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Diffusion-Based Adversarial Purification
for Speaker Verification

Yibo Bai , Xiao-Lei Zhang , and Xuelong Li , Fellow, IEEE

Abstract—Recently, automatic speaker verification (ASV) based
on deep learning is easily contaminated by adversarial attacks,
which is a new type of attack that injects imperceptible perturba-
tions to audio signals so as to make ASV produce wrong decisions.
This poses a significant threat to the security and reliability of
ASV systems. To address this issue, we propose a Diffusion-Based
Adversarial Purification (DAP) method that enhances the robust-
ness of ASV systems against such adversarial attacks. Our method
leverages a conditional denoising diffusion probabilistic model to
effectively purify the adversarial examples and mitigate the impact
of perturbations. DAP first introduces controlled noise into adver-
sarial examples, and then performs a reverse denoising process
to reconstruct clean audio. Experimental results demonstrate the
efficacy of the proposed DAP in enhancing the security of ASV and
meanwhile minimizing the distortion of the purified audio signals.

Index Terms—Adversarial defense, diffusion model, speaker
verification.

I. INTRODUCTION

AUTOMATIC speaker verification (ASV) aims to verify in-
dividuals based on their unique voiceprint characteristics.

It has been widely used in biometric authentication. However,
ASV systems are vulnerable to attackers [1], which raises a
concern in enhancing their security in real-world applications.
Particularly, recently a new type of attacker named adversarial
attack, which adds imperceptible perturbations to original utter-
ances, can easily contaminate an ASV system by making it e.g.
accept speakers that should have been rejected or just the oppo-
site, without changing the perception quality of the utterances to
human. The polluted utterances are called adversarial examples,
while the original utterances are also called genuine examples.
In recent years, there has been growing interest in studying
the susceptibility of ASV systems to adversarial attacks. For
example, [1], [2] found that the state-of-the-art ASV models are
highly vulnerable to adversarial attacks. [3] conducted transfer-
able gray-box attacks on ASV systems across different features
and different models.
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In response to this emerging threat landscape, researchers
have begun investigating techniques to enhance the robustness
and security of ASV systems against adversarial attacks. Cur-
rent defense methods can be classified into three categories:
adversarial training, adversarial detection and adversarial purifi-
cation [4]. Specifically, adversarial training mainly utilizes the
adversarial examples to retrain the ASV model. One weakness
of this kind of methods is that it needs to modify the param-
eters of the original model [5]. Adversarial detection adds a
detection head in front of the ASV model to reject adversarial
examples as an input into the system [6]. However, it may
hinder human access to ASV when his/her voice was polluted by
adversarial perturbations. Adversarial purification aims to purify
all incoming inputs to eliminate adversarial perturbations [4]. It
overcomes the weaknesses of the first two kinds of methods,
which is our focus in this paper.

Adversarial purification for ASV can be divided into two cat-
egories: preprocessing and reconstruction. Preprocessing meth-
ods apply empirical knowledge to the input signals. They are
typically data-free and have low computational complexity. For
example, [7] applied median, mean and Gaussian filters to the
input utterance. [8] proposed to add white noise with different
variance to the entire utterance. Reconstruction methods focus
on recover the original audio or its acoustic features from the
adversarial examples. [9] proposed a separation network to esti-
mate adversarial noise for restoring the clean speech. [10] pro-
posed to reproduce the acoustic features with a self-supervised
model. Although existing purification methods have demon-
strated effectiveness in defending ASV systems, the quality
of the reconstructed audio signals was not guaranteed to high
level. Some methods introduce additional noise into the purified
samples, while others produce unexpected distortion to the audio
signals which make the signals deviate significantly from their
origins.

To address the above issue, we propose the Diffusion-Based
Adversarial Purification (DAP) method. This novel method uti-
lizes a diffusion model to purify the impact of adversarial attacks
by reconstructing the original speech waveform, which defends
ASV systems with high reliability. Our contributions can be
summarized as follows: We propose the first adversarial defense
diffusion model for ASV systems. Our method achieves the
state-of-the-art performance on the ASV purification task, and
retains the essential information of the original speech signal.

II. RELATED WORK

A. Automatic Speaker Verification

Speaker verification aims to determine whether a test ut-
terance belongs to a speaker that it declares to. Most of the
current ASV systems comprise three components: an acoustic
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Fig. 1. A speaker verification pipeline with DAP method. Initially, the adversarial example is introduced into a diffusion model positioned before the ASV system
for processing. Subsequently, the diffusion model employs a “diffusion” process on the adversarial input, followed by the reversal of this process to reconstruct the
original clean audio. Finally, the ASV system produces the correct verification outcome.

TABLE I
ECAPA-TDNN PERFORMANCE RESULTS FOR GENUINE EXAMPLES ON THE

SPEAKER VERIFICATION TASK

feature extractor, an encoder front-end which yields a speaker
embedding from the acoustic features, and a scoring back-end
which evaluates the similarity of the representations of two utter-
ances. Commonly used acoustic features include Mel-frequency
cepstral coefficients (MFCCs) or logarithmic filter-banks (LogF-
Bank). Given a test utterance xt and an enrollment utterance xe,
the scoring process of ASV can be defined as:

s = S(F (xt), F (xe)) (1)

where S(·) denotes the scoring back-end, F (·) is the encoder
front-end, and s is the similarity score between xt and xe. By
comparing the similarity score with a predefined threshold, the
system determines whether to accept the test utterance.

B. Adversarial Attack to ASV

Given a genuine audio utterance x from a speaker i, an adver-
sarial attack creates a perturbation signal ε to x. The adversarial
example is formulated as x̃ = x+ ε subject to the condition
‖x̃− x‖p ≤ ε which guarantees that x̃ is similar to x, where ε
is a very small number that controls the energy of ε, and ‖ · ‖p
is the �p-norm. As shown in Fig. 1, x̃ aims to cause an error of
the ASV system.

C. Denoising Diffusion Probabilistic Models

The denoising diffusion probabilistic models [11] are a type
of generative models used to produce data similar to the input.
Specifically, the diffusion model works by progressively adding
Gaussian noise to blur the training data and then learning how
to denoise it and recover the original input. Once trained, the
diffusion model can reverse the diffusion process to generate
new data from random noise.

Recently, diffusion models have garnered interest among
researchers. They utilize diffusion and denoising processes for

high-quality content generation. By incorporating specific gen-
eration conditions, the outcomes of diffusion models can be
controlled [12] to satisfy different applications such as speech
enhancement, speech command recognition, image reconstruc-
tion, and remote sensing [13], [14], [15], [16].

III. METHODOLOGY

A. Framework

The objective of our research is to develop a robust adver-
sarial purification model D(·) for ASV, which eliminates the
perturbation ε in x̃ and produces a purified audio x̃′. It can be
formulated as a problem of x̃′ = D(x̃) subject to:

S(x̃′, xe) = S(x, xe) (2)

This paper proposes to take the denoising diffusion proba-
bilistic model [11] as D(·) to purify adversarial perturbation
and transform these adversarial examples into clean data for
ASV. The proposed DAP method is illustrated in Fig. 1. Given
an adversarial audio x̃, DAP purifies it to x̃′ for satisfying (2).
Specifically, DAP first introduces noise to x̃ via a forward
process with a diffusion timestep T . Subsequently, it recon-
structs the clean audio signal x̃′ via a reverse denoising process
before feeding it into the ASV system for analysis. In the next
subsection, we will present the denoising diffusion probabilistic
model in detail.

B. Diffusion-Based Audio Purification

A T -step denoising diffusion probabilistic model consists of
two processes: the diffusion process, a.k.a. forward process, and
the reverse process, which can both be represented as a T -step
parameterized Markov chain. In its diffusion process, the model
addsT rounds of noise to the real examplex0 to obtain the noised
sample xT . The reverse process aims to recover the original x0

based on xT . Following the Markov assumption, the state at t
step in the diffusion process, only depends on the state at t− 1
step, so the process can be defined as:

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1), (3)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). In other words,

xt is sampled from a Gaussian distribution with mean√
1− βtxt−1 and variance βt, where βt is a hyperparameter

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on September 21,2024 at 01:54:35 UTC from IEEE Xplore.  Restrictions apply. 



2302 IEEE SIGNAL PROCESSING LETTERS, VOL. 31, 2024

determined by a predefined strategy, usually satisfying β1 <
β2 < · · · < βT .

Then, employing the recursive reparameterization trick, xt

can be represented in terms of x0:

xt =
√
ᾱtx0 + (1− ᾱt)ε, (4)

where ε ∼ N (0, I), αt = 1− βt and ᾱt =
∏t

i=1 αi. We have:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (5)

Similarly, for the reverse process that transforms xT back to x0,
we have:

pθ(x0, . . . , xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (6)

where pθ(·) is used to estimate q(·) in (3) and pθ(xt−1|xt) =
N (xt−1;μθ(xt, t), σθ(xt, t)

2I) with the parameterized μθ and
σ2
θ described as [17]:

μθ(xt, t) =
1√
αt

(
xt − βt√

1− ᾱt
εθ(xt, t)

)
, (7)

and

σθ(xt, t)
2 = β̃t, (8)

where β̃t =
1−ᾱt−1

1−ᾱt
βt for t > 1 and β̃1 = β1, and εθ(xt, t) rep-

resents a deep neural network model used to predict Gaussian
noise ε from xt and t.

According to [11], we train diffusion model with the following
unweighted objective function:

Ex0,t,ε

∥∥∥ε− εθ(
√
ᾱtx0 +

√
(1− ᾱt)ε, t)

∥∥∥2
2
, (9)

where t is uniformly sampled from the range 1 to T . After
training, εθ is able to predict ε well. In the inference stage,
the diffusion model first begins with a diffused sample xT , then
the reverse process iteratively utilizes εθ to get the mean μθ and
finally recover x0 from xT .

Existing theorems have proven that in the forward process
(3) of the diffusion model, the KL divergence between the
distribution of clean data and the distribution of adversarial
examples monotonically decreases [18]. This indicates that the
two distributions gradually become more similar as t increases,
enabling the use of the reverse process to reconstruct clean
inputs from adversarial examples. This comprehensive process
constitutes the foundation of our innovative defense approach
against adversarial attacks. While the previous method in [18]
focuses on purifying images with fixed width and height, our
method can flexibly handle audio signals with variable length.
Given an adversarial audio x̃, we initiate the forward process
withx0 = x̃. According to the above theorem in [18], there exists
a timestep t∗ that minimizes the KL divergence between the two
distributions. Therefore, by starting the reverse process with
T = t∗, the diffusion model can recover corresponding clean
audio of x̃. The resulting audio utterance is then passed to the
ASV system.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: We utilized VoxCeleb1 [19] for evaluating our
DAP approach and VoxCeleb2 [20] for training the ASV

and DAP models. VoxCeleb1 contains over 1,000 hours of
speech data with 148,642 utterances from 1,211 speakers. Vox-
Celeb2 extends VoxCeleb1 with more speakers. This dataset
offers an expanded set of development data to train our ASV
models, which enables them to learn from a more diverse set of
speakers. To balance computational requirements and ensure a
representative evaluation, we conducted our adversarial research
by randomly selecting 1,000 trials from the VoxCeleb1-O
subset.

2) ASV System: We employed ECAPA-TDNN [21] as the
main victim ASV model for adversarial attacks, which consists
of convolutional layers with 512 channels. We used the AAM-
Softmax objective function [22] with hyperparameters {s=32,
m=0.2} for training, along with attentive statistical pooling. The
input acoustic feature is an 80-dimensional LogFBank represen-
tation with a 25 ms hamming window and a 10 ms step size. Ad-
ditionally, cepstral mean and variance normalization (CMVN) is
applied to the features. Data augmentation techniques including
speed perturbing, superimposed disturbance, and reverberation
enhancement are employed. Cosine distance is used to produce
similarity scores between embeddings.

3) Adversarial Attack: We employed PGD attack [23] and
BIM attack [24], which adopt the same parameters {ε=30,α=1}
to generate the adversarial examples. The iteration step was
normally set as 50. To ensure a consistent signal-to-noise ratio
(SNR) between genuine and adversarial examples, we added
Gaussian white noise to the genuine examples, with the noise
level determined by the corresponding adversarial perturbations.
As a result, the mean signal-to-noise ratio for the genuine
examples was set to approximately 40 dB.

4) Evaluation Metrics: We measured the performance of
the ASV systems and the effectiveness of the defense mech-
anism using two commonly used metrics: Equal Error Rate
(EER) and minimum Detection Cost Function (minDCF) with
p = 0.01 and Cmiss = Cfa = 1 [25]. EER measures the
point at which the false acceptance rate (FAR) equals the
false rejection rate (FRR). minDCF is a cost-based metric that
considers both false acceptance and false rejection errors, al-
lowing for a more comprehensive evaluation of ASV system
performance.

We evaluated the reconstruction performance of the purified
signals using three objective metrics: Scale-Invariant Signal-to-
Distortion Ratio (SI-SDR), Short-Time Objective Intelligibility
(STOI), and Perceptual Evaluation of Speech Quality (PESQ).
These metrics assess the quality and intelligibility of the audio,
where higher values indicate better speech quality.

5) Baseline and Proposed Methods: For our Diffusion-
Based Adversarial Purification (DAP) model, we adopted the
same architecture as DiffWave [17]. To introduce controlled
noise during the training stage, we set step T as 100 and utilized
a linear noise schedule {0.0001, 0.035} to apply βt at each
step. It makes βt begin with 0.0001 and increase to 0.035
over 100 steps. In the inference stage, the six-step variance
schedule [0.0001, 0.001, 0.01, 0.05, 0.2, 0.35] is applied to set the
value of γ in the fast sampling algorithm. In addition, We used
adversarial examples generated by the PGD method for training
the DAP model. We trained two DAP systems conditioned on
512-dimensional spectrogram, which were trained by 1 k and
80 k iterations, respectively.

We compared the proposed adversarial defense method with
three adversarial defense methods [7], [8], [10]. (i) The TERA
method [10] employed a self-supervised model to reconstruct
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TABLE II
EER(%) RESULTS OF THE VICTIM ASV MODEL FOR GENUINE AND ADVERSARIAL EXAMPLES, GIVEN THE DEFENSE MODELS OF TERA, SPATIAL SMOOTHING,

ADDING NOISE AND THE PROPOSED DAP METHOD

TABLE III
QUALITY OF THE AUDIO SIGNALS THAT ARE FIRST GENERATED FROM PGD

ADVERSARIAL EXAMPLES AND THEN PURIFIED BY DEFENSE MODELS

the acoustic feature. We pretrained it with the same setting
in [10] except on 80-dim LogFBank features. (ii) The spa-
tial smoothing method [7] used median, mean, and Gaus-
sian filters to process the input audio. (iii) The noise-based
method [8] added Gaussian noise to the entire audio signal. In
our experiments, the standard deviation of the noise was set to
{0.002, 0.005, 0.01, 0.02, 0.05}.

B. Experimental Results

1) Defense Performance: Table II compares the DAP method
with three purification methods on the ASV defense task. DAP
outperforms others in defending against adversarial examples
while maintaining performance on genuine examples. Further-
more, DAP is capable of defending against both �∞ and �2
attacks. In addition, although self-supervised models like TERA
are not trained for adversarial purification tasks, they could
still demonstrate some defensive capabilities. We also evalu-
ated another pretrained self-supervised model—WavLM [26].
It reaches an EER of 9.427% after purifying the PGD examples.

2) Reconstruction Performance: In terms of audio recon-
struction quality, DAP surpasses other methods as shown in
Table III. Fig. 2 gives a visualized comparison between the
original audio and its corresponding adversarial examples after
processed by different defense methods. From the figure, we see
that the adversarial example purified by DAP are observed to be
more similar to the original signal compared to those purified
by the other approaches, e.g. the highlighted part in the red
box. Moreover, DAP can reduce the noise and reverberation
component of the speech signal. We also conducted a human
listening test on 50 DAP-purified samples with five listeners. In
52% of the cases, listeners could not discern any differences,
while 36% of the samples were perceived as similar to the
original audio but with slight noise. For the remaining 12%,
listeners noticed significant noise.

3) Effect of Attack Settings: In this subsection, we study the
robustness of the proposed method against different attackers
and with different victim models. Table IV lists the performance
of the ECAPA-TDNN and Fast-ResNet34 victim models under
the �2 PGD and �∞ BIM attack methods, where the standard

Fig. 2. A comparison example between the original audio and its ad-
versarial example with different defenders. The genuine example is from
id10270/5r0dWxy17C8/00024.wav of VoxCeleb1. As TERA method focuses
on feature-level purification, it is not included in Fig. 2(a).

TABLE IV
EER(%) RESULTS OF ECAPA-TDNN AND FAST-RESNET34 UNDER PGD AND

BIM ATTACK METHODS

deviation of the adding noise method was set to 0.01. The results
show that our method is effective under different attack scenarios
and different ASV architectures.

V. CONCLUSION

In this letter, we propose a DAP method for the ASV defense
against adversarial attacks. DAP utilizes a diffusion model to
purify the adversarial examples and mitigate the perturbations in
audio inputs. We conducted experiments in scenarios where the
attackers are unaware of the defense method. The experimental
results indicate that our approach outperforms the representative
purification methods. It also introduces the minimal distortion
to the genuine examples over the comparison methods.
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