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Abstract—Although the security of automatic speaker verifica-
tion (ASV) is seriously threatened by recently emerged adversarial
attacks, there have been some countermeasures to alleviate the
threat. However, many defense approaches not only require the
prior knowledge of the attackers but also possess weak inter-
pretability. To address this issue, in this paper, we propose an
attacker-independent and interpretable method, named learnable
mask detector (LMD), to separate adversarial examples from the
genuine ones. It utilizes score variation as an indicator to detect
adversarial examples, where the score variation is the absolute
discrepancy between the ASV scores of an original audio recording
and its transformed audio synthesized from its masked complex
spectrogram. A core component of the score variation detector is
to generate the masked spectrogram by a neural network. The
neural network needs only genuine examples for training, which
makes it an attacker-independent approach. Its interpretability lies
that the neural network is trained to minimize the score variation
of the targeted ASV, and maximize the number of the masked
spectrogram bins of the genuine training examples. Its foundation
is based on the observation that, masking out the vast majority of
the spectrogram bins with little speaker information will inevitably
introduce a large score variation to the adversarial example, and a
small score variation to the genuine example. Experimental results
with 12 attackers and two representative ASV systems show that
our proposed method outperforms five state-of-the-art baselines.
The extensive experimental results can also be a benchmark for
the detection-based ASV defenses.

Index Terms—Adversarial examples, detection, passive defense,
automatic speaker verification.
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I. INTRODUCTION

AUTOMATIC speaker verification (ASV) is a task of verify-
ing the identity of a speaker by his (or her) pre-recorded ut-

terance clips [1]. Deep-learning-based speaker verification tech-
niques can be categorized into two representative frameworks:
stage-wise [2], [3], [4] and end-to-end [5], [6], [7]. A fundamen-
tal difference between the two frameworks is their loss functions,
which are called classification-based loss and verification-based
loss, respectively [1]. Both of the two frameworks have achieved
excellent performance and have penetrated our daily lives with
real-world applications such as authentication, bank transaction
and forensics. However, adversarial attacks [8] were found to be
able to defeat an ASV system even at a high signal-to-noise ratio
(SNR) [9], which brought great challenges to the applications
of the ASV systems.

Adversarial attack is a technique that aims to induce an
ASV system to make wrong decisions by adding human-
imperceptible perturbations into the clean speech during the
inference phase of ASV. The perturbed speech, a.k.a adversarial
examples, has been extensively studied in the ASV research [10],
[11]. It can be generally classified into white-box attacks and
black-box attacks. In the case of white-box attacks, i.e. the
scenarios where the victim ASV model exposes all knowledge,
including parameters, structure, and training data, to the attacker.
Villalba et al. [9] found that the state-of-the-art (SOTA) x-vector
ASV models are extremely vulnerable even at a high SNR level
of 30 dB. Xie et al. [12] proposed to train a generator to efficiently
craft adversarial examples. Since the white-box attacks have
many obstacles in the reality, the black-box counterparts, which
are knowledge-independent, have been paid more attention.
Chen et al. [13] deployed a gray-box attack using only the
output similarity scores of ASV. Further, ASV models were
found to be vulnerable to transfer-based black-box attacks across
training datasets [14] and model structures [15]. In addition,
the works in [12], [16] explored robust adversarial examples
in terms of the universality and imperceptibility, respectively.
There are also some works focusing on applying adversarial
attacks to realistic scenarios, such as the over-the-air [17], [18]
or streaming input [17], [19] situations, and defeating the tandem
system of ASV and its auxiliary subsystems [18], [20].

Since adversarial attacks have posed the serious threat, it be-
comes foremost important to develop an effective countermea-
sure to protect the ASV systems. The current countermeasures
fall into two categories: proactive defense and passive defense.
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Proactive defense mainly utilizes adversarial data augmentation
techniques to retrain the ASV model, which is inconvenient
to deploy [10]. For example, the works in [21], [22], [23]
proposed to use adversarial examples generated by fast gradient
sign method (FGSM), projected gradient descent (PGD) and
feature scattering, respectively, to perform adversarial training
defenses [24]. Passive defense does not modify the ASV model,
instead, it defends against adversarial attacks by a mitigation
or detection component. For example, the works in [25], [26],
[27] proposed to remove the adversarial noise with the adver-
sarial separation network, Parallel-Wave-GAN (PWG) module,
and cascaded self-supervised learning based reformer (SSLR),
respectively. Wu et al. [28] also employed a voting strategy with
random sampling to mitigate the adversarial attacks.

This article focuses on the detection-based passive defense
approaches. There have been many works in this direction. Li
et al. [29] and Joshi et al. [30] discriminated adversarial and
genuine examples by training a VGG-like binary classification
network and an embedding feature extractor, respectively. How-
ever, their performance drops dramatically in unseen attacks,
since the training relies on the prior knowledge of adversarial
examples. Wu et al. [27] picked out adversarial examples by
the statistics of the similarity scores between enrollment utter-
ance and synthesized utterances from multiple cascaded SSLRs.
However, their experiments were conducted on the MFCC-level,
which means it works in the time-frequency domain and relies
on specific acoustic feature extractors. Peng et al. [31] proposed
to train a binary classifier by the consistency of the scores of
twin ASV models, i.e. a premier and a mirror one. Because
training the classifier needs genuine examples only, the method
gets rid of the dependence on specific attackers. However, it
needs to find a SOTA fragile ASV and a rare robust ASV. Wu
et al. [32] proposed to detect adversarial examples by score
variation, which was obtained by a vocoder composed of the
Griffin-Lim (GL) algorithm or PWG model. However, it lacks
strong interpretability, since there is no significant correlation
between the training loss of PWG and the score variation in
the detector. Chen et al. [33] separated adversarial examples
from genuine ones by a masking operation at the feature-level.
However, the masking operation is manually designed, and is
dependent on the dimensionality of the input features.

To address the aforementioned issues of attacker-dependent,
feature-dimensionality-dependent and manual selection, in this
article, we propose to detect adversarial examples by a learnable
mask detector (LMD). It takes score variation as an indica-
tor, and calculates the score variation by a masking operation
on complex spectrogram features. Specifically, it assumes that
short-time fourier transform (STFT) disperses manually-added
adversarial perturbation uniformly from the time domain to the
time-frequency domain. Naturally, due to the robustness of the
ASV model to noise, masking insignificant time-frequency bins
of the complex spectrograms has a large impact on adversarial
examples, and a small impact on genuine examples. Based
on the above assumption and observation, we aim to learn an
optimal mask matrix by a neural network, and then utilize the
absolute discrepancy of ASV scores before and after the masking
operation to detect the adversarial examples.

It is worth noting that (i) LMD only requires the genuine
examples for training, so it is attacker-independent; (ii) LMD
transforms the masked complex spectrograms to speech signals
in the time domain by the inverse short-time fourier transform
(iSTFT), thus it becomes feature dimensionality-independent;
(iii) LMD obtains the mask matrix by a neural network au-
tomatically, instead of designed manually; (iv) further, LMD
calculates the score variation of the detection as part of the
training loss of the neural network, which makes the detection
and training closely related. We conducted experiments on two
SOTA ASV models with diverse adversarial examples, and
obtained an excellent detection performance. For example, de-
tection equal error rates (EER) of no more than 5.9% and 10.1%
are achieved on the ECAPA_TDNN ASV and the Fast-ResNet34
ASV, respectively, in a noisy and blended detection scenarios.

Our contributions are summarized as follows:
� We propose a mask-based and attacker-independent de-

tector, named LMD, which effectively mitigated the threat
posed by adversarial examples to ASV systems. To demon-
strate the advantage of learning a mask matrix through
a neural network as LMD, we also propose a manually
designed masking complex spectrogram (MCS) method as
a baseline.

� We conducted experiments on two SOTA ASVs with abun-
dant attackers. The two ASVs, which behave as either
victims or defenders, are derived from two representative
frameworks, i.e. stage-wise ASV and end-to-end ASV. The
attackers cover three kinds of generation algorithms, and
act as either an impostor or an evader to the ASVs in both
white-box and black-box attacks.

� Inspired by [9], we evaluated the performance of a number
of detectors under a given SNR budget. The experiments
were also conducted in a scenario where the adversarial ex-
amples of a single attacker with different parameter settings
were mixed, and the corresponding genuine examples were
added with white-noise at the same SNR. Experimental
results show that our proposed method outperforms the
SOTA baselines in terms of the detection EER at an SNR
budget of 37 dB and the above.

The rest of the article is organized as follows: Section II
describes some preliminaries, including a brief introduction of
ASV and three adversarial attack algorithms. Section III intro-
duces our proposed methods. Section IV shows the experimental
settings and evaluation metrics, while the results are discussed
in Section V. Finally, Section VI hands concluding remarks.

II. PRELIMINARIES

A. Automatic Speaker Verification

ASV aims to confirm whether an utterance is pronounced
by a specified speaker. Deep-learning-based ASV consist of
a speaker embedding extractor (including feature engineering,
encoder network, and temporal pooling module), a training
objective function, and a similarity scoring back-end [1]. An
encoder network first extracts frame-level speaker embeddings
from acoustic feature sequences, e.g. logarithmic filter-banks
(LogFBank). Then, segment-level speaker features are obtained
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by the cascading of a pooling module and a feed-forward net-
work. Finally, either classification-based or verification-based
objective functions are used to train the above frame-level and
segment-level speaker embedding extractors jointly.

To demonstrate the generalizability of the proposed method
to different ASV systems, we adopt two representative training
objective functions, i.e. additive angular margin softmax (AAM-
Softmax) [4] and angular prototypical [7], for the victim ASV
systems. In the test phase of ASV, we determine whether a test
utterance xt and an enrollment utterance xe belong to the same
speaker by comparing the similarity of their speaker embeddings
with a predefined threshold η. The test phase is formulated as:

s = S
(
f
(
xt

)
, f (xe) ; θ

)H1

≷
H0

η, (1)

where S(· ; θ) denotes the well-trained ASV model S with
parameters θ, f(·) is an acoustic feature extractor, and H1

represents the hypothesis of xt and xe belonging to the same
speaker, and H0 is the opposite hypothesis of H1, s is the
similarity score of the two embeddings. The higher the similarity
score is, the more likely the hypothesis H1 is true.

B. Audio Adversarial Attack

Audio adversarial attack refers to an emerging technique that
artificially generates slight noise and blends it into genuine
speech, so as to make a speech signal processing system behave
wrongly according to the goal of the attacker [8].

In terms of how much knowledge of the system is exposed
to the attacker, we consider two attack scenarios: white-box and
black-box attacks respectively. In the white-box attack scenario,
the attacker has access to the full knowledge of the victim model,
and can optimize the adversarial noise with the help of gradient
from the victim model. In the black-box attack scenario, we
consider the transfer-based cross-model attacker, who uses the
adversarial examples generated by a substitute ASV model to
attack the victim ASV model.

In terms of the goal of a attacker, we consider both imper-
sonation and evasion types of attackers in this article. There are
two kinds of trials in a realistic ASV system, i.e. target trials
and non-target trials. A target (or non-target) trial regards the
test utterance xt and the enrollment utterance xe come from
the same (or different) speakers. Therefore, there are two types
of misclassification, which delivers two kinds of attackers: (i) a
non-target trial is misclassified as a target trial, and (ii) a target
trial is misclassified as a non-target trial. We refer to these two
attackers as adversarial impersonation and adversarial evasion,
respectively [9]. The adversarial impersonation (or evasion)
aims to generate an adversarial test utterance, which will be
judged by the victim ASV model as a target (or non-target) trial
of the enrollment utterance.

In this paper, we employ two gradient-based attackers, which
are the basic iterative method (BIM) [34] and PGD [34], and an
optimization-based attacker: Carlini Wanger (CW) [35], to craft
adversarial example x̃t for the test utterance xt. We describe
each attacker in detail as follows.

1) BIM: It is an attacker that generates adversarial examples
in a multi-step. At each iteration, it obtains the gradient of the
similarity score with respect to the input utterancexn and adds a
perturbation of step α along the gradient direction, followed by
a cropping operation. The BIM attacker searches an adversarial
example via the following formula:

xn+1 = Clipxt,ε (xn + kα sign (∇xn
S (xn; θ, f))) , (2)

where

k =

{
1, if xe and xt contribute to a non-target trial
−1, if xe and xt contribute to a target trial

represents adversarial impersonation and adversarial evasion,
respectively, and n = 0, 1, . . . , N , with N as the number of
iterations, ε = Nα constrains the magnitude of the perturbation,
xn is initialized by the test utterance, i.e. x0 = xt (note that, xt

is not normalized),Clipxt,ε(·) denotes an element-wise clipping
function which ensures the constraint ‖xn − xt‖∞ ≤ ε, and
S(· ; θ, f) denotes a function to calculate the similarity score
in (1) when the enrollment utterance xe is given. At the end of
the N iterations of the BIM attacker, an adversarial example x̃t

is found as xN .
2) PGD: It is essentially the same as BIM, but it initializes

the perturbation to a random point in the Lp norm ball and
replaces the cropping operation in (2) by the projection function.
Instead of continuing to use the L∞ norm in BIM, we adopt
its counterpart of L2 norm in the PGD attacker to increase the
diversity of the adversarial examples. The adversarial example
x̃t is also found as xN via:

xn+1 = Πxt+S,ε

(
xn + kα

∇xn
S (xn; θ, f)

‖∇xn
S (xn; θ, f) ‖2

)
, (3)

where k,n,N ,α and ε are defined in (2),Πxt+S,ε(·) represents a
function of mapping the input into the sphere of L2 norm, which
ensures the constraint ‖xn − xt‖2 ≤ ε.

3) CW: It is an optimization-based approach. It aims to get
the minimum perturbation δ∗ for a successful attack and crafts
an adversarial example by x̃t = xt + δ∗,

δ∗ = min
δ

‖δ‖2√
L

+ cJ (
xt + δ

)
, (4)

where L is the length of the input test utterance xt, the normal-
ized L2 distance, a.k.a the root mean square (RMS) distance,
of the perturbation is adopted to eliminate the effect of signal
duration [9], and c is a hyperparameter to balance the imper-
ceptibility and aggressiveness of the adversarial perturbation,
which is found by a binary search procedure. The optimization
objective of the aggressiveness J (·) is defined as:

J (·) =
{
max (0,−S (· ; θ, f) + (η + κ)) , impersonation

max (0,S (· ; θ, f)− (η − κ)) , evasion
(5)

where η is a decision threshold and κ is a confidence value.
Finally, we summarize the adversarial attackers to the two

ASV models that will be used in this article as in Table I, which
covers most types of attacks in literature.
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Fig. 1. Pipeline of the Masking Complex Spectrogram (MCS) detection method. The symbols xt and X
(t)
c denote the original test utterance and its complex

spectrogram features respectively, and x̂t, X̂(t)
c are the corresponding transformed ones. The ASV score variation |s− ŝ| after the masking operation is used to

identify whether the input utterance xt is an adversarial example (AE) or a genuine example (GE).

TABLE I
TWELVE TYPES OF ATTACKERS ADOPTED IN THIS PAPER. EACH OF THE

ATTACKER IS COMPOSED BY AN ALGORITHM, A TYPE OF PRIOR KNOWLEDGE,
AND AN ATTACK GOAL FROM THE OPTIONS LISTED IN THE TABLE

III. METHODS

In this section, we first present the motivation of the pro-
posed method in Section III-A, then present the framework of
the proposed method in Section III-B, and finally present two
implementations of the framework in Sections III-C and III-D
respectively.

A. Motivations

Although adversarial examples seriously threaten the secu-
rity of ASV, detection-based adversarial defense methods can
effectively alleviate this threat. Based on the assumption that
adversarial perturbations are uniformly distributed in acoustic
features, Chen et al. [33] proposed Masking LogFBank fea-
tures (MLFB) to detect adversarial examples. More specifically,
masking as many insignificant speech features as possible will
have a small impact on genuine examples and a large impact on
adversarial examples, and thus utilize the variation of similarity
scores after the masking operation to detect adversarial exam-
ples. However, MLFB has two problems: (i) Non-universal.
Since MLFB performs masking operation directly on the input
feature of an ASV system, its manually selected threshold is re-
lated to the dimensionality of the input feature. Moreover, when
the dimensionality of the input feature decreases, which means
the granularity of the features becomes coarser, MLFB may fail.
(ii) Hand-crafted mask. MLFB masks the time-frequency bins of
the input feature, either at high frequencies (MLFB-H) or using
one-order difference (MLFB-D), both of which rely on human
experience and lead to sub-optimal detection performance.

To address the above two shortcomings, we make improve-
ments from two aspects respectively. For the non-universal
problem, we perform ideal binary masking (IBM) operation on
the complex spectrogram of the input, instead of performing it
on the input speech features directly. Then, we detect adversarial
examples by the recovered utterance, which is obtained by the
iSTFT operation from the masked complex spectrogram. In this
way, the hyperparameters are de-correlated with the dimension-
ality of the input features. For the hand-crafted mask problem,
we attempt to obtain the mask matrix by a neural network instead
of designing it manually, and replace the IBM matrix by either
the ideal ratio masking (IRM) matrix or the approximate ideal
binary masking (AIBM) matrix.

B. Framework

The pipeline of the proposed method contains two steps:
transformation and detection, as shown in Fig. 1. The proposed
two methods, i.e. MCS and LMD, differ in the transformation
process, and share the same detection module.

1) Transformation: Given an input test utterance xt, we first
obtain its complex spectrogram X

(t)
c by the STFT operation,

X(t)
c = g

(
xt;φ

)
, (6)

where X
(t)
c ∈ CF×T with F and T representing the number of

frequency bins and frames respectively, and g(· ;φ) represents
the STFT operator with parameters φ, such as frame length,
frame shift, and number of points of the fast fourier transform.
Then we use X(t)

c to calculate a mask matrix M by either MCS
or LMD, and perform the masking operation on the complex
spectrogram X

(t)
c via:

X̂(t)
c = M	X(t)

c , (7)

where X̂(t)
c is the masked complex spectrogram, and 	 denotes

the element-wise product operator. Finally, the transformed ut-
terance x̂t is obtained by:

x̂t = g−1
(
X̂(t)

c ;φ
)
, (8)
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Fig. 2. Training process of the Learnable Mask Detector (LMD). Given a genuine utterance xt, the loss function L in (16) takes the corresponding transformed
utterance x̂t and the mask matrix M to train the learnable mask network (LMNet) L(·). The forward (black solid lines) and the gradients backward (red dashed
lines) propagation process are shown. After the transformed utterance x̂t is obtained by the well-trained LMNet L(·), we begin the detection process in Fig. 1.

where g−1(· ;φ) is the iSTFT operator with the same parameters
φ in (6).

2) Detection: After the transformation process of MCS or
LMD to xt, the transformed utterance x̂t is obtained. Then, two
similarity scores are calculated by:

s = S
(
xt,xe; θ, f

)
, (9)

ŝ = S
(
x̂t,xe; θ, f

)
. (10)

Finally, the proposed method compares the score variation υ =
|s− ŝ| with a detection threshold τdet. When υ > τdet, the test
utterance xt is detected as an adversarial example, otherwise, it
is considered as a genuine example.

C. Masking Complex Spectrogram

MCS only uses the magnitude X
(t)
m of the complex spectro-

gram to calculate a mask matrix M ∈ RF×T . It masks complex
spectrograms either at high frequencies (MCS-H) or using one-
order difference (MCS-D).

MCS-H obtains the mask matrix by:

M =

[
1(F−l)×T

0 l×T

]
, (11)

where l is the length of the masking, and the symbols 1a×b (or
0a×b) denotes an all one (or zero) matrix with a rows and b
columns.

MCS-D masks the time-frequency bins whose absolute values
of the one-order difference along the frequency axis is smaller
than a masking threshold ξ:

Mi,j =

⎧⎨⎩1, if
∣∣∣X(t)

m (i+1,j) −X
(t)
m (i,j)

∣∣∣ > ξ

0, if
∣∣∣X(t)

m (i+1,j) −X
(t)
m (i,j)

∣∣∣ ≤ ξ
,

∀ i = 1, 2, . . . , F − 1, ∀ j = 1, 2, . . . , T (12)

where the subscripts i and j are the coordinates of the fre-
quency axis and time axis, respectively. To make the mask
matrix the same size as X

(t)
c in (6), we further concatenate an

all-zero matrix 01×T at the highest frequency, i.e., MF,j = 0,
∀ j = 1, . . . , T .

Algorithm 1: Training Procedure of LMD.

D. Learnable Mask Detector

As mentioned in Section III-A, the LMD detection method
improves MCS by learning M automatically. It is worthy noting
that (i) the learnable mask network (LMNet) of LMD only
uses genuine examples for training, so it is insensitive to the
parameters and types of adversarial examples, i.e. attacker-
independent, and (ii) LMD obtains strong interpretability, since
the training and detection phases of LMD are closely related.
Fig. 2 illustrates the training process of LMD. We describe
its transformation process and training loss for the masking
generation as follows.

1) Transformation Process: As shown in the left part of
Fig. 2, there are two important differences between the trans-
formation of LMD and MCS. First, the complex spectrogram
feature are explicitly divided into real and imaginary parts, as
X

(t)
c ∈ RF×T×2. Second, the mask matrixMwith the same size

of X(t)
c is obtained by the well-trained LMNet L(·).
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2) Training Loss: The right part of Fig. 2 describes the loss
function of LMD. The design of the training loss is based
on the assumption that adversarial perturbations are uniformly
distributed in the feature space (e.g. the complex spectrograms),
which makes us believe that the more the time-frequency bins
are masked, the more likely the adversarial examples are to
fail. However, when more time-frequency bins are masked, the
discriminability of the ASV to the genuine examples decreases
as well.

To address the above contradictory effects simultaneously,
we expect to mask out as much as possible the time-frequency
bins that contain little speaker information. Three loss terms are
designed for this purpose:

The first loss termLs is the score variation, which measure the
amount of speaker information contained in the masked time-
frequency bins:

Ls = max (0, |s− ŝ| −m) , (13)

wherem is a margin1 of the hinge-loss, which is used to quantify
the magnitude of the score variation, and the score s is the cosine
similarity of the speaker embeddings of the test utterance xt and
the enrollment utterance xe, and ŝ is the cosine similarity of the
speaker embeddings of the transformed utterance x̂t and xe.

The second loss term Lb is the binary penalty for an AIBM
matrix:

Lb =
∥∥M	 (1−M)

∥∥2
2
, (14)

where the symbol 1 represents an all one matrix of the same
shape asM. The binary penalty loss term will force the elements
of the mask matrix to either converge to 0 or converge to 1, i.e.,
an AIBM matrix will be achieved.

The third loss term Lm is an L1 norm of the mask matrix,
which represents the severity of the masking operation:

Lm = ‖M‖1 . (15)

Finally, we propose to train LMNet by minimize the following
loss function:

L = Lm + λsLs + λbLb, (16)

where λs and λb are the hyperparameters used to balance the
three loss terms. See Algorithm 1 for the complete training
process of LMD.

IV. EXPERIMENTAL SETUP

A. Datasets

All of our experiments were conducted on the VoxCeleb
dataset [36], which contains over one million utterances from
7,363 speakers of different ethnicities, accents, professions, and
ages. The VoxCeleb datasets are automatically collected from
interview videos uploaded to YouTube, and the speech segments
were contaminated with real-world noise. The two victim ASV
models were trained on the development set of VoxCeleb2 [37]

1Unless specified otherwise, the margin m is set to 0.05 in our LMD.

and evaluated on the cleaned up version of the original verifica-
tion test list, i.e. VoxCeleb1-test, which consists of 37,611
trials from 40 speakers.

Without loss of generality, we randomly selected 1,000
trials from the original test list, denoted as the attack list
VoxCeleb1-attack, to generate the adversarial examples.
The randomly selected attack list include 500 target trials and
500 non-target trials. We also constructed an evaluation list
VoxCeleb1-eval based on the attack list to evaluate the per-
formance of attackers and detectors. The enrollment utterances
of the evaluation list were randomly replaced with utterances of
the same speaker in the test set of VoxCeleb1, but all utterances
in the attack list were excluded.

Note that our proposed methods, MCS and LMD, were trained
on the VoxCeleb1-dev dataset, which do not have over-
lapped speakers with the VoxCeleb1-test list. Moreover,
VoxCeleb1-dev was divided into a training subset Dt and a
validation subset Dv with a ratio of 19:1.

B. Experimental Settings

1) Victim ASV Systems: Different ASV models are charac-
terized by different network structures, pooling strategies and
training objectives. In this study, we used two ASV models as
the victim. The first one is the ECAPA_TDNN2 [38] with a
classification-based loss (AAM-Softmax [4]) and the attentive
statistical pooling. The second one is the Fast-ResNet343 with
a verification-based loss (Angular Prototypical [7]) and atten-
tive average pooling. They adopted the same acoustic feature
extractor: a hamming window of width 25 ms with a step size of
10 ms was used to partition speech signals into frames, and
a 80-dimensional LogFBank followed by cepstral mean and
variance normalization (CMVN) were extracted as the acoustic
features. Online data augmentation, such as perturbing speed,
superimposed disturbance, and simulating reverberation were
adopted in the training process. In addition, they all used cosine
similarity as the back-end scoring. The system decision thresh-
old η is picked to be the threshold corresponding to the EER on
the VoxCeleb1-test.

2) Attackers: We generated adversarial examples for three
attackers based on the attack list VoxCeleb1-attack. For
the BIM and PGD attackers, with the step size α = 1 and
α = 300 fixed respectively, we generated adversarial examples
for each value of the maximum iterations N , and constructed
the adversarial trial set Ai, where i = 1, 2, . . . , 6, and N =
5, 10, 20, 50, 100, 200. For the CW attacker, with the maximum
number of binary search and iterations, Nbs = 9 and N = 100,
respectively, we also constructed adversarial trial setAi for each
value of the confidence κ, where κ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5.
We denotes the mixture set of the adversarial trials, i.e. adver-
sarial mixture set, crafted by the BIM attacker as ABIM = {Ai |
i = 1, 2, . . . , 6}. For the PGD and CW attackers,APGD andACW

were defined similarly withABIM. In addition, the corresponding
genuine trial set Gi was constructed by adding the Gaussian

2[Online]. Available: https://github.com/wenet-e2e/wespeaker
3[Online]. Available: https://github.com/clovaai/voxceleb_trainer
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Algorithm 2: Method for Searching the Hyperparameters
of MCS.

TABLE II
STATISTICAL RESULTS OF THE SEARCHED HYPERPARAMETERS OF MCS-H AND

MCS-D OVER TEN INDEPENDENT RUNS OF ALGORITHM 2 ON THE

VoxCeleb1-Dev DATASET. THE MEANS OF THE HYPERPARAMETERS WERE

ADOPTED IN OTHER EXPERIMENTS

white-noise to the original clean utterances in the attack list,
which aims to obtain the same SNR as the adversarial utterances
in Ai. The black-box attacker employed in this article is the
transfer-based cross-model attacker, i.e., the adversarial example
generated by one substitute ASV is used to attack another victim
ASV.

3) Defenders: The baseline detectors are the Vocoder, GL-
mel, and GL-lin respectively, all of which followed the settings
in [32]. They also utilize the score variation for detection, and
the difference is that the phase reconstruction transformation
are performed on the input utterances by vocoders, such as
the PWG model. The settings of the masking length l and
masking threshold ξ for the proposed MCS-H and MCS-D are
shown in Table II, which were determined by Algorithm 2.
The LMNet of the proposed LMD, which uses the network
structure of DCCRN [39], aims to obtain a mask matrix with
high generalization by the complex convolution. The complex
spectrogram was extracted as the input feature by a hanning
window of width 25 ms plus a step size of 10 ms and the
convolutional STFT. The batch size was set to 32 and the length

of each audio clip was set to 500 frames. The Adam optimizer
with an initial learning rate of 0.002 was used to train the LMNet
L(·) guided by the loss in (16), where the hyperparameter λs was
set to 1. The hyperparameter λb in (16) controls the type of the
mask matrix4. The learning rate was decayed by 0.9 times for
every 1,000 steps. A total of 30 K iterations were trained, and
the optimal model was selected based on the validation data Dv

with a validation interval of 1,000 steps.

C. Evaluation Metrics

To evaluate the harmfulness of the attackers, we employ
the attack success rate (ASR), normalized minimum detection
cost function (minDCF) of the victim ASV with p = 0.01 and
Cmiss = Cfa = 1 [40], and SNR, as the evaluation metrics.

To evaluate the performance of the detectors, we adopt EER
and the detection success rate (DSR) with different given false
acceptance rate (FAR), as the evaluation metrics.

Before introducing the evaluation metrics, we first define the
score variation set for the genuine trial set and adversarial trial
set, respectively. For the genuine trial set G = {(xt

i,x
e
i ) | i =

1, 2, . . . , I} defined in Section IV-B2, a score variation set Vgen

after the masking operation can be obtained by:

υi =
∣∣∣S (

xt
i,x

e
i ; θ, f

)− S
(
x̂t
i,x

e
i ; θ, f

)∣∣∣ (17)

where υi ∈ Vgen with i = 1, 2, . . . , I , and x̂t
i represents that

the test utterance xt
i is transformed by our mask-based detec-

tion methods. For the adversarial trial set A = {(x̃t
i,x

e
i ) | i =

1, 2, . . . , I}, its score variation set Vadv is also calculated by
(17), except that xt

i and x̂t
i are replaced by the corresponding

adversarial example x̃t
i and the transformed adversarial exam-

ple, respectively.
Then the evaluation metric EER is defined by:

EERdet = FARdet (τeer) = FRRdet (τeer) , (18)

where

FARdet (τ) =
|{υi > τ | υi ∈ Vgen}|

|Vgen| , (19)

FRRdet (τ) =
|{υi ≤ τ | υi ∈ Vadv}|

|Vadv| , (20)

are the FAR and the false rejection rate (FRR), respectively, of
the detector given a threshold τ , |S| represents the number of the
elements in the set S . After manually given a tolerable FAR of
detection, denoted as FARgiven, we define the evaluation metric
DSR as:

DSR =
|{υi > τdet | υi ∈ Vadv}|

|Vadv| , (21)

where

τdet = argmin
τ

∣∣FARdet (τ)− FARgiven

∣∣, (22)

is the detection threshold for FARgiven. We also evaluated the
DSR of detectors under the adversarial mixture sets, i.e. ABIM,
APGD and ACW.

4λb = 15 indicates the LMD-AIBM, and λb = 0 indicates the LMD-IRM.
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Fig. 3. Statistical results of the number of adversarial examples in a SNR range.
The ECAPA_TDNN and Fast-ResNet34 act as the victim ASV. The symbol “#n”
means the range of “[n,n+ 5)”.

Finally, the detection EER is defined over a given SNR
budget, as in [9]. Specifically, we assume an evaluator function
E(A,G) that computes the detector EER given the adversarial
trial set A and genuine trial set G with I trials. We assume
that padv = [padv,1, . . . , padv,I ]

T and pgen = [pgen,1, . . . , pgen,I ]
T

are vectors describing the SNRs of the corresponding trail sets
respectively. Then, for each value of the SNR budget b that we
want to evaluate, we obtain an adversarial trial set A(b) and a
genuine trails set G(b) by:

ti =

{
(x̃t

i,x
e
i ) , if padv,i ≥ b or pgen,i ≥ b

∅, otherwise
, (23)

where ti ∈ A(b) with i = 1, 2, . . . , I , and G(b) is composed of
the corresponding trials in G. The detector EER for budget b is
obtained by evaluating E

(A(b),G(b)).

V. RESULTS AND DISCUSSIONS

In this section, we first present the performance of the attack-
ers in Section V-A so as to show their great threat to the ASV
systems, then present the performance of the detectors against
different attackers in Section V-B so as to show how much
the threat is mitigated. Finally, we present several additional
experiments in Section V-C.

A. Performance of the Attackers

Fig. 3 shows the number of adversarial examples at different
ranges of SNR. The SNR of adversarial examples generated
by the CW attacker is higher than that of the BIM and PGD
attackers. Note that the SNRs are calculated on the adversarial
mixture sets, i.e. ABIM, APGD and ACW.

Fig. 4 illustrates the performance of the three attackers.
ECAPA_TDNN achieves an EER and minDCF of 1.25% and
0.1372 on the test list VoxCeleb1-test. Similarly, Fast-
ResNet34 achieves 1.97% and 0.2553 respectively. The above
results indicate that the two ASV models are SOTA. In the case
of the white-box attacks, the BIM attacker and CW attacker
achieves an ASR of 97% at a SNR of 35 dB and 42 dB,
respectively. The PGD attacker achieves similar performance
with BIM. All of the three attackers leads to an minDCF of0.99+

even at a SNR of 45 dB. In the case of the transfer-based black-
box attack, the attackers generally deliver better performance
on the Fast-ResNet34 ASV than on the ECAPA_TDNN ASV.
The BIM, PGD and CW attacker achieve their maximum ASR of
23%, 20% and 7% on Fast-ResNet34, respectively. These results
show that the attackers highly threaten the SOTA ASV models.

B. Performance of the Detectors

The performance of our proposed detectors is shown below,
where λb = 15 indicates the LMD-AIBM method, and λb = 0
indicates the LMD-IRM method. The difference between the
two methods lies in the type of their masking matrices.

Tables III and IV comprehensively show the EER perfor-
mance of the detectors in the white-box and black-box scenarios,
respectively. Note that the EER is calculated in a noisy situ-
ation by evaluating E

(Ai,Gi

)
for the three attackers, where

i = 1, 2, . . . , 6 represent the six different parameter settings.
The victim ASV and the defended ASV are always consistent.
Several conclusions can be drawn: (i) From the perspective of
the white-box attack scenario, our proposed LMD method out-
performs the baseline methods in the most detection conditions.
For example, LMD-AIBM achieves a detection EER of 0.8%
and 1.5% on ECAPA_TDNN and Fast-ResNet34, respectively,
when encountering the BIM attacker with N = 50, which is
38% and 11% higher than Vocoder. (ii) MCS-H possesses the
worst detection performance due to its coarse mask matrix,
while MCS-D achieves comparable performance to GL-mel and
GL-lin by finely designing the mask matrix, which shows the
effectiveness of our mask-based idea, despite the mask matrices
of MCS-H and MCS-D are both manually crafted. (iii) Further,
we desire to leverage the neural network to learn an AIBM
matrix or an IRM matrix for detection. LMD-AIBM performs
better than LMD-IRM when the perturbation intensity is high,
while LMD-IRM performs better than LMD-AIBM when the
perturbation intensity is low. (iv) From the perspective of the
black-box attack scenario, our proposed LMD method achieves
the optimal performance in almost all detection conditions. The
results on ECAPA_TDNN and Fast-ResNet34 are basically the
same, obtaining an EER of 37% when encountering the BIM
attacker and the PGD attacker, and an EER of 44% when encoun-
tering the CW attacker. There is still great development potential
to sperate adversarial examples in the black-box scenario for
the detection-based passive defense approaches. In addition, we
believe that the main reason for the low detection performance
of black-box attacks is that the large number of failed adversarial
examples pulls down the adversarial score variation, thus leading
to higher detection EER. Therefore, we conducted an ablation
experiment in Section V-C7.

Fig. 5 shows the impact of the SNR budget on the detector
performance. From the figure, we draw the following conclu-
sions: (i) the performance of all detectors gradually drops as the
SNR budget decreases. In the range of SNR budget of 50 dB
to 40 dB, our LMD-IRM maintains an EER of 3% to 9% and
outperforms the comparison methods. (ii) In the range of SNR
budget of 35 dB to 25 dB, our LMD methods achieve comparable
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Fig. 4. Attack performance of the three attackers: BIM, PGD and CW in terms of ASR, minDCF, and mean SNR, where ASR is described in solid line, the
minDCF withp = 0.01 is described in dashed line, and the mean SNR is described in dotted line. The captions of the subfigures “(a), (b), (d), (e)” are concise.
For example, “Balck-box attacks on ECAPA_TDNN” means that the victim and substitute ASV models are ECAPA_TDNN and Fast-ResNet34, respectively. The
subfigures “(c)” and “(f)” depict the average SNR of the adversarial examples. Note that, the EER of the ECAPA_TDNN ASV model with the AAM-Softmax loss
on the test list VoxCeleb1-test is 1.25%; the EER of the Fast-ResNet34 ASV model with the Angular Prototypical is 1.97%.

TABLE III
DETECTION EER OF THE DETECTORS AGAINST THREE ATTACKERS IN THE WHITE-BOX ATTACK SCENARIO ON THE TWO ASVS

performance with Vocoder with an EER fluctuating around 5%.
(iii) Our proposed LMD-IRM outperforms all baseline detectors
at a SNR budget higher than 37 dB.

Table V shows the variation of the detector accuracy with
the FARgiven. From the figure, it can be concluded that, as
the FARgiven decreases from 5% to 0.1%, the detection thresh-
old will increase meanwhile, and more adversarial examples
will be missed, so the accuracy of all detectors drops. More-
over, Vocoder reaches the top accuracy while its DSR drops

from 96% to 86%, on the contrary, our proposed LMD-AIBM
achieves the runner-up accuracy while its DSR drops from 93%
to 84%.

In Fig. 6, the detection error tradeoff (DET) curve is used
to evaluate the detector performance more delicately than
Table V. Experimental results on the ECAPA_TDNN ASV
system indicate that our LMD-IRM detector is always ahead
of Vocoder, and both of them obtain an EER of less than 5%.
Experimental results on the Fast-ResNet34 ASV system show
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TABLE IV
DETECTION EER OF THE DETECTORS AGAINST THREE ATTACKERS IN THE BLACK-BOX ATTACK SCENARIO ON THE TWO ASVS

Fig. 5. Detection EER of the detectors along with the SNR budget. The performance of detectors was evaluated on ECAPA_TDNN and the three adversaril
mixture sets (ABIM, APGD and ACW) in the white-box attack scenario.

TABLE V
DSR OF THE DETECTORS ALONG WITH FARGIVEN

that Vocoder always leads our LMD detectors with an EER of
less than 10%.

C. Ablation Studies

1) Effects of the Hyperparameter m on Performance: The
hyperparameter m in (13), i.e. the score margin, controls
the amount of speaker information to be masked out. To
study its effect on the performance of LMD, we trained the

LMD-AIBM and LMD-IRM detectors with m set to 0.05, 0.1
and 0.15, respectively, and evaluated them with ABIM on the two
ASVs. We draw several conclusions from the results in Fig. 7
as follows. (i) In the initial naive state where a random mask
matrix is generated, LMD obtains an EER of about 16%, which
proves the effectiveness of our mask-based idea again. (ii) When
the training of LMD proceeds, the detection EER gradually
decreases and becomes smooth after 20 K steps with an EER
of 5% to 8%. (iii) For LMD-AIBM (blue lines) and LMD-IRM
(red lines), the hyperparameter m performs optimally on 0.05
and 0.1, respectively. However, we set m to 0.05 in all experi-
ments for the sake of controlling variables. (iv) LMD-AIBM is
difficult to be trained successfully whenm is set large, especially
when Fast-ResNet34 acts as the victim model, which could be
mitigated by increasing λb.

2) Interpretation of the Principles of LMD: To explain why
our proposed LMD method is effective, we present the boxplot
of the score variations in Fig. 8 for the analysis. Specifically,
the boxplot depicts the distribution of the score variations of the
detectors when confronted with the adversarial examples and
genuine examples. From the figure, it can be seen that, our LMD
ensures that the score variations for the genuine examples do not
exceed m, and moreover, it makes the score variations for the
adversarial examples as large as possible, which consequently
gets the detection easier.
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Fig. 6. DET curves of the detectors on the adversarial mixture set of ACW.

TABLE VI
ACCESSIONAL PURIFICATION EFFECTS OF OUR LMD

Fig. 9 further visualizes the spectrograms of the original audio
and transformed audio. From the figure, it can be seen that
LMD-AIBM masks the low-energy regions and samples
sparsely, while LMD-IRM masks most of the low-energy re-
gions, which are consistent with our goal of masking the most
time-frequency bins that contain little speaker information.
Therefore, they reach large score variations for the adversarial
examples, and small score variations for the genuine examples.

3) Purification Effects of LMD: The PWG-based Vocoder
has also been utilized for the mitigation-based defense in [26].
Here we further explored the effectiveness of our LMD to
purify the adversarial noise in Table VI, where we used the
pre-trained model provided by Wu et al. [32] as a baseline,
and employed EER of the victim ASV as the evaluation metric.

Fig. 7. Connection between the detection EER and training steps of our
proposed LMD with different score margins, on the adversarial mixture set
of ABIM.

Fig. 8. Boxplot of the score variations of the adversarial mixture set ACW and
genuine mixture set GCW for the seven detectors with the ECAPA_TDNN ASV
as the victim. AE and GE represent adversarial examples and genuine examples,
respectively.

From the table, we see that LMD-AIBM achieves much better
purification effect than LMD-IRM, because the L1 norm of
the mask matrix measures the masking degree of LMD-AIBM
more appropriately than LMD-IRM. Our LMD is designed to
mask as many spectrogram bins as possible at the cost of little
speaker information. Therefore, EER increases slightly on clean
examples but decreases the most on adversarial examples. How-
ever, Vocoder behaves more like a speech enhancement module,
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Fig. 9. Spectrograms of the original audio examples and their corre-
sponding transformed audio examples obtained by our LMD. The genuine
example is from id10284/7yx9A0yzLYk/00010.wav of VoxCeleb1.
The hypothesis enrollment utterance of the adversarial example is from
id10305/gbTZ7k9e/Z0_00001.wav of VoxCeleb1. The adversarial ex-
ample was generated by the BIM attacker with N = 50.

TABLE VII
DETECTOR PERFORMANCE AGAINST ADAPTIVE ATTACKERS

where the input goes through a front-end noise reduction. There-
fore, EER decreases on clean examples but the decrease in EER
on adversarial examples is less apparent than LMD. Compared
with Vocoder, the threat brought by adversarial examples are
significantly mitigated by our LMD-AIBM.

4) Encounter With Adaptive Attackers: Table VII explores
the performance of the detectors under the adaptive attack. The
so-called adaptive attack means that the attacker can further

Fig. 10. Pipeline of the adaptive attacker for generating adversarial examples.
The symbolsxn and x̂n denote the test utterance and the transformed utterance,
respectively. The BIM attacker in (2) is used here as an example.

TABLE VIII
DETECTOR PERFORMANCE UNDER MORE REALISTIC NOISES

access the detector parameters to generate an adversarial ex-
ample. Specifically, as shown in Fig. 10, adversarial examples
are updated by utilizing the gradient of the score w.r.t. the test
utterance. From the Table VII, two conclusions can be drawn:
(i) the adaptive attacker cannot breach the system without a
LMD-AIBM transformation, for example, the ASR drops from
82.8% to 3.5% under the BIM attacker. (ii) LMD-AIBM can
also achieve a detection EER no higher than 5.6% under the
adaptive attack. Our analysis reveals that the attackers can
only breach the original victim system, or the hybrid system
with the LMD-AIBM transformation, i.e., they cannot breach
both systems simultaneously. Eventually, we utilize the score
variation of the two systems to detect the adversarial examples,
and these adaptive adversarial examples will still yield a large
score variation, so the detection performance remains robust.

5) Data Augmentation for LMD: Table VIII explores the
detection performance of the LMD-AIBM with and without
data-augmentation against a variety of noises. Specifically, we
employ the MUSAN corpus [41] for data-augmentation with a
probability of 60%. First, the noise sample is cropped or padded
(in wrap mode) to the target length, and then it is scaled to a
random SNR between [25, 40] before being superimposed to the
target speech. The detection EER is employed as the evaluation
metric, i.e.,E

(A,G), whereG is constructed by adding noises to
the original clean utterances, such as the Gaussian white-noise,
or three types of noises from the MUSAN corpus. From the
table, two conclusions can be drawn: (i) data-augmentation can
further improve the detection performance of LMD-AIBM. (ii)
The detection EER increases slightly for the type of noise that
is unseen during the training, i.e., the Gaussian white-noise.

6) Effect of Calibration on Performance: In the previous
sections, we only studied the situation where the ASV vic-
tim systems are un-calibrated, i.e. they simply produce the
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TABLE IX
PERFORMANCE OF THE DETECTORS WHEN APPLYING THE WHITE-BOX

ADVERSARIAL ATTACKERS ON THE ASV VICTIM SYSTEMS (EITHER

CALIBRATED, I.E. “COSINE”, OR UN-CALIBRATED, I.E. “BCE”), WHERE THE

ATTACKERS GENERATE ADVERSARIAL EXAMPLES EITHER FROM THE

CALIBRATED ASV VICTIM SYSTEM OR FROM THE UN-CALIBRATED ASV
VICTIM SYSTEM. THE ATTACKER BIM (L∞,N = 50) AND THE VICTIM ASV

ECAPA_TDNN ARE EMPLOYED. THE CALIBRATED SYSTEM OBTAINS AN

act.DCF0.01 OF 0.19 ON THE GENUINE EXAMPLES

similarity of two embeddings in terms of some measurement,
like cosine similarity. However, the ASV systems are typically
calibrated [42], [43] in their real-world applications, i.e. they
transform the un-calibrated similarity score of two embeddings
to a target posterior probability, denoted as a calibrated score. A
common calibration function is the binary-cross-entropy (BCE)
loss [9]. In this section, we will further study the situation where
the ASV victim systems are calibrated.

For each of the above two ASV victim systems, we can also
have two kinds of white-box attackers: one kind generates ad-
versarial examples from a victim system with the un-calibrated
loss, such as the “Cosine” similarity S(·) in (2), and the other
kind generates adversarial examples from a victim system with
the calibrated loss, such as BCE. Finally, we have four “ASV-
attacker” pairs.

In this section, we present the performance of the detectors on
the evaluation environments of the above four “ASV-attacker”
pairs in Table IX. From the table, three conclusions can be drawn:
(i) the calibration does not affect the detection EER, due to the
fact that only positive scaling and offset are performed on the
scores, whereas we obtain the variation of log-likelihood-ratio
for detection. (ii) The ASR decreases after the calibration,
because the threshold corresponding to EER and the threshold
of the Bayesian decision operate on different points. (iii) The
generation losses of “Cosine” and “BCE” produce the equivalent
adversarial examples in terms of both principle and experimental
results. They show little difference in terms of ASR, act.DCF
and detection EER.

7) Exclusion of Failed Adversarial Examples: In Tables III
and IV, the adversarial examples that are failed to attack the
ASV systems are taken into the account when reporting the
performance of the detectors. However, they show in fact slight
difference from the genuine examples from the perspective of
not only the ASV systems but also human listeners, so as to the
detectors. In this section, we study how the detectors perform
when we exclude the failed adversarial examples.

Table X analyzes the performance of the detectors against
the adversarial examples that can successfully attack the ASV
system. The successful adversarial examples in the white-box
scenario are able to move greatly away from the decision thresh-
old, which results in an easy discrimination between adversarial
and genuine examples. In contrast, the successful adversarial

TABLE X
DETECTION EER OF THE DETECTORS IN THE ABSENCE OF THOSE FAILED

ADVERSARIAL EXAMPLES

examples in the black-box only slightly cross the decision
threshold, and thus only achieve a detection EER of 20% at
best. However, compared to Table IV, the performance of the
detectors in the black-box scenario improve substantially after
excluding those failed adversarial examples.

VI. CONCLUSION

In this article, we have proposed a detection-based passive
defense approach called LMD to detect adversarial example
for ASV systems. It is attacker-independent and possesses high
interpretability. First, it masks out the regions of complex spec-
trograms with little speaker information to introduce a large
impact on adversarial examples, and small impact on genuine
examples, respectively. Then, it identifies the adversarial ex-
amples by calculating the ASV score variations before and
after the masking operation. Experimental results show that
our proposed LMD achieves comparable performance with the
SOTA baselines. Specifically, it achieves detection EERs of
no more than 5.9% and 10.1% on the ECAPA_TDNN ASV
and Fast-ResNet34 ASV, respectively. LMD achieves a DSR of
nearly 90% in the stringent setting of a given FAR of 1% when
encountering the BIM attacker. In addition, we evaluated the
detector performance against a given SNR budget. Experimental
results on the ECAPA_TDNN ASV show that LMD outperforms
the baseline approaches at a SNR budget of higher than 37 dB. In
an additional experiment, we find that the LMD-AIBM detector
has the effect of purifying adversarial noise, which further
alleviates the threat brought by the adversarial attacks.
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