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ABSTRACT

Improving the performance of automatic speech recognition
(ASR) in adverse acoustic environments is a long-term tough
task. Although many robust ASR systems based on conven-
tional microphones have been developed, their performance
with air-conducted (AC) speech is still far from satisfactory
in low signal-to-noise-ratio (SNR) environments. Bone-
conducted (BC) speech is relatively insensitive to ambient
noise, and has a potential of promoting the ASR perfor-
mance at such low SNR environments as an auxiliary source.
In this paper, we propose a conformer-based multi-modal
speech recognition system. It uses a conformer encoder and a
transformer-based truncated decoder to extract the semantic
information from AC and BC channels respectively. The se-
mantic information of the two channels are re-weighted and
integrated by a novel multi-modal transducer. Experimental
results show the effectiveness of the proposed method. For
example, given a 0 dB SNR environment, it yields a character
error rate of over 59.0% lower than a noise-robust baseline
conducted on AC channel only, and over 12.7% lower than a
multi-modal baseline that takes the concatenated features of
AC and BC speech as the input.

Index Terms— Robust speech recognition, bone conduc-
tion, multi-modal transducer

1. INTRODUCTION

In recent years, robust automatic speech recognition (ASR)
has been developed rapidly [1, 2], such as the sequence-to-
sequence modeling method based on transformer [3]. Exist-
ing works on robust ASR can be mainly divided into two cat-
egories. One class attempts to remove the noise component
of speech by speech enhancement front-ends [2, 4, 5]. The
other one aims to build an adaptive ASR model with a prop-
erly designed training method, which is able to learn a noise-
invariant speech representation [1, 6–8]. However, the above
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ASR systems are limited to air-conducted (AC) speech. Be-
cause AC speech is easily contaminated by noise, the perfor-
mance of the ASR systems drop significantly in lower signal-
to-noise-ratio (SNR) environments, especially in the presence
of non-stationary noises [9].

To address the aforementioned issue, other modalities be-
yond AC speech have been introduced, such as the visual
modality [10–13]. Results show that, when properly utilized,
multi-modal joint processing leads to better performance than
the single-modal processing based on AC speech only. How-
ever, because many phonemes share similar lip movements,
the semantic information in video is limited, which in turn
leads to limited performance improvement.

An alternative modality to the visual cues is bone-
conducted (BC) speech which is inherently immune to the
noise in AC speech [14]. BC speech is recorded by a BC mi-
crophone, which is a kind of skin-attached and non-audible
sensor. It converts the vibration around a speaker skull into
electrical signals. Therefore, BC speech is relatively insen-
sitive to ambient noise, which makes it possible to promote
the performance of speech related systems significantly, espe-
cially at low SNR environments. For example, BC speech has
been studied in multi-modal speech enhancement [14–17].

However, BC modality seems far from explored in the
modern ASR research, due to maybe the following shortcom-
ings of BC speech. Because a BC microphone is insensi-
tive to high frequency signals, BC speech suffers significant
high-frequency loss. Besides, when BC microphone records
speech, it rubs with skin, which generates unwanted self-
noise to BC speech. These weaknesses bring new challenges
to ASR. Fortunately, BC and AC speech is complementary,
which provides an opportunity to boost their merits together
while suppress their weaknesses simultaneously via multi-
modal ASR.

In this paper, we propose a conformer based multi-modal
ASR system. It consists of a conformer encoder and a trun-
cated decoder. It takes both AC and BC speech as the in-
put. It uses a novel multi-modal transducer (MMT) based on
a scaling sparsemax operator to fuse the embedding represen-
tations of AC and BC speech. The contribution of this paper
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Fig. 1: The overview of the proposed system. The modules in
blue color come from a pre-trained ASR system trained with
AC speech. The modules in green color come form a pre-
trained ASR system trained with BC speech. The modules in
red color are fine-tuned with AC and BC parallel data.

is summarized as follows. First, to the best of our knowledge,
the proposed system is the first multi-modal end-to-end ASR
work that deals with AC and BC speech jointly. Moreover,
we apply the scaling sparsemax operator to the MMT module
so that the module can adaptively adjust the fusion weights
assigned to AC and BC channels respectively. In addition,
a two-stage training method is proposed for the multi-modal
ASR, where the parallel training data of AC and BC speech is
used to fine-tune the MMT module only which contains only
few parameters.

2. METHOD

2.1. System overview

The architecture of the proposed system is shown in Fig.1.
It contains two branches, which takes AC and BC features
respectively as the input. Each branch contains a conformer-
based encoder, a transformer-based truncated decoder and a
connectionist temporal classification (CTC) layer, which pro-
duces a context vector and a CTC-based output probability
vector. Then, the proposed MMT takes the context vectors
from the two branches as its input, and outputs a fused con-
text vector. Finally, the fused context vector passes through
the output layer, which produces the final attention-based out-
put probability.

2.2. Parallel branch

Given the features Xa ∈ RT×Da and Xb ∈ RT×Db from
AC and BC channels respectively where T denotes the num-

Scaling 
Sparsemax

FFN

LayerNorm

X

Fig. 2: The proposed multi-modal transducer module.

ber of frames and Da and Db denote the dimensions of the
acoustic features, they first pass through a conformer-based
encoder in parallel. The encoder has multiple blocks, each
of which consists of two position-wise feed-forward (FFN)
modules, a multi-head attention (MHA) module and a convo-
lution module. The encoder produces a high level representa-
tion Hi ∈ RT̂×Dm by:

Hi = Cenc(Xi), ∀i ∈ {a, b} (1)

where Cenc(·) represents the conformer-based encoder, T̂
represents the number of frames after down-sampling, and
i = a represents the encoder for AC channel while i = b for
BC channel. Then, given the high level representation Hi and
the shifted output embedding vector yi

1:l, a truncated decoder
extracts the context vector cil in each time step l:

cil = Tdec(Hi,yi
1:l), ∀i ∈ {a, b} (2)

where Tdec(·) represents the truncated decoder. It also con-
tains multiple blocks, each of which consists of a MHA, a
masked MHA and a FFN module except the last block. We
removed the FFN module of the last block to retain more orig-
inal semantic information. At the same time, we extract the
output of the masked MHA module in the first decoder block,
named the guide vector gi

l ∈ RDm , by:

gi
l = MHA(yi

l ,y
i
1:l,y

i
1:l), ∀i ∈ {a, b}. (3)

Through the parallel branches, we can get a concatenated
context matrix Cl = [cal , c

b
l ]
T ∈ R2×Dm , and a mean pooling

guide vector gl = Mean(ga
l ,g

b
l ) ∈ RDm .

2.3. Multi-modal transducer

Fig. 2 shows the architecture of the proposed MMT. It takes
Cl and gl as its input. It first conducts linear transformations
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on the context vectors produced from AC and BC channels,
then uses the scaling sparsemax (SSP) [18] operator to assign
weights to the two channels given the input guide vector, and
finally obtains the fusion context vector rl ∈ RDm :

zl = SSP(
QKT

√
Dm

, s), (4)

rl = (zlV)T + FFN(LayerNorm((zlV)T )) (5)

where

Q = gT
l W

Q, K = ClW
K , V = ClW

V

are the query, key, and value matrices respectively, WQ,
WK , and WV are learnable projection transformation ma-
trices, LayerNorm(·) and FFN(·) denote the layer normal-
ization and position-wise feedforward operation respectively,
and SSP(x, s) denotes the scaling sparsemax re-weighting
operation with its scaling factor s computed as follows:

s = 1 + ReLU(Linear(||x||, N)) (6)

where Linear is a 1 × 2-dimensional learnable linear trans-
form, ||x|| denotes the L2 norm of the input vector, N repre-
sents the number of channels which is always set to 2 in our
task.

The output vector z = [za, zb]T ∈ [0, 1] from SPP(·)
represents the weight assigned to AC and BC channels. When
s becomes small, the weight will be biased towards AC or BC
channels. Based on this channel-reweighting property, MMT
can fuse the air and bone conduction information effectively
and flexibly.

After passing the fused context vector rl through output
layer, we obtain the final attention-based probability patt(w),
where w = {w1, w2, · · · , wL} denotes a predicted character
sequence. At the same time, after passing the output of the
encoder Hi through the CTC layer, we obtain the CTC -based
probability pictc(w) where i ∈ {a, b}.

2.4. Training and decoding objectives

In the training phase, the objective function is to minimize:

L = (1− λ) log patt(ŵ) +
1

2
λ(log pactc(ŵ) + log pbctc(ŵ))

(7)
where ŵ is the target output sequence, 0 ≤ λ ≤ 1 is a tunable
CTC weight control factor.

In the decoding phase, we adopt the one-pass beam search
[19]:

w̃ = argmax
w

{
(1− λ) log patt(w) + λ log p+ctc(w)

}
(8)

where w̃ is the predicted output sequence, p+ctc(w) is the
scaling-sparsemax-based CTC prefix probability computed
by:

log p+ctc(w) = za ∗ log pactc(w) + zb ∗ log pbctc(w) (9)

where the channel weights za and zb are calculated by (4).

3. EXPERIMENTS

3.1. Experimental settings

We collected a multi-modal corpus of synchronized AC and
BC speech in an anechoic chamber, which contains 53 hours
of Mandarin speech data from 100 speakers (50 males and 50
females). It is collected from a headset that integrates both
AC and BC microphones. The text source for reading comes
from over 30000 daily dialogues and RASC863 [20]. The
duration of each utterance is in the range of [1, 5] seconds.
The speech was recorded at a sampling rate of 44.1kHz and
further down-sampled to 16kHz. We divide this corpus into
three subsets. The ‘train’ subset contains 84 speakers. The
‘dev’ and ‘test’ subsets contain 8 speakers respectively.

To simulate a complex noisy environment, we added ad-
ditive noise to AC channel of the corpus. Because BC channel
will not be contaminated by additive noise in real-world sce-
narios, we do not change BC channel. The noise source for
the ‘train’ and ‘dev’ subsets is a large-scale noise library con-
taining over 20000 noise segments [21]. The noise source for
the ‘test’ subset is the non-stationary noise from the CHiME-
3 dataset [22] and NOISEX-92 corpus [23]. For the ‘train’
and ‘dev’ subsets, we controlled the SNR in a range of [0, 20]
dB. For the ‘test’ subset, we set the SNR to six levels, which
are {−5, 0, 5, 10, 15, 20} dB, respectively.

We first perturbed the speech speed by 0.9 times and 1.1
times and extracted 80-dimensional Mel-banks as the acoustic
feature. Then, we used SpecAugment [24] to augment the
training data. The ground-truth labels were set at the character
level. The size of the dictionary was set to 5209.

The kernel size of the convolutional layer in the conformer
was set to 15. The block numbers of the conformer encoder
and Truncated decoder were set to 12 and 6, respectively. The
number of heads in the MHA module was set to 8. The num-
ber of units in the position-wise feedforward module was set
to 2048. The model dimensions Dm is 256. We applied the
relative position embedding to the encoder, and absolute po-
sition embedding to the decoder, respectively.

In the training phase, the parallel branches of the proposed
system were initialized with the parameters of the pre-trained
models at each modality. Then, MMT was fine-tuned with the
multi-modal speech. The control factor λ was set to 0.3. In
the decoding phase, λ was set to 0.5 and the beam size was
set to 10.

To compare with the proposed system, we designed two
baselines. The first one is a conformer based single-modal
system trained with only the noisy AC speech. The second
is a conformer based multi-modal system that concatenates
the features of AC and BC speech as its input. It first takes
the model of the first baseline as its pre-trained model, and
then fine-tunes the system with the multi-modal speech. Note
that the convolutional embedding layer was modified to fit the
input dimension. The character error rate (CER) was used as
the evaluation metric.
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Table 2: CER (%) of the proposed method and two baselines on the noisy test sets.

System
Type of Type of SNR of test set

training data test data -5 dB 0 dB 5 dB 10 dB 15 dB 20 dB

Conformer
clean AC

noisy AC
100.3 91.6 72.8 47.3 29.2 20.4

noisy AC 68.7 38.5 21.5 14.4 11.6 10.4

Conformer
Multi-modal Multi-modal

21.6 18.1 15.2 13.1 11.7 11.0

Multi-modal transducer (proposed) 18.1 15.8 13.6 12.1 11.2 10.9

Table 1: CER (%) comparison of the conformer-based single-
modal ASR using AC or BC speech modality.

System Type of Type Subset
training data of test data Dev Test

Conformer
clean AC clean AC 6.4 9.9
clean AC BC 69.5 77.4

BC BC 11.1 18.1

3.2. Results and discussion

We first trained the standard conformer with the clean AC
speech, and tested the model on clean AC and BC speech re-
spectively. The result is shown in Table 1. By comparing
results in the two test scenarios, we observe that the CER on
BC speech is much higher than that on the clean AC speech,
which means that the ASR model trained with the clean AC
speech does not have a good generalization performance on
BC speech. We also trained the same conformer with BC
speech, and tested the model on BC speech. The result is
listed in Table 1. From the table, we find that the performance
of the system using only BC speech is not so bad. Due to the
shortcomings of BC speech, the performance of the BC-based
ASR system is worse than the AC-based onein their respective
matching scenarios. Then, we tested the comparison methods
on the multi-modal noisy data. Table 2 lists the results of the
proposed system and the baselines. From the table, we see
that, not only the proposed method but also the conformer
baseline trained with multi-modal data are significantly better
than the conformer baseline trained with only the noisy AC
speech, when the SNR is lower than 15 dB, which demon-
strates the importance of exploring BC speech for ASR. In
addition, we observe that the proposed system achieves the
best performance, which supports the advantage of the pro-
posed MMT in fusing AC and BC speech over the conformer
baseline where the multi-modal data is simply concatenated
without channel reweighting.

To further analyze the effectiveness of the proposed MMT
module, as well as to study how much different modality con-
tributes to the performance, we analyzed the channel weights
of AC and BC speech allocated by the MMT module in Fig. 3.
From the figure, we see clearly that, when the SNR decreases,

-5dB 0dB 5dB 10dB 15dB 20dB
SNR of noisy air conduction data

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

we
ig

ht
s

air conduction
bone conduction

Fig. 3: Channel weights produced by the MMT module of the
proposed method with respect to SNR. Note that, the weights
are the average ones from all sentences at a SNR level.

the weight of BC channel is gradually increased, which fur-
ther indicates that BC speech contributes to the performance
improvement of the multi-modal ASR over the single-modal
ASR with AC speech only in the low SNR environments.

4. CONCLUSION

In this paper, we propose a conformer-based multi-modal
ASR system using AC and BC speech. In the proposed sys-
tem, the conformer encoder and transformer-based truncated
decoder are used to transform the semantic information of AC
and BC channels respectively, then the MMT module applies
the scaling sparsemax operator to re-weight and fuse the rep-
resentations of AC and BC speech. Experimental results show
that BC speech contains useful semantic information that is
particularly helpful for robust ASR in adverse environments
as an auxiliary source of AC speech. Moreover, the proposed
system can effectively take advantage of both AC and BC
speech, which leads to significant performance improvement
in the low SNR environments over the single-modal system
with only AC speech and the multi-modal system that simply
concatenates AC and BC speech.
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