. Reactive defense approaches which are

subdivided into mitigation-based and detection-based, can be

deployed directly in front of the SV system. For example,

Zhang et al. [9] proposed an adversarial separation network

to restore the clean speech. Wu et al. [10] used a cascaded

self-supervised module as a filter to remove adversarial noise.

Note that the works in [9, 10] are all mitigation-based de-

fense methods. In addition, Li et al. [11] trained a VGG-

like binary detector to detect adversarial examples. Wu et al.

[12] proposed to detect adversarial examples by the absolute

discrepancy score before and after the phase reconstruction of

the spectrograms, using either the Griffin-Lim algorithm or the

Parallel-Wave-GAN (PWG) model. Villalba et al. [13] used an

x-vector model to train an embedding feature extractor, and

detected adversarial examples by comparing the similarity of

the embedding features. Note that the works in [11–13] are all

detection-based defense methods.

However, we found that existing detection-based defense

methods on SV either require additional training or are time-

consuming. To address the shortcomings simultaneously, we

intend to directly utilize the fragility of adversarial exam-

ples after feature-level transformation. In this paper, we pro-

pose to detect adversarial examples by Masking the input

LogFBank at High frequencies (MLFB-H) or Masking the

input LogFBank using one-order Difference (MLFB-D). The

proposed methods are training-independent and have a fast

detection speed. Specifically, we assume that the adversarial

perturbation is evenly added to the input LogFBank. The

foundation of the proposed methods is that masking the parts

of the LogFBank feature that contain less speaker information

has a small impact on genuine examples and a large impact

on adversarial examples respectively. Hence, we can detect

adversarial examples by comparing the score variation of the

Abstract—Adversarial examples of speaker verification (SV) 
systems are the clean audio recordings added with imperceptible 
perturbation. They are generated to manipulate the decision of 
SV, which poses a serious threat to the security of SV. Therefore, 
many adversarial example detection methods have been proposed 
to defend against such adversarial attacks. However, existing 
methods either require additional training of detection models 
or are time-consuming. In this paper, we propose a non-training 
and effective method to detect adversarial examples. It simply 
masks the parts of the input speech features (e.g. LogFBank) that 
contain less speaker information. The masked parts will inevitably 
have a small impact on genuine examples, and large impact on 
adversarial examples. Therefore, the adversarial examples can be 
detected by analyzing the absolute alteration of scores before and 
after masking. Experimental results on ResNet34 showed that our 
method outperforms the training-dependent Parallel-Wave-GAN 
baseline, and only consumes 1/10 of the detection time of the 
baseline.

I. INTRODUCTION

Speaker verification (SV) is a task of determining whether 
two utterances are from the same speaker [1]. With the 
widespread application of SV, such as authentication, bank 
transaction, and forensics, its security has become increasingly 
important. However, the adversarial attacks proposed in recent 
years can defeat a SV system at a very high signal-to-

noise ratio (SNR) [2], which brings great challenges to the 
application of SV.

Adversarial attack refers to adding imperceptible perturba-

tion to the input test utterance of a SV system, which leads 
the SV system to an expected wrong decision of the attacker. 
The goal of the attacker has the following two situations. The 
first situation classifies non-target trials as targets, which is 
called impersonation attack. The second situation classifies 
target trials as non-targets, which is called evasion attack. We 
call the perturbed test speech as adversarial examples, which 
has been previously studied in speech processing systems such 
as automatic speech recognition and SV. For example, Villalba 
et al. [2] found that the state-of-the-art (SOTA) SV models 
are vulnerable to adversarial examples in white-box scenarios 
where the attacker knows the model structure and parameters, 
even in high SNR levels of 30-60 dB [2]. Kreuk et al. [3] 
studied the vulnerability of SV against transferable adversarial 
attacks under the condition of cross-datasets and cross-features. 
It indicated that the adversarial examples are still effective in 
black box scenarios where the attacker can only query the
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Fig. 1: Pipeline of the proposed detection methods. The symbols X
(t) and X̂

(t) denote the original and masked acoustic features (e.g. LogFBank)
respectively. The SV score variation |s− ŝ| after the masking operation is used to distinguish adversarial examples (AE) and genuine examples (GE).

examples before and after the masking operation, where the

score is the cosine similarity between the test utterance and

the enrollment utterance. We evaluate the effectiveness of

the proposed methods in scenarios that adversarial examples

of multiple intensities are mixed on two SOTA SV models.

Experimental results show that the proposed methods achieve

a comparable detection equal error rate (EER) with the PWG

baseline, with an empirical computational complexity of only

1/10 of the latter.

II. PRELIMINARIES

A. Speaker Verification

SV aims at verifying whether an utterance is pronounced

by a hypothesized speaker. In the test stage of SV, given

an enrollment utterance x
e and a test utterance x

t, we first

transform the utterances into acoustic features (e.g. LogFBank

or MFCC), denoted as X
(e) and X

(t) respectively. Then, an

SV model, which consists of a frame-level feature extractor,

a pooling layer, and a segment-level feature extractor from

bottom-up, extracts speaker embeddings from the acoustic

features. Finally, we determine whether the two utterances

come from the same speaker by comparing the similarity of

their speaker embeddings with a predefined threshold, which

is formulated as follows:

s = Sθ

(

f (xe) , f
(

x
t
)

)

H1

≷
H0

η, (1)

where s is the similarity of the two embeddings, Sθ (·) denotes

the well-trained SV model S (·) with parameters θ, f (·) is

used to extract the acoustic features, and η is the predefined

threshold, H1 represents the hypothesis of xe and x
t belonging

to the same speaker, and H0 is the diametrical hypothesis of

H1.

B. Audio Adversarial Attack

Audio adversarial examples are crafted by deliberately

adding subtle noise to speech signals, which ultimately makes

a speech processing system generate special errors that are

expected by the attacker. In the case of white-box attacks

where the attacker has complete access to all components of

the victim model, many algorithms obtain the gradient of the

loss with respect to the input audio for an efficient search of

the adversarial noise. In this paper, we use the white-box attack

algorithm Basic Iterative Method (BIM) [14] as the attacker. It

iteratively searches for adversarial examples via the following

formula:

xn+1 = Clip
x

t,ǫ

(

xn + k×α sign
(

∇xn
Sθ,f (x

e,xn)
)

)

, (2)

where

k =

{

−1, if xe and x
t contribute to a target trial

1, if xe and x
t contribute to a non-target trial

and n = 0, 1, · · · , N , with N = ⌈ǫ/α⌉ as the number of

iterations, ⌈·⌉ is the function of taking the upper bound, xn

is initialized by the test utterance, i.e. x0 = x
t (note that,

x
t is not normalized), ǫ constrains the maximum magnitude

of the perturbation, and Clip
x

t,ǫ (·) denotes an element-wise

clipping function which ensures ‖xn − x
t‖∞ ≤ ǫ, k controls

the direction of step, α is the step size, and the function sign (·)
only gets the direction of the gradient of the similarity score

against the input xn. When the adversarial attack algorithm

ends up with N iterations, an adversarial example x̃
t is found

as xN .

III. METHODS

A. Overview

The detection process is shown in Fig. 1. Given the test

utterance x
t, we first extract LogFBank feature X

(t) = f (xt),
where X

(t) ∈ R
F×T with F and T representing the number

of mel-filters and frames respectively.

Then, we calculate a mask matrix M to transform the speech

feature X
(t) to another masked speech feature X̂

(t) by:

X̂
(t) = M⊙X

(t) (3)

where ⊙ denotes the element-wise product operator. Here we

propose two methods to obtain M.

The first method, named MLFB-H, obtains the mask matrix

by:
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M =

[

1(F−l)×T

0 l×T

]

, (4)

where l is the length of masking, and the symbols 1a×b (or

0a×b) denotes an all one (or zero) matrix with a rows and b
columns.

The second method, named MLFB-D, masks the time-

frequency bins whose absolute values of their one-order dif-

ference along the frequency axis is smaller than a threshold:

Mi,j =











1, if

∣

∣

∣
X

(t)
i+1,j −X

(t)
i,j

∣

∣

∣
> ξ

0, if

∣

∣

∣
X

(t)
i+1,j −X

(t)
i,j

∣

∣

∣
≤ ξ

,

∀ i = 0, 1, · · · , F − 2, ∀ j = 0, 1, · · · , T − 1

(5)

where the subscripts i and j represent the frequency dimension

and the time dimension respectively, ξ is the threshold of the

masking, Mi,j is an element of the mask matrix M. Note that,

we splice an all-zero matrix 01×T at high frequencies to ensure

that M and X
(t) have the same dimension, i.e., MF−1,j = 0.

After obtaining the masked speech feature X̂
(t), two simi-

larity scores are calculated by

s = Sθ

(

X
(e),X(t)

)

, and ŝ = Sθ

(

X
(e), X̂(t)

)

. (6)

Finally, we compare the score variation υ = |s − ŝ| with a

detection threshold τdet. When υ > τdet, the test utterance x
t

is detected as an adversarial example, and vice versa.

B. Evaluation

We use EER and detection success rate (DSR) to evalu-

ate the performance of the proposed method following the

evaluation method in [12]. For the set of genuine examples

G = {(xt
i,x

e
i ) | i = 0, 1, · · · , I}, a score variation set Vgen

after masking can be obtained by:

υi =
∣

∣

∣
Sθ

(

f (xe
i ) , f

(

x
t
i

)

)

− Sθ

(

f (xe
i ) , f̂

(

x
t
i

)

)∣

∣

∣
(7)

where υi ∈ Vgen with i = 0, 1, · · · , I , and f̂ (xt
i) represents

that the test utterance x
t
i is transformed by a cascade of the

acoustic feature extractor and the masking operation. For the

set of adversarial examples A = {(x̃t
i,x

e
i ) | i = 0, 1, · · · , I},

similarly, a score variation set Vadv is calculated by (7), except

that xt
i is replaced by the adversarial example x̃

t
i.

The evaluation metric EER is defined by the following

formulas:

FARdet (τ) =
|{υi > τ | υi ∈ Vgen}|

|Vgen|
,

FRRdet (τ) =
|{υi ≤ τ | υi ∈ Vadv}|

|Vadv|
,

EERdet = FARdet (τeer) = FRRdet (τeer) ,

(8)

where FARdet (τ) and FRRdet (τ) are the false accept rate

(FAR) and false reject rate (FRR) respectively of the detection

given a threshold τ , |S| represents the number of elements

in set S . After manually given a tolerable FAR of detection,

denoted as FARgiven, we define the evaluation metric DSR as:

DSR =
|{υi > τdet | υi ∈ Vadv}|

|Vadv|
, (9)

τdet = argmin
τ

∣

∣FARdet (τ)− FARgiven

∣

∣, (10)

where τdet is the detection threshold for FARgiven. Since the

detection threshold in (10) depends only on the score variation

set Vgen and FARgiven, we evaluated the DSR of detection

method under the hybrid sets of adversarial examples with

multiple perturbation intensities.

IV. EXPERIMENTAL SETTINGS

A. Dataset

All of our experiments were conducted on the VoxCeleb

dataset [15], which contains over one million utterances from

more than 7,000 speakers of different ethnicities, accents,

professions and ages. The two SOTA SV models were trained

on VoxCeleb2, and tested on the original trials. Because it

is very time-consuming to generate adversarial examples for

all 37,611 trials, we randomly selected 1,000 trials from

the original ones, and conducted the attack and detection

experiments on the 1,000 trials.

B. SV Models

Different x-vector SV models are characterized by differ-

ent network structures and pooling strategies. In this study,

we used ECAPA TDNN1 and ResNet341 x-vector models,

with the attentive statistical pooling and temporal statistical

pooling strategy respectively. A hamming window of width

25ms and step 10ms is used to partition speech signals into

frames. A 80-dimensional LogFBank followed by cepstral

mean normalization were used to extract the acoustic features.

Data augmentation, such as perturbing speed, superimposed

disturbance and simulating reverberation were adopted in

training the SV models. In addition, they all used additive

angular margin softmax (AAM-Softmax) as the training loss

and cosine similarity as the back-end scoring.

C. Detection Settings

We followed the settings in [12]2 to generate adversarial

examples. With the step size α = 1 fixed, we crafted adversar-

ial examples set Aǫ for each value of perturbation constraint,

where ǫ = 5, 10, 25, 20, 30, 40. The genuine examples set,

denoted as Gǫ, was generated by adding the gaussian white

noise to obtain a targeted SNR at the sentence level. In

addition, the masking length l = 8 and the masking threshold

ξ = 0.05 were adopted in MLFB-H and MLFB-D respectively.

1https://github.com/wenet-e2e/wespeaker
2https://github.com/hbwu-ntu/spot-adv-by-vocoder
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Fig. 2: EER performance of the five detection methods with different
perturbation constraints ǫ.
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Fig. 3: DET performance of the five detection methods in the condition that
multiple adversarial examples are mixed.

V. RESULTS AND DISCUSSION

Table I shows the attack results of adversarial examples

on the two SOTA SV models, where the EER of the victim

model, attack success rate (ASR) and SNR are used to evaluate

attack performance with different threat models and different

perturbation strengths. From the table, it can be seen that

ECAPA TDNN and ResNet34 achieve an EER of 1.20%

and 1.07% respectively on the standard entire trials before

being attacked, which indicates that the SV models are SOTA.

However, with the increase of the attack intensity, both EER

and ASR are increased from 50%+ to 99%+, while the average

SNR remains above 37dB, which shows the strong threat of

the generated adversarial examples. The following experiments

were conducted on such threatening adversarial examples.

In Fig. 2, EER is used to evaluate the detection performance

of five methods on two SV models. According to the definition

in Section IV-C, the detection EER was calculated on Aǫ and

Gǫ by (8), where ǫ = 5, 10, 15, 20, 30, 40. Experimental results

on the ECAPA TDNN SV model show that the detection

performance of MLFB-H/D is better than GL-mel and GL-lin

methods, and slightly worse than that of PWG. Experimental

results on the ResNet34 SV model show that the detection

performance of MLFB-D is superior to all other four methods.

Although the detection performance of MLFB-H is the worst

after the perturbation intensity is higher than 20, its EER is

still less than 4%.

In Fig. 3, the detection error tradeoff (DET) curve is used

to evaluate the detection performance. The score variations

are obtained from Aall and Gall, where Aall is the set of the

adversarial examples mixed by multiple perturbation intensi-

TABLE I
ATTACK PERFORMANCE OF THE BIM ATTACKER ON TWO SOTA SV

MODELS. THE EERS OF THE ECAPA TDNN AND RESNET34 SV
MODELS ON GENUINE EXAMPLES ARE 1.20% AND 1.07% RESPECTIVELY.

ǫ 5 10 15 20 30 40

ECAPA
TDNN

EER (%) 52.00 81.80 91.80 96.20 98.80 99.80
ASR (%) 51.30 80.80 90.90 95.70 98.70 99.30

SNR (in dB) 51.70 46.38 43.72 41.91 39.53 37.95

ResNet34
EER (%) 56.80 85.80 94.00 97.60 98.80 99.60
ASR (%) 56.10 83.90 93.00 96.80 99.00 99.30

SNR (in dB) 52.00 47.49 44.96 43.23 40.93 39.42

TABLE II
DETECTION SUCCESS RATE AND DETECTION TIME OF THE FIVE

DETECTION METHODS WITH DIFFERENT GIVEN FARS ON TWO SOTA SV
MODELS.

DSR (%) FARgiven (%) 5.0 1.0 0.5 0.1 Time/ms

ECAPA
TDNN

PWG 98.10 96.10 95.03 91.98 181.6
GL-mel 92.55 88.18 85.70 77.58 76.1
GL-lin 93.77 90.27 87.50 80.37 52.3

MLFB-H 94.50 89.95 87.67 74.17 18.0

MLFB-D 96.37 91.60 89.72 84.42 18.6

ResNet34

PWG 96.88 94.28 92.92 88.80 165.9
GL-mel 75.90 62.80 55.60 40.00 69.5
GL-lin 95.40 92.70 89.60 86.90 44.4

MLFB-H 97.40 93.68 91.62 80.03 16.0
MLFB-D 98.97 97.92 96.98 95.05 15.9

ties, and Gall is obtained in the same way. The results are

basically consistent with that in Fig. 2. From the figure, we see

that MLFB-D is slightly inferior to PWG on ECAPA TDNN,

but is superior to the other three methods. MLFB-D achieves

the SOTA performance on the ResNet34 SV model with a

detection EER of less than 2%.

Table II shows the DSR of the adversarial examples with a

given FAR as well as the average detection time. Consistently

with the condition of Fig. 3, here we mixed adversarial

examples of various strengths for the evaluation. Because the

score variation sets Vadv and Vgen can be obtained by the

sets of the hybrid examples Aall and Gall respectively using

(7), we calculate DSR by (9) with a given tolerable FAR.

From the table, we observe that (i) DSR decreases when FAR

drops from 5% to 0.1%. For example, the DSR of MLFB-D

decreases from 98.97% to 95.05% on ResNet34; (ii) when the

FAR is 0.1%, the proposed MLFB-D method can still reach a

DSR of 84.42% on ECAPA TDNN and 95.05% on ResNet34

respectively; (iii) the average detection time of the proposed

two methods under 1000 examples is only about 18ms, which

is only 1/10 of that consumed by the PWG method.

To explain why the detection methods are effective, we

summarized the statistics of the score variations υ = |s − ŝ|
between the adversarial examples and genuine examples for

the five detection methods in Fig. 4. Substantially, both the

baseline method in [12] and the proposed MLFB-H/D meth-

ods are seeking for a transformation that has the maximum

impact on the adversarial examples and minimal impact on the

genuine examples respectively. To achieve the best detection

performance, the proposed MLFB-H adopts the masking length

l to make a trade-off between the two impacts, so as to the
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Fig. 4: Boxline of the score variations of the adversarial examples (AE) and
genuine examples (GE) for the five detection methods on the ResNet34 SV

model.

effect of the masking threshold ξ adopted by MLFB-D.

VI. CONCLUSION

In this paper, we have proposed to detect adversarial ex-

amples by masking the input acoustic features of SV. The

proposed MLFB-H and MLFB-D differs in how the masks

are generated. The foundation for the success of the proposed

methods is that masking the parts of the acoustic features incor-

porating less speaker information will inevitably have a small

impact on genuine examples, and large impact on adversarial

examples. Experimental results show that the proposed adver-

sarial example detection method, MLFB-D, outperforms the

baseline models and achieves the SOTA detection performance

on ResNet34. Moreover, the proposed two methods do not

need model training and have a low cost of detection time.
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