
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020 1533

Speaker Verification by Partial AUC Optimization
With Mahalanobis Distance Metric Learning

Zhongxin Bai, Xiao-Lei Zhang , and Jingdong Chen

Abstract—Receiver operating characteristic (ROC) and detec-
tion error tradeoff (DET) curves are two widely used evaluation
metrics for speaker verification. They are equivalent since the
latter can be obtained by transforming the former’s true positive
y-axis to false negative y-axis and then re-scaling both axes by a
probit operator. Real-world speaker verification systems, however,
usually work on part of the ROC curve instead of the entire ROC
curve given an application. Therefore, we propose in this article
to use the area under part of the ROC curve (pAUC) as a more
efficient evaluation metric for speaker verification. A Mahalanobis
distance metric learning based back-end is applied to optimize
pAUC, where the Mahalanobis distance metric learning guarantees
that the optimization objective of the back-end is a convex one
so that the global optimum solution is achievable. To improve the
performance of the state-of-the-art speaker verification systems by
the proposed back-end, we further propose two feature prepro-
cessing techniques based on length-normalization and probabilistic
linear discriminant analysis respectively. We evaluate the proposed
systems on the major languages of NIST SRE16 and the core tasks
of SITW. Experimental results show that the proposed back-end
outperforms the state-of-the-art speaker verification back-ends in
terms of seven evaluation metrics.

Index Terms—Metric learning, pAUC, speaker verification,
squared Mahalanobis distance.

I. INTRODUCTION

S PEAKER verification aims to verify whether an utterance
is pronounced by a hypothesized speaker based on some ut-

terances pre-recorded from that speaker. Depending on whether
it requires the to-be-verified speaker to pronounce some pre-
defined text or not, speaker verification can be classified into
two classes, i.e., text-dependent and text-independent. This paper
focuses on the text-independent case. There are generally two
approaches to this problem: a two-step one, which consists of
a front-end feature extractor and a back-end classifier, and a

Manuscript received October 13, 2019; revised February 27, 2020 and April
17, 2020; accepted April 21, 2020. Date of publication April 27, 2020; date
of current version June 2, 2020. This work was supported in part by the
National Key Research and Development Program of China under Grant No.
2018AAA0102200 and in part by National Science Foundation of China (NSFC)
and Israel Science Foundation (ISF) Joint Research Program under Grant
61761146001 and by the NSFC Key Program under Grant 61831019, and in
part by the NSFC Program under Grant 61671381. (Corresponding author:
Xiao-Lei Zhang.)

Zhongxin Bai and Xiao-Lei Zhang are with the Center of Intelligent Acoustics
and Immersive Communications (CIAIC) and the School of Marine Science
and Technology, Northwestern Polytechnical University, Xi’an 710072, China
(e-mail: zxbai@mail.nwpu.edu.cn; xiaolei.zhang@nwpu.edu.cn).

Jingdong Chen is with CIAIC, Northwestern Polytechnical University, Xi’an
710072, China (e-mail: jingdongchen@ieee.org).

Digital Object Identifier 10.1109/TASLP.2020.2990275

one-step approach, which trains an end-to-end system [1]–[4].
This paper focuses on the two-step approach.

In a two-step approach, it is important to have a good front-
end. In the literature, the Gaussian mixture model (GMM)
based universal background model (UBM) [5] plus identity
vector (i-vector) [6] is commonly used. In such a front-end, a
GMM-UBM is first trained to collect Baum-Welch statistics,
which is formed as a supervector for each utterance. Then,
factor analysis is used to reduce the dimensionality of the su-
pervectors to low-dimensional i-vectors. Many extensions of the
GMM-UBM/ivector front-end were proposed recently, e.g., [7].
Motivated by the paradigm shift of speech recognition from
GMM-based acoustic modeling to deep neural network (DNN)
based one, a DNN-UBM/i-vector front-end was developed [8]–
[10]. It essentially uses the DNN-based acoustic model trained
for speech recognition to generate the posterior probabilities
instead of GMM-UBM. Tan et al. further employed a denois-
ing autoencoder to replace the DNN-based acoustic model for
dealing with environmental noise [11]. These method, however,
needs transcriptions of the training data to train the acoustic
models, which may not be always available.

An emerging direction of the front-end research is deep em-
bedding. Deep embedding uses a DNN to distinguish the training
speakers in a closed set by a classification-based loss function,
and takes the outputs of the hidden layers of the DNN for
verification. An early deep embedding front-end is the so-called
d-vector [12], [13], in which frame-level speaker features are
extracted from the top hidden layer, and then utterance-level
speaker features are derived as the average of the frame-level
features. However, the average of the frame level features does
not consider the dependency of the contextual frames. Several
efforts have been made to address this problem [14]–[17]. For
example, in [14], [15], Snyder et al. proposed to insert an average
pooling layer into DNN to handle variable-length segments.
In [18], Gao et al. exploited a cross-convolutional-layer pooling
method to extract the first-order statistics of the input segments.
Attention mechanism was also studied to generate utterance-
level features [16], [17]. Another problem with the deep em-
bedding front-end is on the training loss function. Because the
classification-based loss is only a surrogate loss function of the
final evaluation metrics of speaker verification, finding more
effective loss functions become an important issue. In [19], [20],
the authors proposed to minimize the classification-based loss
and center loss together. In [21], Zhang et al. took triplet loss as
the training objective of a deep embedding network. Although
employing the above training loss functions is shown to be able

2329-9290 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7694-193X
https://orcid.org/0000-0003-0083-9247
mailto:zxbai@mail.nwpu.edu.cn
mailto:xiaolei.zhang@nwpu.edu.cn
mailto:jingdongchen@ieee.org

1534 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

to improve the performance, the extracted speaker features still
have significant intra-class variations, which need to be handled
by back-ends.

Regarding the back-end, commonly used back-end clas-
sifiers include cosine similarity scoring [6], support vector
machine [22], and probabilistic linear discriminant analysis
(PLDA) [23]–[25]. DNNs have also been investigated [26],
[27]. Inter-session variability compensation is a main task of
back-ends, since the front-ends are inter-session- and speaker-
dependent. Linear compensation techniques such as linear dis-
criminant analysis (LDA) and within class covariance normal-
ization [28] are often used. Recently, nonlinear compensation
methods have been studied as well: Cumani et al. [29], [30]
proposed a nonlinear transformation to i-vectors to make them
more suitable for PLDA [31]; Zheng et al. developed a DNN-
based dimensionality reduction method as an alternative to
LDA [32]. However, because the aforementioned back-ends do
not optimize the evaluation metrics directly, such as equal error
rate (EER), their performance may be suboptimal.

To optimize the evaluation metrics directly, metric learning
needs to be used, which attempts to learn an appropriate sim-
ilarity measurement space of data points. It has been widely
studied in the machine learning community. One of the most
popular metric learning methods is to optimize the parameters
of a Mahalanobis distance in a linear space [33]. Recently,
deep metric learning [34]–[36], which uses a DNN to learn
a nonlinear similarity measurement, has also received much
attention. Metric learning has been recently studied in speaker
verification as well. For example, some metric learning based
back-ends [37], [38] have been proposed to compensate the
inter-session variability of the embedding features, where the
work in [37] minimizes the EER of speaker verification di-
rectly. It is also popular to train an end-to-end speaker veri-
fication system [1]–[4] or an embedding DNN [21] by deep
metric learning. In our recent work [37], we proposed a lin-
ear cosine metric learning algorithm to minimize the overlap
region of decision scores. Similarly, in [38], Novoselov et al.
proposed a triplet-loss-based cosine similarity metric learning
back-end.

Although directly optimizing an evaluation metric of speaker
verification improves the performance, current methods focus
mainly on optimizing EER. Since it needs to work at a different
point of its receiver operating characteristic (ROC) curve for
different applications, a speaker verification system tuned to
yield the minimum EER in one scenario may not produce the
best performance in another scenario. To address this issue,
this paper proposes a back-end to directly optimize part of the
area under the ROC curve (named partial AUC, or pAUC for
short). The main contributions of this paper are summarized as
follows:
� A new calibration-insensitive evaluation metric named

“pAUC” is proposed for speaker verification. pAUC rep-
resents partial area under the ROC curve. It meets the eval-
uation requirement of real-world applications that work
on different parts of ROC curves, such as bank security
systems or terrorist detection systems. It is a supplement
evaluation metric to the existing metrics. As shown in

β

Fig. 1. Illustrations of the ROC curve, AUC, and pAUC.

Fig. 1, the pAUC for a specific application is defined by
two false positive rate (FPR) parameters: α and β.

� A Mahalanobis metric learning back-end is proposed to
maximize pAUC (pAUCMetric). pAUCMetric evaluates
the similarity between two speaker features by a squared
Mahalanobis distance, and optimizes the parameters of the
distance metric to maximize pAUC where the working
points of the speaker verification system locate. pAUC-
Metric is formulated as a convex optimization problem,
where the global optimum solution is guaranteed. We fur-
ther combine pAUCMetric with two feature preprocessing
techniques: 1) length-normalization, and 2) latent variables
of PLDA, which combine the ranking property of pAUC
into the Cosine similarity or PLDA back-ends for further
performance improvement. It is shown that the AUC opti-
mization, such as the one in [39], [40], can be viewed as a
special case of pAUC with α = 0 and β = 1.

Experiments are conducted to evaluate the effectiveness of
pAUCMetric and compare pAUCMetric with PLDA and cosine
similarity scoring back-ends that do not optimize evaluation
metrics directly. For each experiment, all back-ends use the
same front-end, which is either the GMM/i-vector or the x-
vector. We train the comparison methods on switchboard, NIST
SRE04–SRE10 and VoxCeleb datasets, and evaluate them on
the major languages of NIST SRE16 and the core tasks of
SITW. The evaluation is conducted under the conditions of both
noise-matching and -mismatching, as well as both language-
matching and -mismatching. The experimental results show that
pAUCMetric outperforms PLDA by relatively 10%, 9% and
20% in terms of EER, pAUC and AUC metrics respectively.

The rest of this paper is organized as follows: Section II
presents the motivations. Section III and V describe the proposed
algorithm. Section VI presents the experiment results. Finally,
important conclusions are drawn in Section VII.

II. MOTIVATION

A. Motivation for the pAUC Evaluation Metric

It is known that a speaker verification system first generates
a similarity score of a trial by a speaker detection algorithm,
and then makes a hard decision according to a threshold as
illustrated in Fig. 2. The speaker detection algorithm assigns

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1535

Fig. 2. Diagram of a speaker verification system with common evaluation
metrics.

higher scores to target trials than non-target trials, which deter-
mines the discriminability of the system. The decision threshold
is usually determined by first calibrating the similarity scores
to the log-likelihood ratios (LLR) and then applying the Bayes
decision theory [41] using application-dependent priors, i.e., the
prior of targets and the costs of false negative rate (also known as
miss detection rate) and false positive rate (also known as false
alarm rate).

The evaluation metrics of speaker verification in Fig. 2 can
be categorized to two classes—calibration-sensitive metrics and
calibration-insensitive ones. The calibration-sensitive metrics,
which include the actual detection cost function (actDCF) and
cost of LLR (Cllr), aim to evaluate a calibrated speaker ver-
ification system under the framework of Bayes decision the-
ory. Specifically, the application-dependent actDCF evaluates
the empirical Bayes risk of a system at the Bayes decision
threshold [41], which determines how good is the hard deci-
sion. Cllr evaluates the discrimination of the calibrated LLR
in an application-independent manner [42]. While calibration-
sensitive evaluation metrics have many pros in evaluating the
suitability of a calibrated system, we often need to evaluate the
detection algorithm of an uncalibrated system directly.

In contrast, calibration-insensitive metrics evaluate the dis-
criminability of the detection algorithm. They include the de-
tection error tradeoff (DET) curve, EER, minimum detection
cost function (minDCF), and average precision. DET curve is
an alternative form of the ROC curve. As a matter of fact, the
DET curve can be obtained by transforming the ROC curve’s true
positive y-axis to false negative y-axis and then re-scaling both
axes by a non-linear warping named the probit operator [41],
[43]. It reflects the global discriminability of a speaker verifi-
cation system. EER and minDCF are two points on the DET
curve, which reflect the discriminability of the system to some
extent. Like the DET curve, average precision is a global metric
that combines recall and precision for ranked retrieval results,
which is however sensitive to class-imbalanced problems such
as speaker verification. To summarize, DET curve and average
precision are two global metrics, while EER and minDCF are
two local points on the DET curve.

In practice, a speaker verification system usually works on a
local fraction of the DET curve with a tunable threshold, instead
of a single local point. For example, a bank security system
is tuned in a range where the false positive rate is controlled
below 0.01%. In contrast, a terrorist detection system of a public
security department is tuned in a range whose recall rate is
required in a range of higher than 99%. As shown in Fig. 1,
pAUC may meet such a requirement. First, [α, β] in Fig. 1
defines the interested operating points of a real-world working
scenario. Second, pAUC, which is a scalar in the range of [0,1],
describes the interested part of the ROC curve efficiently. At

Fig. 3. Diagram of the pAUCMetric based speaker verification system.

last, its calculation method, which will be presented in (7), does
not depend on a decision threshold. Hence, we adopt pAUC as
a new calibration-insensitive evaluation metric.

B. Motivation for the pAUCMetric Back-End

How to optimize calibration-sensitive evaluation metrics has
been well studied and a number of methods were developed [44],
[45]. But those methods do not improve the discriminability
of the detection algorithm as the order of the similarity scores
of training trials is not changed. In order to improve the dis-
criminability of the detection algorithm, it is better to optimize
the ROC curve directly by maximizing its AUC. However,
optimizing the entire AUC is not only costly but also unnecessary
as that most practical systems work only on part of their ROC
curves. Therefore, we propose a metric learning back-end based
on Mahalanobis distance to optimize pAUC accordingly.

Another advantage of pAUCMetric is that it can select difficult
negative training trials by setting β to a small value, which is a
well-known challenging problem for the algorithms that need to
group training utterances into training trials. As will be shown in
the experiments, the proposed pAUCMetric performs better than
a triplet-loss-based algorithm, which differs from pAUCMetric
only in the loss function, for all the aforementioned evaluation
metrics.

III. PAUC METRIC LEARNING BACK-END

In this section, we first provide an overview to the speaker ver-
ification system in Section III-A, and then present the objective
function and optimization algorithm of the proposed back-end
in Sections III-B and III-C respectively.

A. System Overview

The diagram of the pAUCMetric based speaker verification
system is shown in Fig. 3. The front-end is used to extract speaker
features from speech signals. We use i-vector [6] or x-vector [15]
as the front-end. After feature extraction by the front-end, we

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

1536 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

further preprocess the features as described in Section V, and
then use the preprocessed feature as the input of pAUCMetric.

The role of pAUCMetric is to judge whether two preprocessed
features xq1 and xq2 belong to the same speaker based on their
similarity. The similarity is measured by the following squared
Mahalanobis distance:

S(xq1 ,xq2 ;M) = (xq1 − xq2)
TM(xq1 − xq2) (1)

where M is a symmetric positive semi-definite matrix, which
is to be learned by pAUCMetric. If the squared Mahalanobis
distance between xq1 and xq2 is smaller than a pre-specified
threshold θ∗,xq1 andxq2 are regarded as from the same speaker;
otherwise, they are regarded as from different speakers. We
denote zi = xq1 − xq2 , and denoteS(xq1 ,xq2 ;M) asS(zi;M)
for simplicity. A probabilistic explanation of the Mahalanobis
distance is given in Appendix A.

B. Objective Function

Given a training set withN speakers andQ embedding vectors
X = {(xq, yq)}Qq=1, where yq = 1, . . . , N is the identity of xq ,
we first construct a pairwise training set

T = {(zi, li)}Ii=1 (2)

where zi = xq1 − xq2 with q1 = 1, . . . , Q and q2 = 1, . . . , Q
(q1 �= q2), I is the size of T , and li is the ground-truth label of
zi satisfying:

li =

{
1, if yq1 = yq2
−1, otherwise

(3)

We define the subset of the true trials of T as:

P = {(z+j , lj = 1)}Jj=1 (4)

and the subset of the imposter trials of T as:

N = {(z−k , lk = −1)}Kk=1 (5)

where J and K are the sizes of P and N respectively.
After the above preliminary setting, the pAUC is calculated

as follows. We define a subset of N that defines the pAUC over
the FPR range [α, β]:

N0 = {(z−r , lr = −1)}Rr=1 (6)

where R ≤ K, and N0 is determined as following. Because the
imposter set N contains only a limited number of trials, we
first replace [α, β] by [kα/K, kβ/K] where kα = �Kα� and
kβ = �Kβ� are two integers. Then, {S(z−k ;M)}z−

k∈N are sorted
in ascending order. Finally, we pick the trials ranked from the
top kαth to kβ th positions to form N0. The calculation of pAUC
is equivalent to that of the normalized AUC over P and N0,
which is computed as:

pAUC = 1− 1

JR

J∑
j=1

R∑
r=1

[
I(S(z+j ;M) > S(z−r ;M))

+
1

2
I(S(z+j ;M) = S(z−r ;M))

]
(7)

where I(·) is an indicator function that returns 1 if the statement
is true, and 0 otherwise.

However, directly optimizing (7) is an NP-hard problem.
To circumvent this, let us relax (7) by replacing the indicator
function by a hinge loss function:

�hinge(S(z
+
j ;M) > S(z−r ;M)) =

max
[
0, δ −

(
S(z−r ;M)− S(z+j ;M)

)]
(8)

where δ > 0 is a tunable hyper-parameter controlling
the distance margin between {S(z−r ;M)}z−

r∈N0
and

{S(z+j ;M)}z+
j ∈P . Substituting (8) into (7) and further changing

the maximization problem (7) into an equivalent minimization
one gives (9).

� =
1

JR

J∑
j=1

R∑
r=1

max
(
0, δ − S(z−r ;M) + S(z+j ;M)

)
(9)

The proposed pAUCMetric minimizes (9) over P and N0. To
prevent overfitting to the training data, we add a regularization
term λΩ(·) to the minimization problem according to a plausi-
ble formulation in [46], which gives the objective function of
pAUCMetric:

M∗ = argmin
M

�(P,N ;M) + λΩ(M), (10)

where λ is a regularization hyperparameter, and λΩ(·) is defined
as:

λΩ(M) =
γ

J

J∑
j=1

S(z+j ;M) + μ[tr(M)− logdet(M)] (11)

with γ and μ being two tunable hyper-parameters. The first term
on the right-hand side of (11), i.e., 1

J

∑J
j=1 S(z

+
j ;M), which

was first introduced in [47], aims to bound S(z+j ;M) in (9). The
second term, i.e., tr(M)− logdet(M), which is a specifical case
of LogDet divergence [48] defined over positive semi-definite
(PSD) matrices [33], is used to improve the generalization ability
and further constrain M to be PSD.

(10) can also be interpreted from another viewpoint using the
following lemma.

Lemma 1: The maximization of pAUC in (10) is a problem of
enlarging a weighted margin between the positive and negative
trials while minimizing the within-class variances of the two
class trials simultaneously.

Proof: Let us define an index matrix Π ∈ {0, 1}J×R:

Π(j, r) =

{
1, if δ + S(z+j ;M) > S(z−r ;M)

0, otherwise
(12)

and rewrite the loss function of (9) as:

� =
δ

JR

J∑
j=1

R∑
r=1

Π(j, r)+
1

J

J∑
j=1

(
1

R

R∑
r=1

Π(j, r)

)
S(z+j ;M)

− 1

R

R∑
r=1

⎛
⎝ 1

J

J∑
j=1

Π(j, r)

⎞
⎠S(z−r ;M)

= c+
1

J

J∑
j=1

pjS(z
+
j ;M)− 1

R

R∑
r=1

prS(z
−
r ;M) (13)

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1537

where c = δ
JR

∑J
j=1

∑R
r=1 Π(j, r) is a constant in a single

iteration, pj = 1
R

∑R
r=1 Π(j, r) and pr = 1

J

∑J
j=1 Π(j, r) are

the weights of the positive and negative trials respectively. It is
clear that minimizing (13) is a problem of enlarging the weighted
margin between the positive and negative trials. �

Because the regularization term γ
J

∑J
j=1 S(z

+
j ;M) mini-

mizes the within-class variance, we see that the objective (10)
enlarges the between-class distance and minimizes the within-
class variance simultaneously, which is also the principle behind
many well-known back-ends, such as LDA, WCCN, and PLDA.
The difference lies in that pAUCMetric works in the squared
Mahalanobis distance space and encodes the pAUC information
into the weights pj and pr.

C. Optimization Algorithm

In order to solve the optimization problem in (6), substituting
(12) into (10) gives

M∗ = argmin
M

〈P+ γPP ,M〉F + μ [tr(M)− logdet(M)] ,

(14)
where 〈·〉F denotes the Frobenius norm operator, and

PP =
1

J

J∑
j=1

z+j z
+T
j , (15)

P =
1

JR

J∑
j=1

R∑
r=1

Π(j, r)(z+j z
+T
j − z−r z

−T
r). (16)

We employ the proximal point algorithm (PPA) [46] to opti-
mize (14). The resulting algorithm, which is summarized in
Algorithm 1, consists of the following three steps at each it-
eration:

� The first step constructs the training set T from X . How-
ever, if we consider all trials in X during the construction
of T , the size of T becomes enormous. To prevent the
overload of computing, we construct a pairwise set T t at
each iteration by a random sampling strategy as follows.
We first randomly select s speakers fromX , then randomly
select two embedding vectors from each of the selected
speakers, and finally construct T t by a full permutation of
the 2s embedding vectors. T t contains s true training trials
and s(2s− 1)− s imposter training trials.

� The second step calculates N t
0 according to (6), and calcu-

lates Pt and Pt
P according to (15) and (16) respectively.

� The third step updates M by PPA [46], which first applies
eigenvalue decomposition to X = Mt − η(Pt + γPt

P +
μI0), i.e.,X = UVUT whereV = diag([v1, v2, . . . , vd])
with v1 ≥ v2 ≥ · · · ≥ vd, and then adopts the following
updating equation:

φ+λ (x) = Udiag([φ+λ (v1), . . . , φ
+
λ (vd)])U

T , (17)

where φ+λ (v) = [(v2 + 4λ)1/2 + v]/2, and d is the dimen-
sion of the input feature.

D. Connection to the Back-Ends Trained With Training Trials

There are two basic classes of back-ends depending on how
they construct the training data. One class takes training ut-
terances as the training data for training a generative PLDA.
The other groups training utterances into training trials for
training binary-class classifiers, in which back-ends differ in
two aspects—basic classifiers and loss functions. Here we fo-
cus on discussing the difference between the loss functions of
the second class, which include the pairwise SVM [22], [49],
[50], triplet-loss-based, and pAUCMetric back-ends whose loss
functions are denoted as the classification-loss, triplet-loss, and
pAUC-loss (9), respectively.

The classification-loss [22], triplet-loss [21], and pAUC-loss
all use the hinge loss function to relax the 0/1-loss. The only
difference between them is how the errors are accumulated. The
classification-loss accumulates the classification error, which
suffers from the class-imbalance problem of speaker verifica-
tion. In contrast, the pAUC-loss focuses on the ranking of the
similarity scores; So, it does not suffer from the class-imbalance
problem.

The triplet-loss requires that the features from the same
speaker are closer than those from different speakers in a triplet
trial [21], i.e.,

S(xa,xn;M)− S(xa,xp;M) > δ (18)

where xa, xp, and xn represent, respectively, the anchor, pos-
itive, and negative utterances of a trial. For clarity, we denote
the speaker features in a constraint as a relative constraint. For
example, we call {xa,xp,xn} in (18) as a relative constraint of
the triplet-loss. The difference between the triplet-loss (18) and
pAUC-loss (9) lies in the following three aspects.

First, the relative constraints of the triplet-loss (18) are triplet,
which cannot deal with the situation where the training data
contains only positive or negative trials. While the relative

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

1538 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

constraints of the pAUC-loss (9) are tetrad, which matches the
pipeline of speaker verification. Therefore, (9) does not have the
same limitation as (18). Second, the pAUC-loss is intrinsically
able to pick difficult training trials from the exponentially large
number of training trials, while the triplet-loss lacks such an
ability (that is why it has to use additional training trial selection
methods). Third, as proven in Appendix B, the relative con-
straints of the triplet-loss are a subset of the relative constraints
of the AUC-loss. As a result, the triplet-loss is a specifical case
of the AUC-loss. Moreover, because the AUC-loss is a specifical
case of the pAUC-loss with α = 0 and β = 1, we conclude that
the triplet-loss is a specifical case of the pAUC-loss.

To validate the above analysis, we propose a new triplet-loss
based algorithm for experimental comparison, which differs
from pAUCMetric only in the loss function. The new algorithm,
named TripletMetric, replaces the tetrad constraints (9) with
the triplet constraints (18). Its training data are constructed in
a similar way as T in Section III-C, which randomly selects
s speakers with each speaker selecting two embedding vec-
tors. The number of the training triplet trials is 2s(2s− 2).
Note that, because the number of the tetrad constraints in (9)
is s[(s(2s− 1)− s)(β − α)], the ratio of the number of the
training trials of pAUCMetric to that of TripletMetric is 2

s(β−α) .

IV. COMPLEXITY ANALYSIS

Theorem 1: The computational complexity of pAUCMetric
is:

O = O(d2(I + J +R)) +O(JR) +O(d3) +O(Klog2K)
(19)

where I , J , R, and K are the size of T , P , N0, and N ,
respectively, and d is the dimension of the input feature.

Proof: According to Algorithm 1, the computational com-
plexity of pAUCMetric is composed of three parts:

The first part is the computation of P and N0. We first need
O(I) operations to separate the positive and negative trials in
T . Then, computing the squared Mahalanobis distances between
all training pairs according to (1) consumes O(d2I) multiplica-
tions. Finally, we need O(Klog2K) operations to sort all scores
of N for N0. Thus, the total computational complexity of the
first part is:

O1 = O(I) +O(d2I) +O(Klog2K). (20)

The second part is the computation of Pt and Pt
P . First, com-

putingΠ(j, r) according to (12) needsO(JR) operations. Then,
computation of Pt

P and Pt needs O(d2J) and O(d2J + d2R)
multiplications respectively. The total computational complex-
ity of the second part is therefore:

O2 = O(JR) +O(d2J) +O(d2J + d2R). (21)

The third part is the computation of Mt. Both of the
eigenvalue decomposition and the updating procedure con-
sume O(d3) multiplications. Therefore, the third part has a
complexity of:

O3 = O(d3). (22)

Summing the above three parts gives (19), which completes
the proof. �

Because the value of d is relatively small, the overall com-
putational complexity depends mainly on the complexity of
computing the Π(j, r) matrix, which is quadratic with respect
to P , N0. The complexity of computing Π(j, r) is reduced by
the random sampling strategy described in Section III-C, which
leads the following corollary.

Corollary 1: Given the batch size s, the computational com-
plexity of pAUCMetric is reduced to

O(2cs3) (23)

where c is a coefficient related to the FPR range [α, β].
Proof: According to Section III-C, we have I = 2s2 − s,

J = s, K = 2s2 − 2s, and R = c(2s2 − 2s). Therefore, the
computational complexity is reduced to O(2cs3) +O(d3). Be-
cause the dimension d is small, the computational complexity
depends mainly on s only. �

Corollary 1 shows that the computational complexity of
pAUCMetric is cubic with respect to s. As will be shown in
Section VI-F3, pAUCMetric can achieve good performance with
a small value of s.

V. THE INPUT FEATURES OF PAUCMETRIC

After the feature extraction by a front-end, one needs to pre-
process the features for boosting the performance of pAUCMet-
ric as shown in Fig. 3. This section presents two preprocessing
techniques.

A. Length-Normalization

Given a speaker feature y from a front-end, we use the length-
normalized feature [25] x as the input to pAUCMetric:

x =
y

‖y‖2
(24)

The underlying reason for this normalization is as follows.
Learning a transform matrix in the cosine similarity scoring
framework, i.e.,

Scos(y1,y2;M) =
〈Ay1,Ay2〉

‖Ay1‖2‖Ay2‖2
(25)

has been studied extensively, e.g. [6]. However, the learning
problem is nonlinear and non-convex. Existing methods either
learn A independently by, e.g., LDA, WCCN [6], or learn A in
the above framework with a good initialization [37]. Both ways
are suboptimal.

The Euclidean distance scoring is empirically inferior to the
cosine similarity scoring when given the same input y. But it
is equivalent to the cosine similarity scoring if its input is the
length-normalized feature x since

SEuc(x1,x2) = ‖x1‖22 + ‖x2‖22 − 2〈x1,x2〉
= 2− 2Scos(y1,y2). (26)

More importantly, learning A in the following Euclidean dis-
tance scoring framework does not suffer from the nonlinear and

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1539

non-convex issues:

SEuc(x1,x2;A) = ‖Ax1 −Ax2‖22
= (x1 − x2)

TM(x1 − x2)

= S(x1,x2;M) (27)

where M = ATA and S(·) is the scoring function of our
pAUCMetric.

B. PLDA-Based Preprocessing

Two kinds of PLDA algorithms have been widely adopted
in speaker verification, i.e., the simplified PLDA [23], [25]
and the two-covariance based PLDA [51]. We adopt the latent
variables of the simplified PLDA [23] as the input features
of pAUCMetric. It generates a centralized feature x by first
generating a speaker center h according to:

h ∼ N (0,Φb) (28)

and then generating the observation data according to:

x ∼ N (h,Φw), (29)

where Φb is required to be positive semi-definite, and Φw is
required to be positive definite. The expectation maximization
algorithm is employed to estimate the parameters. Φb and Φw

can be simultaneously diagonalized by solving the following
generalized eigenvalue problem:

Φbw = ψΦww, (30)

which leads to

WΦbW
T = Ψ (31)

WΦwW
T = I0 (32)

where W is a square matrix whose columns are the generalized
eigenvectors of (30), Ψ is a diagonal matrix whose diagonal
elements are the generalized eigenvalues of (30), and I0 is the
identity matrix.

Finally, the centralized feature is calculated as:

x = W−1u, (33)

where u ∼ N (v, I0), and v ∼ N (v,Ψ), v represents the
speaker, andu represents an example of that speaker in the latent
space. Therefore, the example x in the original space is related
to its latent representationu via an invertible transformationW.
We take the latent variable u as input features of pAUCMetric.1

This preprocessing method adopts the advantage of the PLDA
adaptation into the input features, which improves the overall
performance of the speaker verification system.

VI. EXPERIMENTS

In this section, we first present the datasets and experimental
settings and then the main results as well as analysis on the
effects of the hyperparameters of pAUCMetric.

1Similar to the implementation of the PLDA in Kaldi, we normalize u to

u×
√

d
uT (Ψ+I0)−1u

, where d is the dimension of u.

A. Datasets

1) Training Datasets: The training data consists of Switch-
board (SWBD), NIST speaker recognition evaluation (SRE),
and VoxCeleb database. SWBD consists of Switchboard Cel-
lular 1 and 2 as well as Switchboard 2 Phase 1, 2, and 3. It
contains 28,181 English utterances from 2,594 speakers. The
SRE database consists of NIST SREs from 2004 to 2010 along
with Mixer 6. It contains 64,388 telephone and microphone
recordings from 4,392 speakers. Most of the utterances are in
English, while some utterances are in Chinese, Russian, Arabic
etc. VoxCeleb consists of VoxCeleb1 [52] and VoxCeleb2 [53],
which contains over 1 million recordings from 7,363 celebrities.
It is collected from real world noisy environments, therefore it
contains background chatter, laughter and overlapping speech
etc. In addition, we adopt the same data augmentation scheme
as in [15] to further increase the amount and diversity of the
training data. See Table II for summarization of the training
data.

2) Evaluation Datasets: The evaluation data include NIST
SRE 2016 (SRE16) [54] and the Speakers in the Wild
(SITW) [55] datasets. Specifically, SRE16 contains two major
languages—Cantonese and Tagalog. They are recorded in real-
world noisy environments. The Cantonese language contains
965,393 trials. The Tagalog language contains 1,021,332 trials.
The enrollment segments vary from 60 to 180 seconds, and the
test utterances are about 10 to 180 seconds long. The SITW is
collected from open-source media, which contains real-world
noise, reverberation, intra-speaker variability and compression
artifacts. It contains 299 speakers. Each recording varies from 6
to 180 seconds. It has two evaluation tasks—Dev.Core which
consists of 338,226 trials, and Eval.Core, which consists of
721,788 trials. See Table III for summarization of the evaluation
data.

B. Experimental Settings

1) Training Schemes: Due to different collection methods
and sampling rates of the training data, we define two kinds of
systems:
� 8 kHZ system: We adopt the augmented SWBD and SRE

data, which include 220,569 recordings in total, to train
front-end feature extractors. The back-ends are trained on
the augmented SRE data. The signals originally sampled
at 16 kHz are downsampled to 8 kHz.

� 16 kHZ system: We use the VoxCeleb data to train an
i-vector feature extractor, and use the augmented VoxCeleb
data to train an x-vector feature extractor. We randomly
selected 200,000 recordings from the augmented VoxCeleb
data to train the back-ends.

2) Front-ends: We use the GMM-UBM/i-vector and x-
vector front-ends to extract speaker features. The front-ends are
implemented using Kaldi [56]. Their parameter settings are also
the same as in Kaldi, which are summarized in Table I.

Specifically, for the i-vector extractor, the frame length
is 25 ms, and the frame shift is 10 ms. The frame-level
acoustic features of the 8 kHZ and 16 kHZ systems are 20-
and 24-dimensional MFCCs respectively, which are further

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

1540 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE I
PARAMETER SETTINGS OF FRONT-ENDS. THE TERMS “DIM” AND “MIX” IS SHORT FOR DIMENSIONS AND MIXTURES RESPECTIVELY. THE TERMS Δ AND ΔΔ

DENOTE THE DELTA AND DELTA-DELTA COEFFICIENTS OF MFCCS RESPECTIVELY

TABLE II
DESCRIPTIONS OF TRAINING DATASETS

TABLE III
DESCRIPTIONS OF EVALUATION DATASETS

mean-normalized over a sliding window of 3 s. The final
acoustic features are a concatenation of the MFCCs and their
delta and delta-delta coefficients, which produces a total of
60-dimensional acoustic feature vector for the 8 kHZ system and
72-dimensional acoustic feature vector for the 16 kHZ system.
An energy-based voice activity detector (VAD) is employed to
remove non-speech frames. The number of Gaussian mixtures
is set to 2048 for both the 8 kHZ and 16 kHZ systems. The
dimension of the i-vectors is set to 600 for the 8 kHZ system,
and 400 for the 16 kHZ system.

For the x-vector extractor, we used the standard Kaldi SRE16
and SITW recipes. Specifically, the frame-length is 25 ms,
and the frame shift is 10 ms. The acoustic features of the
8 kHZ and 16 kHZ systems are 24- and 30-dimensional MFCCs,
respectively, which are further mean-normalized over a sliding
window of 3 s. The energy-based VAD is the same as that in the
i-vector extractor. The 8 kHZ x-vector extractor is a pre-trained
system provided at http://kaldi-asr.org/models/m3. The 16 kHZ
x-vector extractor is a newly trained system by Kaldi. The
dimensions of the x-vectors in both the systems are set to 512.

3) Back-ends: We compare pAUCMetric with the state-of-
art PLDA back-end and a commonly used cosine similarity scor-
ing back-end. The parameter settings of the compared back-ends
are summarized as following.
� PLDA: We first reduce the speaker features into a low

dimensional vector by linear discriminant analysis (LDA).
Specifically, if the i-vector front-end is used, the LDA
dimension is set to 200 for the 8 kHZ system and 150 for
the 16 kHZ system. If the x-vector front-end is used, the
LDA dimension is set to 150 and 128 in the 8 kHZ system
and 16 kHZ system, respectively. The dimensions of LDA

TABLE IV
OUTPUT DIMENSIONS OF THE LDA IN THE BACK-ENDS, WHICH ARE THE

DEFAULT VALUES OF KALDI

are summarized in Table IV. We use the output of LDA as
the input of PLDA to compute the similarity scores.

� Cosine similarity scoring (Cosine): We adopt the same
dimension reduction as that in Table IV by LDA, and then
use the dimension-reduced feature as the input of the cosine
similarity scoring to make decisions.

� PLDA-adp: We conduct domain adaptation to the PLDA
back-end of the 8 kHZ system by using an unlabeled
major dataset in NIST 2016 SRE, which consists of 2,272
utterances. The adaptation technique is implemented in
kaldi-master/egs/sre16 of Kaldi.

� pAUCMetric: We adopt the same dimension reduction as
that in Table IV by LDA. Then, the speaker features are pre-
processed according to Section V. At last, the preprocessed
features are used as the input of pAUCMetric. The default
hyperparameters of pAUCMetric are as follows. α = 0,
β = 0.01, μ = 10−3, η = 10, and s = 500. γ is set to 0.5
for the x-vector front-end, and set toγ = 0.1 for the i-vector
front-end. As will be shown in Section VI-F2, pAUCMetric
performs robustly with a wide range of hyperparameter
settings.

� TripletMetric: The algorithm was proposed in the last
paragraph of Section III-D. Its hyperparameter setting is
the same as that of pAUCMetric.

We evaluated the studied methods using the calibration-
insensitive metrics, including the EER, minDCF with Ptar =
0.01 and equal costs of misses and false alarms, pAUC with
α = 0, β = 0.01 (pAUC[0,0.01]), AUC, and average precision
(AP).

We also conducted an experiment in Section VI-E, where we
evaluated the performance by the calibration-sensitive metrics,
including the actDCF withPtar = 0.01 and equal costs of misses
and false alarms, and Cllr.

C. Results Based on PLDA-Based Preprocessing

This section presents the main experimental results of the
pAUCMetric with the PLDA-based preprocessing technique.
We evaluate both the 8 kHZ and 16 kHZ systems on the SRE16
and SITW datasets, which contains the following four evaluation
schemes:

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1541

TABLE V
COMPARISON RESULTS OF PAUCMETRIC AND PLDA IN THE E1 EVALUATION SCHEME

TABLE VI
COMPARISON RESULTS OF PAUCMETRIC AND PLDA-ADP IN THE E2 EVALUATION SCHEME

� E1: This scheme conducts the comparison on language
mismatched conditions. The evaluation is carried out with
the 8 kHZ system on the SRE16 dataset. Most training data
of the 8 kHZ system are in English, while the SRE16 test
data are in Cantonese and Tagalog languages.

� E2: Contrary to E1, this scheme conducts the comparison
on language matched conditions. The evaluation is car-
ried out with the 8 kHZ system on the SRE16 dataset as
well, and furthermore, the domain adaptation technique is
adopted. The input features of pAUCMetric are the latent
variables of PLDA-adp.

� E3: This scheme makes an evaluation on channel and
noise mismatched conditions. We conducted the evaluation
with the 8 kHZ system on the SITW data, where we
downsampled the SITW from 16 KHZ to 8 KHZ. The
mismatched problem is caused by the fact that SITW is
collected from multi-media videos, while the training data,
i.e., SWBD and SRE, are collected from telephone or
meeting conditions.

� E4: Contrary to E3, this scheme makes an evaluation
on channel and noise matched conditions. Specifically,
we make the evaluation with the 16 kHZ system on the
SITW dataset. Both the SITW and VoxCeleb datasets are
collected from multi-media videos.

The experimental results of E1 are presented in Table V. As
seen, pAUCMetric achieves obvious performance improvement
over PLDA on the Cantonese language. Specifically, when the
x-vector front-end is used, it obtains 11% relative EER reduction
and 5% relative minDCF reduction; it also achieves 9% relative
pAUC[0,0.01] improvement, 22% relative AUC improvement,
and 12% relative AP improvement. When the i-vector front-end
is used, it obtains 7% relative EER reduction and 14% relative
AUC improvement. However, the experimental results of PLDA
and pAUCMetric on the Tagalog language are not good, which
may be due to the large mismatch between the Tagalog and the

languages of the training data, as well as the fact that the Tagalog
data is quite noisy.

The experimental results of E2 are presented in Table VI. It
is seen that pAUCMetric yields better performance than PLDA-
adp, for both the i-vector and x-vector front-ends. Specifically,
when the x-vector front-end is applied to the Cantonese language
of SRE16, pAUCMetric obtains 13% relative EER reduction and
5% relative minDCF reduction respectively; it also achieves
9% relative improvement in terms of pAUC[0,0.01] and 30%
relative improvement in terms of AUC. When the i-vector
front-end is applied to the Cantonese language, pAUCMetric
also obtains 11% relative EER reduction and 23% relative AUC
improvement, respectively. pAUCMetric also achieves better
performance than PLDA-adp on the Tagalog language.

The experimental results of E3 are presented in Table VII.
One can see that pAUCMetric achieves better performance
than PLDA. Specifically, when the x-vector front-end is used,
pAUCMetric achieves 10% relative EER reduction, 3% relative
minDCF reduction, and more than 8% relative pAUC[0,0.01]

improvement on both the Dev.Core and Eval.Core tasks; it also
obtains more than 20% and 12% relative AUC improvement
on the Dev.Core and Eval.Core tasks, respectively. When the
i-vector front-end is used, it also achieves better performance
than PLDA.

The experimental results of E4 are presented in Table VIII.
From this table, one can see that pAUCMetric also yields bet-
ter performance than PLDA. Specifically, when the x-vector
front-end is used, it obtains approximately 10% relative EER
reduction; it also obtains about 9% relative pAUC[0,0.01] im-
provement, and more than 20% relative AUC improvement.
When the i-vector front-end is used, a similar experimental
phenomenon is observed as well.

To summarize, when the x-vector front-end is used, pAUC-
Metric obtains about 10% relative EER reduction, 9% rela-
tive pAUC[0,0.01] improvement, and more than 20% relative

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

1542 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE VII
COMPARISON RESULTS OF PAUCMETRIC AND PLDA IN THE E3 EVALUATION SCHEME

TABLE VIII
COMPARISON RESULTS OF PAUCMETRIC AND PLDA IN THE E4 EVALUATION SCHEME

Fig. 4. Relative EER reduction of pAUCMetric over PLDA. The terms “Can,”
“Dev,” and “Eva” denote the Cantonese data of SRE16, the Dev.Core and
Eval.Core tasks of SITW, respectively. The terms “E1,” “E2,” “E3,” and “E4”
denote the four evaluation schemes.

AUC improvement over the state-of-the-art PLDA, except the
Eval.Core task of the SITW dataset in the E3 evaluation scheme.
Although the performance improvement with the i-vector front-
end is not so significant as that with the x-vector front-end, the
trends are consistent. For clarity, the relative EER improvement
of pAUCMetric over PLDA in different evaluation schemes is
summarized in Fig. 4. pAUCMetric also achieves better perfor-
mance than TripletMetric in all of the above four conditions.

Figure 5 plots the ROC and DET curves of the comparison
methods with the x-vector front-end in the SRE16 Cantonese
of the E1 evaluation scheme. It is seen from the figure that
pAUCMetric yields better ROC and DET curves than PLDA.
We further draw the DET curves of theE2 ∼ E4 schemes in Ap-
pendix C, where we also see the effectiveness of pAUCMetric.

D. Results Based on Length-Normalization Preprocessing

This section presents the main experimental results of the
pAUCMetric with the length-normalization preprocessing tech-
nique. We compare it with the Cosine back-end.

Fig. 5. ROC and DET curves of the comparison methods with the x-vector
front-end on the Cantonese data of SRE16 in the E1 evaluation scheme.

Specifically, we first evaluate the 8 kHZ system on the
Cantonese data of SRE16 and the Dev.Core and Eval.Core
tasks of SITW. The experimental results are summarized in
Table IX. As shown in the table, pAUCMetric achieves sig-
nificant performance improvement over the Cosine back-end.
When the i-vector front-end is used, it obtains about 16% to
23% relative EER reduction, and approximately 2% to 7%
minDCF reduction respectively; it also obtains about 7% to
13% relative improvement in terms of pAUC[0,0.01], and about
23% to 37% relative improvement in terms of AUC. When the
x-vector front-end is used, pAUCMetric obtains more than 25%
relative EER reduction; moreover, it obtains about 20% relative
pAUC[0,0.01] improvement and more than 40% relative AUC
improvement.

Then, we evaluate the 16 kHZ system on the Dev.Core and
Eval.Core tasks of SITW. The experimental results are sum-
marized in Table X. One can see that pAUCMetric also yields
significant performance improvement over the Cosine back-end.
For example, when the x-vector front-end is used, it obtains
27% and 30% relative EER reduction on the Dev.Core task and
Eval.Core task respectively. It also obtains more than 40% rel-
ative AUC improvement on both of the tasks. The performance

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1543

TABLE IX
COMPARISON RESULTS OF PAUCMETRIC AND COSINE WITH THE MODELS OF THE 8 KHZ SYSTEM

TABLE X
COMPARISON RESULTS OF PAUCMETRIC AND COSINE WITH THE MODELS OF THE 16 KHZ SYSTEM

Fig. 6. Relative EER reduction of pAUCMetric over Cosine. The terms “Can,”
“Dev,” and “Eva” denote the Cantonese data of SRE16, the Dev.Core and
Eval.Core. tasks of SITW, respectively. The terms “8kHZ” and “16kHZ” denote
the 8 kHZ system and 16 kHZ system respectively.

trend with the i-vector front-end is consistent with the trend with
the x-vector front-end.

To summarize, when the length-normalization is adopted to
preprocess the speaker features, pAUCMetric achieves signifi-
cant performance improvement over the Cosine back-end. For
clarity, the relative EER improvement on different evaluation
dataset is summarized in Fig. 6. Moreover, the relative improve-
ment of the pAUCMetric over PLDA with the x-vector front-end
behaves better than that with the i-vector front-end. pAUCMetric
also achieves better performance than TripletMetric, when the
length-normalization preprocessing is adopted.

Figure 7 plots the ROC and DET curves of the comparison
methods with the x-vector front-end on the SRE16 Cantonese
data. It is seen from the figure that pAUCMetric yields better
ROC and DET curves than Cosine.

Fig. 7. ROC and DET curves of the comparison methods with the x-vector
front-end of the 8 kHZ system on the Cantonese data of SRE16.

E. Calibration

In real applications, it is needed to present the verification re-
sult in terms of calibrated LLR [57]. So, we applied calibration to
the all the studied back-ends, i.e., Cosine, PLDA, TripletMetric,
and pAUCMetric, with the linear logistic regression method of
BOSARIS Toolkit,2 where the calibration model was trained on
the Dev.Core dataset of SITW and evaluated on its Eval.Core
dataset.

We conducted experiments on the conditions of the 8 kHZ
and 16 kHZ systems respectively. From the experimental results
inTable XII, one can see that pAUCMetric achieves better per-
formance than the compared methods on all the four conditions
in terms of actDCF and Cllr.

F. Discussion

In this section, we first discuss the effect of the input feature
dimension of pAUCMetric on performance, then analyze the

2[Online]. Available: https:// sites.google.com/ site/ bosaristoolkit/ .

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

https://sites.google.com/site/bosaristoolkit/

1544 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE XI
EER RESULTS OF THE COMPARISON BACK-ENDS WITH DIFFERENT INPUT FEATURE DIMENSIONS. THE TERM “LENGTH-NORMALIZATION” DENOTES THE LENGTH

NORMALIZATION PREPROCESSING. THE TERM “PLDA-BASED” DENOTES THE PLDA-BASED PREPROCESSING

TABLE XII
SCORE CALIBRATION RESULTS ON THE X-VECTOR OF EVAL.CORE

TASK OF THE SITW DATASET

effects of its hyperparameters, and at last discuss the compu-
tational complexity and performance with respect to the batch
size s.

All discussions use the x-vector front-end of the 8 kHZ
system to extract speaker features, and compare PLDA with the
pAUCMetric that adopts the PLDA-based preprocessing on the
Cantonese data of SRE16. No domain adaptation is adopted in
the discussions.

1) Effect of the Input Feature Dimension on Performance:
We set the dimensions of the input features of the comparison
back-ends from 50 to 400 with a step size of 50, where the
features are produced from LDA. The experimental results are
summarized in Table XI. From this table, one can see that
pAUCMetric obtains lower EER scores and smaller performance
variances than the comparison back-ends in all cases. It reaches
the lowest EER when the input feature dimension is set to 150.

2) Effects of the Hyperparameters of pAUCMetric: pAUC-
Metric has five hyperparameters α, β, δ, γ, and μ. The reason
why we set α = 0 and β = 0.01 is that the number of the
imposter trials is much larger than the number of the true trials,
hence restricting the working area [α, β] to a FPR range of close
to zero makes the algorithm focus on discriminating the difficult
trials.

We study the effects of δ, γ, and μ by grid search. We
first search δ in [0,10] with the other hyperparameters set to
their default values. Figure 8 shows the relative performance
improvement of pAUCMetric over PLDA. From the figure, we
find that pAUCMetric is robust in a wide range of δ with the best
δ being around 1.5. We search γ and μ in grid jointly as listed
in Tables XIII and XIV with the other hyperparameters set to
their default values. It is observed that the stable working region
is μ ∈ [0, 10−3] ∩ γ ∈ [0, 1.5]. Interestingly, pAUCMetric still
works well even without regularization, i.e., μ = 0 and γ = 0.
The above observation is consistent across all training scenarios
of this paper. To summarize, pAUCMetric is insensitive to the 3
hyperparameters.

3) Complexity Analysis: In Section VI-F3, we have proven
that the computational complexity is cubic with respect to the

Fig. 8. Relative performance improvement of pAUCMetric over PLDA with
respect to hyperparameter δ.

TABLE XIII
RELATIVE EER REDUCTION OF PAUCMETRIC OVER PLDA WITH RESPECT

TO γ AND μ

TABLE XIV
RELATIVE pAUC[0,0.01] REDUCTION OF PAUCMETRIC OVER PLDA WITH

RESPECT TO γ AND μ

batch size s. This section further discusses the effect of s on the
computational complexity and performance of pAUCMetric.

Figure 9 shows the training time of the pAUCMetric at each
iteration with respect to the batch size s. One can see that the
training time increases sharply with the value of s, which is
consistent with the theoretical analysis in Section VI-F3. Note

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1545

Fig. 9. Training time of pAUCMetric at each iteration with different batch
sizes.

Fig. 10. EER of pAUCMetric with different batch sizes.

Fig. 11. Convergence analysis of pAUCMetric with different batch sizes.

that, when the value of s is less than 160, the fluctuation of the
training time is caused by some random factors.

Figure 10 shows the EER results of pAUCMetric with differ-
ent values of s. One can see that, on the one hand, the value of
s cannot be too small, e.g. smaller than 160, and on the other
hand, increasing the batch size does not always improve the
performance. In practice, we only need a small suitable batch
size, such as our default s = 500.

Figure 11 plots the convergence rate with respect to s. We
see that, when s is larger than a reasonable small value, the
convergence rate of pAUCMetric does not improve anymore. In

other words, although the computational complexity of pAUC-
Metric is theoretically cubic with respect to s, setting s to a small
reasonable value not only guarantees good performance but also
is efficient.

Finally, we evaluated the proposed pAUCMetric in other
test scenarios beyond the scenarios in this subsection and with
the length-normalization preprocessing technique as well. The
experimental conclusions are consistent with those in this sub-
section. But we will not report the tedious results to make the
paper concise.

VII. CONCLUSION

In this paper, we presented a speaker verification back-end
based on the squared Mahalanobis distance, i.e., pAUCMetric,
to maximize pAUC. Because directly optimizing pAUC is an
NP-hard problem, we first relaxed the optimization problem to
a polynomial-time solvable one, and then adopted a random
sampling strategy to reduce the computational complexity. The
pAUC optimization was proven to be a problem of enlarging the
weighted margin between the positive and negative trials, where
the information of pAUC is encoded in the weights of the trials.
In order to boost the performance of pAUCMetric, we further
proposed to use the length-normalization and the PLDA-based
preprocessing techniques. Experimental results on the NIST
2016 SRE and SITW data demonstrated the effectiveness of
pAUCMetric and showed that pAUCMetric is insensitive to the
hyperparameter settings in all the studied evaluation scenarios.

The proposed method can be further improved in many as-
pects. Work is in progress to study automatic hyperparameter
tuning algorithms via auto machine learning and investigate
new methods that do not need feature preprocessing. Since
pAUCMetric does not need a decision threshold, it is interesting
to explore whether the pAUC optimization can be integrated
with score calibration, which will be carried out in the near
future. A speaker verification system consists of both front-end
and back-end. So, only developing a good back-end may not
give the best performance. Consequently, it is legitimate to
extend pAUCMetric to end-to-end training, which is also on
our roadmap. Furthermore, as suggested by one anonymous
reviewer, it is interesting to separate the effects of back-ends
and loss functions, and evaluate how well the hinge loss can
approximate the indicator function in pAUCMetric.

APPENDIX A

A probabilistic explanation of the Mahalanobis distance is
given as follows. Let z = x1 − x2 be the difference between
two embedding vectors. We further assume that p(z|tar) =
N(0,Σ0) and p(z|non) = N(0,Σ1), where “tar” and “non”
denote target and non-target respectively. The LLR test is:

LLR(z) = log(p(z|tar))− log(p(z|non)), (34)

which can be transformed to:

2LLR(z) = −zT (Σ−1
0 −Σ−1

1)z+ log |Σ1| − log |Σ0|.
(35)

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

1546 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

Fig. 12. DET curves of the studied methods on the Cantonese data of the E2
scheme.

Fig. 13. DET curves of the studied methods on the Dev.Core task of the E3
scheme.

Neglecting the constant terms of (35) gives:

˜LLR(z) = −zTMz (36)

where M = Σ−1
0 −Σ−1

1 is the parameters of the Mahalanobis
distance [58].

APPENDIX B

Theorem 2: The relative constraints of the triplet-loss are a
subset of the relative constraints of the AUC-loss.

Proof: Let xm
i be the ith embedding vector of the mth

speaker. The relative constraints of the triplet-loss Tri is:

Tri = {(xm
i ,x

m
j ;xn

k)|i �= j,m �= n} (37)

The relative constraints of the AUC-loss Tet can be divided into
the following four sets:

Tet1 = {(xm
i ,x

m
j ;xm

i ,x
n
k)|i �= j,m �= n} (38)

Tet2 = {(xm
i ,x

m
j ;xm

j ,x
n
k)|i �= j,m �= n} (39)

Tet3 = {(xm
i ,x

m
j ;xm

l ,x
n
k)|i �= j �= l,m �= n} (40)

Tet4 = {(xm
i ,x

m
j ;xt

l ,x
n
k)|i �= j,m �= t �= n} (41)

with Tet = Tet1 ∪ Tet2 ∪ Tet3 ∪ Tet4. Obviously, Tet1 ∪
Tet2 = Tri, which derives Tri ⊂ Tet. �

APPENDIX C

The DET curves of the studied methods on the E2 ∼ E4
schemes are plotted in Figs. 12 to 14.

Fig. 14. DET curves of the studied methods on the Dev.Core task of the E4
scheme.

ACKNOWLEDGMENT

The authors are grateful to Dr. Kong Aik Lee, the Associate
Editor, and the anonymous reviewers for their valuable com-
ments, which helped greatly improve the quality of the paper.

REFERENCES

[1] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-
dependent speaker verification,” in Acoust., Speech and Signal Process.,
IEEE Int. Conf, 2016, pp. 5115–5119.

[2] S.-X. Zhang, Z. Chen, Y. Zhao, J. Li, and Y. Gong, “End-to-end attention
based text-dependent speaker verification,” in Proc. IEEE Spoken Lang.
Technol. Workshop (SLT)., 2016, pp. 171–178.

[3] D. Snyder, P. Ghahremani, D. Povey, D. G.-Romero, Y. Carmiel, and S.
Khudanpur, “Deep neural network-based speaker embeddings for end-
to-end speaker verification,” in Spoken Lang. Technol. Workshop , IEEE.
2016, pp. 165–170.

[4] J.-W. Jung, H.-S. Heo, I.-H. Yang, H.-J. Shim, and H.-J. Yu, “A complete
end-to-end speaker verification system using deep neural networks: From
raw signals to verification result,” in 2018 IEEE Int. Conf. Acoust., Speech
and Signal Process., IEEE, 2018, pp. 5349–5353.

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using
adapted Gaussian mixture models,” Digit. signal process., vol. 10, no. 1-3,
pp. 19–41, 2000.

[6] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 19, no. 4, pp. 788–798, 2011.

[7] S. Cumani and P. Laface, “Speaker recognition using e–vectors,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 26, no. 4, pp. 736–
748, 2018.

[8] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for
speaker recognition using a phonetically-aware deep neural network,”
in Acoust., Speech and Signal Process., 2014 IEEE Int. Conf., 2014,
pp. 1695–1699.

[9] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet, and J. Alam, “Deep neural
networks for extracting baum-welch statistics for speaker recognition,” in
Proc. Odyssey, 2014, pp. 293–298.

[10] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural network
approaches to speaker and language recognition,” IEEE Signal Process.
Lett., vol. 22, no. 10, pp. 1671–1675, 2015.

[11] Z. Tan, M.-W. Mak, B. K.-W. Mak, and Y. Zhu, “Denoised senone i-vectors
for robust speaker verification,” IEEE/ACM Trans. Audio, Speech, and
Lang. Process., vol. 26, no. 4, pp. 820–830, 2018.

[12] E. Variani, X. Lei, E. McDermott, I. L.-Moreno, and J. G.-Dominguez,
“Deep neural networks for small footprint text-dependent speaker verifi-
cation.” in Int. Conf. on Acoust., Speech, and Signal Processing, vol. 14.
Citeseer, 2014, pp. 4052–4056.

[13] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep speaker feature
learning for text-independent speaker verification,” in Proc. Interspeech,
2017, pp. 1542–1546.

[14] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural
network embeddings for text-independent speaker verification,” in Proc.
Interspeech, 2017, pp. 999–1003.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: SPEAKER VERIFICATION BY PARTIAL AUC OPTIMIZATION WITH MAHALANOBIS DISTANCE METRIC LEARNING 1547

[15] D. Snyder, D. G.-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust DNN embeddings for speaker recognition,” in 2018 IEEE
Int. Conf. Acoust., Speech and Signal Process. 2018.

[16] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling for
deep speaker embedding,” arXiv:1803.10963, 2018.

[17] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive speaker
embeddings for text-independent speaker verification,” Proc. Interspeech
2018, pp. 3573–3577.

[18] Z. Gao, Y. Song, I. McLoughlin, W. Guo, and L. Dai, “An improved deep
embedding learning method for short duration speaker verification,” Proc.
Interspeech 2018, pp. 3578–3582.

[19] S. Yadav and A. Rai, “Learning discriminative features for speaker iden-
tification and verification,” Proc. Interspeech 2018, pp. 2237–2241.

[20] N. Li, D. Tuo, D. Su, Z. Li, D. Yu, and A. Tencent, “Deep discriminative
embeddings for duration robust speaker verification,” Proc. Interspeech
2018, pp. 2262–2266.

[21] C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent speaker
verification based on triplet convolutional neural network embeddings,”
IEEE/ACM Trans. Audio, Speech Lang. Process., vol. 26, no. 9, pp. 1633–
1644, 2018.

[22] S. Cumani and P. Laface, “Large-scale training of pairwise support vector
machines for speaker recognition,” IEEE/ACM Trans. Audio, Speech Lang.
Process., vol. 22, no. 11, pp. 1590–1600, 2014.

[23] S. Ioffe, “Probabilistic linear discriminant analysis,” in Eur. Conf. Comput.
Vision, Springer, 2006, pp. 531–542.

[24] P. Kenny, “Bayesian speaker verification with heavy-tailed priors.,” in
Odyssey, 2010, p. 14.

[25] D. G.-Romero and C. Y. E.-Wilson, “Analysis of i-vector length normal-
ization in speaker recognition systems,” in Twelfth Annu. Conf. the Int.
Speech Commun. Assoc., 2011.

[26] O. Ghahabi and J. Hernando, “Deep belief networks for i-vector based
speaker recognition,” in Acous., Speech and Signal Process., 2014 IEEE
Int. Conf. , 2014, pp. 1700–1704.

[27] O. Ghahabi and J. Hernando, “Deep learning backend for single and mul-
tisession i-vector speaker recognition,” IEEE/ACM Trans. Audio, Speech,
and Lang. Process., vol. 25, no. 4, pp. 807–817, 2017.

[28] A. O. Hatch, S. Kajarekar, and A. Stolcke, “Within-class covariance
normalization for SVM-based speaker recognition,” in Ninth int. conf.
spoken lang. process., 2006.

[29] S. Cumani, P. Laface, S. Cumani, and P. Laface, “Nonlinear i-
vector transformations for plda-based speaker recognition,” IEEE/ACM
Trans. Audio, Speech Lang. Process., vol. 25, no. 4, pp. 908–919,
2017.

[30] S. Cumani and P. Laface, “Joint estimation of plda and nonlinear trans-
formations of speaker vectors,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 25, no. 10, pp. 1890–1900, 2017.

[31] S. Cumani and P. Laface, “Scoring heterogeneous speaker vectors using
nonlinear transformations and tied PLDA models,” IEEE/ACM Trans.
Audio, Speech Lang. Process., vol. 26, no. 5, pp. 995–1009, 2018.

[32] Z. Tieran, H. Jiqing, and Z. Guibin, “Deep neural network based discrimi-
native training for i-vector/PLDA speaker verification,” in 2018 IEEE Int.
Conf. Acoust., Speech Signal Process., IEEE, 2018, pp. 5354–5358.

[33] B. Kulis, “Metric learning: A survey,” Foundations and Trends in Mach.
Learn., vol. 5, no. 4, pp. 287–364, 2013.

[34] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning
via lifted structured feature embedding,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., 2016, pp. 4004–4012.

[35] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in
Proc. Int. Workshop Similarity-Based Pattern Recognit. Springer, 2015,
pp. 84–92.

[36] F. Cakir, K. He, X. Xia, B. Kulis, and S. Sclaroff, “Deep metric learning
to rank,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2019,
pp. 1861–1870.

[37] Z. Bai, X.-L. Zhang, and J. Chen, “Cosine metric learning for speaker
verification in the i-vector space,” Proc. Interspeech 2018, pp. 1126–1130,
2018.

[38] S. Novoselov, V. Shchemelinin, A. Shulipa, A. Kozlov, and I. Krem-
nev, “Triplet loss based cosine similarity metric learning for text-
independent speaker recognition,” Proc. Interspeech 2018, pp. 2242–2246,
2018.

[39] L. P. G.-Perera, J. A. N.-Flores, B. Raj, and R. Stern, “Optimization of the
det curve in speaker verification,” in 2012 IEEE Spoken Lang. Technol.
Workshop. IEEE, 2012, pp. 318–323.

[40] V. Mingote, A. Miguel, A. Ortega, and E. Lleida, “Optimization of the area
under the roc curve using neural network supervectors for text-dependent
speaker verification,” 2019, arXiv:1901.11332.

[41] N. Brümmer and E. De Villiers, “The Bosaris toolkit: Theory, algorithms
and code for surviving the new dcf,” 2013, arXiv:1304.2865.

[42] N. Brümmer and J. Du Preez, “Application-independent evaluation of
speaker detection,” Comput. Speech & Lang., vol. 20, no. 2-3, pp. 230–275,
2006.

[43] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przy-
bocki, “The DET curve in assessment of detection task performance,”
Nat. Inst of Standards and Technol. Gaithersburg MD, Tech. Rep.,
1997.

[44] N. Brummer, “Measuring, refining and calibrating speaker and language
information extracted from speech,” Ph.D. dissertation, Stellenbosch: Uni-
versity of Stellenbosch, 2010.

[45] N. Brümmer and G. Doddington, “Likelihood-ratio calibration using prior-
weighted proper scoring rules,” 2013, arXiv:1307.7981.

[46] J. Huo, Y. Gao, Y. Shi, and H. Yin, “Cross-modal metric learning for AUC
optimization,” IEEE Trans. Neural Netw. Learn. Syst., PP (99), pp. 1–13,
2018.

[47] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” J. Mach. Learn. Res., vol. 10,
no. Feb. pp. 207–244, 2009.

[48] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in Proc. 24th int. conf. Mach. learn. ACM,
2007, pp. 209–216.

[49] L. Burget, O. Plchot, S. Cumani, O. Glembek, P. Matějka, and N. Brümmer,
“Discriminatively trained probabilistic linear discriminant analysis for
speaker verification,” in 2011 IEEE int. conf. acoust., speech and signal
process, 2011, pp. 4832–4835.

[50] S. Cumani, N. Brümmer, L. Burget, and P. Laface, “Fast discriminative
speaker verification in the i-vector space,” in 2011 IEEE Int. Conf. Acoust.,
Speech and Signal Process. 2011, pp. 4852–4855.

[51] N. Brümmer and E. De Villiers, “The speaker partitioning problem.,” in
Odyssey, 2010, p. 34.

[52] A. N. snd Joon Son Chung and A. Zisserman, “VoxCeleb: a large-scale
speaker identification dataset,” in Proc. Interspeech 2017, 2017, pp. 1487–
1491.

[53] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep speaker
recognition,” in Proc. Interspeech 2018, 2018, pp. 1086–1090. [Online].
Available: http://dx.doi.org/10.21437/Interspeech.2018-1929

[54] “Nist 2016 speaker recognition evaluation plan,” https://www.nist.gov/itl/
iad/mig/speaker-recognition-evaluation-2016, 2016.

[55] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speakers in the
wild (sitw) speaker recognition database,” in Interspeech, 2016, pp. 818–
822.

[56] D. Povey et al., “The Kaldi speech recognition toolkit,” in IEEE 2011
workshop on autom. speech recognit. understanding, no. EPFL-CONF-
192584. IEEE Signal Process. Soc., 2011.

[57] A. Khosravani and M. M. Homayounpour, “AUT System for SITW
Speaker Recognition Challenge.” in INTERSPEECH, 2016, pp. 843–847.

[58] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H.
Bischof, “Large scale metric learning from equivalence constraints,”
in 2012 IEEE Conf. Comput. Vision Pattern Recognit. IEEE, 2012,
pp. 2288–2295.

Zhongxin Bai received the bachelor’s degree in
electronics and information engineering and the
master’s degree in information and communication
engineering from the Northwestern Polytechnical
University(NPU), Xi’an, China, in 2015 and 2017,
respectively, where he is currently working toward
the Ph.D. degree in information and communication
engineering. His research interests include speech
enhancement, speaker recognition and machine
learning.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.21437/Interspeech.2018-1929
https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2016

1548 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

Xiao-Lei Zhang received the Ph.D. degree in in-
formation and communication engineering from
Tsinghua University, Beijing, China, in 2012. He is
currently a Full Professor with the Center for In-
telligent Acoustics and Immersive Communications,
and the School of Marine Science and Technology,
Northwestern Polytechnical University, Xian, China.
He was a Postdoctoral Researcher with the Percep-
tion and Neurodynamics Laboratory, The Ohio State
University.

His research interests include audio and speech
signal processing, machine learning, statistical signal processing, and artificial
intelligence. He has published over 40 journal articles and conference papers in
Neural Networks, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, IEEE/ACM TRANSACTION ON AUDIO, SPEECH, AND LANGUAGE

PROCESSING, IEEE TRANSACTIONS ON CYBERNETICS, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS, Part B: Cybernetics, ICASSP, Interspeech,
etc. and co-edited a text book in statistics. He received the first-class Beijing
Science and Technology Award. He serves as an Associate Editor of Neural
Networks and EURASIP Journal on Audio, Speech, and Music Processing. He
is a member of ISCA.

Jingdong Chen (Senior Member, IEEE) received the
Ph.D. degree in pattern recognition and intelligence
control from the Chinese Academy of Sciences in
1998.

From 1998 to 1999, he was with ATR Interpreting
Telecommunications Research Laboratories, Kyoto,
Japan, where he conducted research on speech syn-
thesis, speech analysis, as well as objective measure-
ments for evaluating speech synthesis. He then joined
the Griffith University, Brisbane, Australia, where he
engaged in research on robust speech recognition and

signal processing. From 2000 to 2001, he worked at ATR Spoken Language
Translation Research Laboratories on robust speech recognition and speech
enhancement. From 2001 to 2009, he was a member of Technical Staff at Bell
Laboratories, Murray Hill, New Jersey, working on acoustic signal processing
for telecommunications. He subsequently joined WeVoice Inc. in New Jersey,
serving as the Chief Scientist. He is currently a professor at the Northwestern
Polytechnical University in Xi’an, China. His research interests include array
signal processing, adaptive signal processing, speech enhancement, adaptive
noise/echo control, signal separation, speech communication, and artificial
intelligence.

Dr. Chen served as an Associate Editor of the IEEE TRANSACTIONS ON AUDIO,
SPEECH, AND LANGUAGE PROCESSING from 2008 to 2014 and as a Technical
Committee (TC) Member of the IEEE Signal Processing Society (SPS) TC on
Audio and Electroacoustics from 2007 to 2009. He is currently a member of the
IEEE SPS TC on Audio and Acoustic Signal Processing, and a Series Editor of
Springer Series on Signals and Communication Technology. He was the General
Co-Chair of ACM WUWNET 2018 and IWAENC 2016, the Technical Program
Chair of IEEE TENCON 2013, a Technical Program Co-Chair of IEEE WAS-
PAA 2009, IEEE ChinaSIP 2014, IEEE ICSPCC 2014, and IEEE ICSPCC 2015,
and helped organize many other conferences. He co-authored 12 monograph
books including Array Processing–Kronecker Product Beamforming, (Springer,
2019), Fundamentals of Signal Enhancement and Array Signal Processing,
(Wiley, 2018), Fundamentals of Differential Beamforming, (Springer, 2016),
Design of Circular Differential Microphone Arrays (Springer, 2015), Noise
Reduction in Speech Processing (Springer, 2009), Microphone Array Signal
Processing (Springer, 2008), and Acoustic MIMO Signal Processing (Springer,
2006), etc.

Dr. Chen received the 2008 Best Paper Award from the IEEE Signal Processing
Society (with Benesty, Huang, and Doclo), the Best Paper Award from the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics in 2011
(with Benesty), the Bell Labs Role Model Teamwork Award twice, respectively,
in 2009 and 2007, the NASA Tech Brief Award twice, respectively, in 2010 and
2009, and the Young Author Best Paper Award from the 5th National Conference
on Man-Machine Speech Communications in 1998. He is a Co-Author of a paper
for which C. Pan received the IEEE R10 (Asia-Pacific Region) Distinguished
Student Paper Award (First Prize) in 2016. He was also a recipient of the Japan
Trust International Research Grant from the Japan Key Technology Center in
1998 and the “Distinguished Young Scientists Fund” from the National Natural
Science Foundation of China (NSFC) in 2014.

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on July 01,2020 at 02:58:09 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

